首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 544 毫秒
1.
对北京地区27家汽修企业进行调研,选取2家典型汽修企业进行气袋采样-GC-MS-FID采集及分析,定量分析其VOCs的排放特征,并计算其臭氧生成潜势(OFP)。结果表明:使用不同漆料的汽修企业排放特征不同,水性漆企业非甲烷总烃的排放浓度为0.62~36.49 mg/m3,油性漆企业的排放浓度为0~100.39 mg/m3;水性漆排放的VOCs以烷烃为主,占比高达57.16%,丙烷(39.65%)和甲苯(11.41%)是首要污染物;卤代烃(55.51%)是油性漆企业的主要VOCs排放物种,主要组分为1,2-二氯丙烷和1,2-二氯乙烷;水性漆企业的OFP值为144.78 mg/m3,油性漆企业的OFP值为664.43 mg/m3,大气反应活性最大的物种多为芳香烃,芳香烃对OFP的贡献率分别为52.18%和88.44%。  相似文献   

2.
使用SUMMA罐采集华东地区5类典型合成树脂企业有组织排口样品,通过气相色质联用技术(GC-MS)定量分析106种VOCs,计算了合成树脂行业排放量、排放系数和不确定性,分析了VOCs的排放特征和臭氧生成潜势,建立了5类合成树脂VOCs排放成分谱.结果表明:合成树脂企业VOCs排放量为346~3467kg/a,5类合成树脂排放系数为0.06~1.24g/kg,其中涂料树脂(CR)类企业排放量和排放系数均最大.芳香烃、含氧烃(OVOCs)和卤代烃是合成树脂行业VOCs排放基本组分,累计占比范围是73.2%~98.3%.涂料树脂、酚醛树脂(PF)、聚氨酯(PU)、共聚物树脂(ABS)和聚碳酸酯(PC)特征污染物分别为:甲基异丁基酮、苯、甲苯、苯乙烯和二氯甲烷.合成树脂企业臭氧生成潜势(OFP)为22.7~202.5mg/m3,源反应性(SR)为0.3~4.6g/g,CR类企业OFP和SR均最大.合成树脂行业SR处于各行业平均水平.芳香烃、OVOCs和烯炔烃是合成树脂行业的主要光化学活性组分,累计OFP贡献率为64.1%~100.0%,苯、甲苯、甲基异丁基酮、乙烯、苯乙烯是合成树脂行业关键活性物种.研究显示,合成树脂行业VOCs治理应管控芳香烃和OVOCs的排放,重视污染物恶臭问题和卤代烃溶剂的危害,减排VOCs排放量大、臭氧生成能力强的CR类企业.  相似文献   

3.
为评估河南省生活垃圾焚烧发电厂排放的挥发性有机物(VOCs)对臭氧生成的贡献,选取某典型企业进行调研. 采用气袋、苏玛罐和吸附管进行采样,通过气质联用(GC/MS)和高效液质(HPLC/MS)联用分析方法对117种VOCs物种排放水平进行监测,并计算本地化VOCs排放因子. 采用最大增量反应活性(MIR)法计算臭氧生成潜势(OFP),并识别OFP贡献率较大的物种. 结果表明:①主排放口实测的VOCs总浓度为4.28 mg/m3,VOCs排放量为3.5 t/a,计算的VOCs排放因子为0.016 g/kg (以垃圾计,下同). ②MIR系数法计算的有组织OFP总排放量为9.3 t/a,对应的MIR系数平均值为2.67. ③排放量占比较大的VOCs组分依次为芳香烃(38.37%)、卤代烃(28.79%)、含氧化合物(14.32%)和烷烃(12.75%). 对OFP贡献率较大的VOCs组分为芳香烃(53.91%)和含氧化合物(28.16%),OFP贡献率排名前5位的VOCs物种分别为乙醛(20.5%)、间/对-二甲苯(20.2%)、正丁烯(6.2%)、1,2,4-三甲苯(5.4%)和正丁醛(4.9%). ④固废间、锅炉房、锅炉房外、渗滤液泵房及房顶采样点测得的VOCs无组织排放总浓度分别为83.6、6.19、1.24、5.71、1.79 mg/m3. 研究显示,该垃圾焚烧发电厂固废间VOCs浓度较高,需要进一步提高车间内VOCs收集率,以减少无组织VOCs排放,同时可在主排放口安装合适的VOCs去除装置以进一步削减VOCs有组织排放量.   相似文献   

4.
焦化厂因其工艺特殊,SO2、NOx、颗粒物及VOCs的排放问题较为突出。故对焦化厂厂界环境空气VOCs排放特征进行分析,并依据最大增量反应活性(MIR)法和等效丙烯浓度(PEC)法对VOCs的臭氧生成潜势(OFP)进行评估,依据气溶胶生成系数(FAC)法对VOCs二次有机气溶胶生成潜势(SOAFP)进行评估。结果表明:1)厂界上、下风向5个点位共分析出包括芳香烃、卤代烃、烯烃、硫化物、酮类在内的17种VOCs; 2)不同区域厂界检出的VOCs差异显著,总质量浓度为28.2~167.9μg/m3,其中芳香烃在各点位TVOCs中占比最大,达到51.01%~84.63%;3)脱硫提盐冷鼓区域边界OFP最大,理论值为335.51μg/m3,办公生活区边界OFP最小,理论值为47.06μg/m3,芳香烃对OFP贡献率为27.21%~62.37%,烯烃为39.17%~61.84%,卤代烃为2.08%~14.56%;通过PEC法估算OFP,结果变化趋势与MIR法结果相一致,等效丙烯浓度为3.11~31.89μg/m3;且1—5点位芳香烃的等效丙烯浓度贡献率分别为37.10%、51.46%、66.79%、58.80%和22.74%;4)1—5点位SOAFP分别为0.452,0.938,2.517,4.055,0.495μg/m3;芳香烃对SOAFP贡献最大。丙烯、甲苯、二甲苯、氯乙烯等质量浓度和反应活性均较大的物质,是需要优先控制的VOCs组分,可作为焦化厂环境空气VOCs的标志物。  相似文献   

5.
陈鹏  张月  张梁  熊凯  邢敏  李珊珊 《环境科学》2021,42(8):3604-3614
汽车维修行业挥发性有机物排放是臭氧前体物VOCs的重要来源,但目前汽车维修行业的VOCs减排政策主要基于VOCs的排放量,而没有考虑其化学反应活性,这将影响VOCs减排对改善空气质量的效果.通过分析汽车维修企业不同工段VOCs的产排污节点,结合各工段油漆用量及其VOCs质量分数,采用物料衡算法获得不同工段VOCs产生量及其组分,系统分析末端尾气VOCs的排放特征,并通过计算其臭氧生成潜势评估VOCs各组分的大气反应活性.结果表明,汽车维修行业油漆中产生的VOCs组分主要为苯系物,其中乙酸丁酯和二甲苯的质量分数最高.清漆由于其本身VOCs质量分数较高且用量较大,为汽车维修行业最大的VOCs排放源(92%).企业采用油性面漆VOCs产生量(22%)比水性面漆(3%)有较大程度增大,采用水性漆对汽修企业减少VOCs排放有显著效果.排气筒尾气中共检测出49种VOCs组分,前10种VOCs组分排放量占总排放量的97.9%,种类相对集中.主要污染物类别为芳香烃类(10种,30.90%~69.30%),主要组分有间/对-二甲苯(2.89%~45.00%);其次为OVOC (12种)和卤代烃(22种),贡献率分别为8.82%~43.71%和2.40%~25.00%,其他组分相对含量较少.芳香烃是汽车维修企业VOCs排放的最大组分,但是在不同研究中主要VOCs种类差异较大.汽车维修企业排放VOCs的OFP平均值为194.04 mg·m-3,SR平均值为3.37 g·g-1.间/对-二甲苯对汽车维修行业OFP贡献率最大(70.24%),为优先控制污染物.芳香烃对OFP的贡献率达到99.29%,是化学反应活性最强的组分.酯类在汽车维修行业VOCs组分中占比较大,但对OFP的贡献率相对较低,因此汽车维修行业应重点控制芳香烃类物质的排放.  相似文献   

6.
林旭  严仁嫦  金嘉佳  许凯儿 《环境科学》2022,43(4):1799-1807
2019年3月1日~2019年5月31日期间采用Syntech Spectras GC955在线气相色谱仪对杭州市大气环境中挥发性有机物(VOCs)进行了在线连续监测,分析了VOCs体积分数的组成特征、 PM2.5和O3协同控制的优控VOCs物种和VOCs特征污染物比值.结果表明,烷烃是VOCs体积分数中最重要的组分,贡献了62.40%. C2~C6的烷烃、苯系物、乙烯和乙炔是VOCs关键物种.烯烃和芳香烃是OFP的主要贡献组分,贡献率分别为41.35%和37.50%.芳香烃是SOA的主要贡献者,贡献率超过90%.低碳的烷烃、低碳烯烃和苯系物是OFP的关键贡献物种,控制好甲苯、间/对-二甲苯和邻-二甲苯这3种苯系物,是O3和PM2.5协同控制的关键.采样点大气中VOCs除了受机动车尾气的影响外,溶剂使用等工业排放的影响也较为显著.  相似文献   

7.
选取上海市某工业区内专项化学品制造行业中有代表性的10家企业,使用苏玛罐对各企业有组织排放废气进行采样,通过GC-MS(气相色谱-质谱联用仪)对106种VOCs进行分析,研究了专项化学品制造行业的VOCs排放特征,并使用MIR(最大增量反应活性)法计算了各企业排放VOCs对臭氧生成的贡献.结果表明:OVOCs(含氧挥发性有机物)和芳香烃是专项化学品制造行业的VOCs特征组分,OVOCs与芳香烃质量分数之和为65.0%~100.0%;8家企业排放的VOCs中质量分数最高的物种均为OVOCs,w(OVOCs)为55.8%~99.9%.异丙醇、四氢呋喃、丙酮、乙酸乙酯等OVOCs及苯、甲苯等芳香烃是专项化学品制造行业的特征物种.10家企业排放VOCs的OFP(臭氧生成潜势)为1.9~933.5 mg/m 3,OVOCs和芳香烃是专项化学品制造企业的主要活性组分,累计对OFP的贡献率在80.1%~100.0%之间.异丙醇、四氢呋喃、丙酮、乙酸乙酯、甲基异丁基酮、苯和甲苯等是专项化学品制造行业的关键活性物种.研究显示,专项化学品制造行业VOCs污染治理应重点控制OVOCs和芳香烃.   相似文献   

8.
2019年在珠三角典型产业重镇佛山市狮山镇在线监测大气挥发性有机化合物(VOCs),并开展大气VOCs污染特征、臭氧生成潜势(OFP)及来源贡献分析.观测期间共测得56种VOCs物种,总挥发性有机物(TVOCs)体积浓度为(39.64±30.46)×10-9,主要组成为烷烃(56.5%)和芳香烃(30.1%).大气VOCs在冬季和春季浓度较高.VOCs各组分呈“U”型日变化特征,污染时段的日变化幅度明显大于非污染时段.相对增量反应活性(RIR)结果表明研究区域的O3生成处于VOCs控制区.2019年VOCs的OFP为107.40×10-9,其中芳香烃对总OFP贡献最大(54.6%).OFP浓度最高的10种VOCs占总OFP的80.3%,占TVOCs体积浓度的59.9%,高反应活性的VOCs物种在研究区域具有较高的大气浓度,应重点控制.正交矩阵因子分析模型(PMF)来源解析结果表明,溶剂使用源(42.4%)和机动车排放源(25.8%)是研究区域2019年大气VOCs的主要来源,其次为工业过程源(14.6%)、汽油挥发(7.9%)和天然源(1.7%),控制上述源的VOCs排放是缓解该地区臭氧污染的有效策略.  相似文献   

9.
成都市典型溶剂源使用行业VOCs排放成分特征   总被引:17,自引:4,他引:13  
对成都市5类典型溶剂使用行业挥发性有机物(VOCs)进行采样监测,测定了其主要组成成分,得出了各行业的VOCs本地化排放系数.结果表明:芳香烃和含氧VOCs是主要成分,不同行业的特征VOCs组分各有不同;大气化学反应活性较大的物种大部分为芳香烃,其中对/间二甲苯的臭氧生成潜势(OFP)值约为141.88 mg·m~(-3),甲苯的OFP值约为90.90 mg·m~(-3),二者占总OFP的53%;家具制造行业的VOCs排放系数为0.61 kg·件~(-1),汽车喷涂行业VOCs排放系数为3.1 kg·辆~(-1),制鞋行业VOCs排放系数为4.04 g·双~(-1),印刷行业VOCs排放系数为34.7g·kg~(-1)油墨,人造板生产行业VOCs排放系数为3.67 g·m~(-3)人造板.  相似文献   

10.
铸造行业挥发性有机物排放成分谱及影响   总被引:1,自引:1,他引:0  
采用气袋-吸附管采样方法对京津冀地区9家铸造企业重点工序有组织和无组织排放气体进行采集,运用气相色谱-质谱联用技术(GC-MS)测定了56种VOCs组分,首次建立了铸造行业基于生产工序的VOCs源成分谱,并且结合臭氧生成潜势分析了VOCs对臭氧生成的贡献.结果表明,铸造行业VOCs特征组分主要为芳烃、卤代烃和含氧VOCs,平均占比分别为:50.9%、20.8%和12.6%.总体而言,甲苯、苯、间/对-二甲苯等芳烃,二氯甲烷、三氯乙烯等卤代烃,丙酮、乙酸乙酯、环戊酮等含氧VOCs和部分高碳烷烃是铸造行业的特征物种.铸造企业不同生产工序的VOCs特征物种与所使用溶剂、表面处理剂的成分相关.喷漆工序是铸造行业中排放浓度最高的环节,其次为造型、硅溶胶和浇注工序.不同生产工序排放VOCs的OFP在0.29~96.09 mg·m-3之间.喷漆工序是铸造行业OFP最高的环节,其次是造型、熔炼和浇注工序;芳烃和含氧VOCs是各生产工序OFP贡献较高的组分.1,3,5-三甲苯、1,2,4-三甲苯、甲苯和间/对-二甲苯等芳烃是铸造行业OFP贡献较高的物种,总贡献比例超过60%.建议重点对喷漆工序排放VOCs采取有效治理措施;对造型、熔炼和浇注等工序排放VOCs应采取有效收集和治理措施.  相似文献   

11.
于泡沫塑料鞋制造集中区和周边设置了5个采样点,研究其大气VOCs的污染特征和对臭氧生成的潜在影响.结果显示泡沫塑料制鞋行业大气VOCs组成以烷烃(38.4%)、含氧挥发性有机物(33.5%)和芳香烃(19.5%)为主,80种VOCs浓度为137.1~169.0μg/m3(均值149.1μg/m3).正戊烷、异戊烷、正丁烷、异丁烷、甲醛、甲苯、间/邻二甲苯、丙酮、丁酮、环己酮、甲基丙烯酸甲酯、乙酸乙酯为泡沫塑料鞋制造行业的特征VOCs.总VOCs、特征VOCs类型(含氧挥发性有机物、芳香烃)和特征VOCs组分(甲苯、邻二甲苯、间二甲苯、丁酮、乙酸乙酯)的浓度空间变化趋势依次为污染区 > 受影响区(下风向) > 对照区(上风向).同时,采用最大增量反应活性(MIR)方法估算了VOCs的臭氧生成潜势(OFP),均值为544.6μg/m3,表明泡沫塑料鞋制造导致了周边环境空气VOCs污染且对臭氧生成存在明显潜在影响.  相似文献   

12.
本文以广州市典型印刷企业为研究对象,通过对各排放环节的浓度和组分的全面统计和综合分析,深入探讨广州市该行业VOCs排放特征、环境影响及人体健康风险.结果表明,印前环节车间VOCs浓度为3.51~73.57mg/m3,印刷环节车间VOCs浓度为0.86~435.10mg/m3,印后环节车间VOCs浓度为0.05~221.93mg/m3,废气治理设施出口浓度为4.28~66.84mg/m3,处理效率为3.01%~54.90%;且VOCs物种以芳香烃类、醇醚类和酯类为主,平均臭氧生成潜势为111.09mg/m3,其中芳香烃类物质对环境影响贡献和人体健康风险较大,建议加强针对性控制.  相似文献   

13.
天津临港某仓储公司VOCs排放特征及臭氧生成潜势   总被引:1,自引:0,他引:1       下载免费PDF全文
为了研究储运环节VOCs的排放影响,参考HJ 732-2014《固定污染源废气挥发性有机物的采样气袋法》,选择天津临港工业园区某石化业仓储公司为重点监测对象,对企业的厂界上下风向、有组织和无组织排放源进行采样,利用在线仪器PTR-TOF-MS对采集的样品进行VOCs定量分析,并对厂界处O3-NOx -VOCs三者的关系和污染物的臭氧生成潜势进行研究.结果表明:有组织排放源——洗涤塔、活性炭吸附塔1号和2号的∑ρ(VOCs)(所有VOCs组分浓度之和)分别为18.91、71.48和5.65 mg/m3,无组织排放源——罐组和装卸车台∑ρ(VOCs)分别为0.39和0.087 mg/m3;甲醇为企业的特征污染物,此外还有烷烃和少量的烯烃,有组织排放中活性炭吸附塔2号是影响厂界污染特征的主要环节;有组织和无组织VOCs排放量分别为0.57和214.26 t/a.对O3-NOx-VOCs三者关系的分析显示,企业厂界处O3的形成主要受VOCs控制,其臭氧生成潜势为烯烃>醇类>烷烃,除考虑醇类的影响外,烯烃也是不可忽视的环境影响因素.   相似文献   

14.
吴健  高松  陈曦  杨勇  伏晴艳  车祥  焦正 《环境科学》2020,41(4):1582-1588
采用不锈钢采样罐对华东地区8家涂料制造企业生产车间排口进行采集,运用气相色谱-质谱联用技术(GC-MS)测定了106种VOCs组分,识别了VOCs排放特征,建立了溶剂型涂料和水性涂料VOCs排放成分谱,分析了VOCs对臭氧生成的贡献.结果表明,涂料制造行业VOCs特征组分主要为芳香烃和含氧烃,两者浓度范围在65.5%~99.9%,溶剂型涂料VOCs排放主要以芳香烃为主,占总VOCs的63.0%~94.0%;水性涂料VOCs排放主要以含氧烃为主,占总VOCs的54.5%~99.9%.间/对-二甲苯(32.4%)、乙苯(19.0%)和乙酸乙酯(12.1%)为溶剂型涂料源排放特征,乙酸乙酯(83.7%)与2-丁酮(8.0%)为水性涂料源排放特征.芳香烃和含氧烃是涂料制造行业的主要活性组分,对臭氧生成潜势(OFP)的总贡献率在92.9%~99.9%之间.源反应活性分析(SR)表明,水性涂料单位质量VOCs对臭氧的生成贡献低于溶剂型涂料,因此可显著降低臭氧的生成潜势.研究显示,针对涂料制造行业VOCs污染治理,应重点关注芳香烃和含氧烃中对臭氧生成潜势贡献较大的VOCs组分,进行源头和精细化控制.  相似文献   

15.
任何  卢轩  刘洋  尹沙沙  胡鹤霄 《环境科学》2021,42(12):5687-5697
基于本地污染源调查,同时对重点工业行业进行实地采样测试,建立了郑州市高新区工业VOCs排放清单及组分清单,并评估了 VOCs各组分的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAp).结果表明,2017年郑州市高新区工业源VOCs排放总量为4 566.0 t,橡胶和塑料制品业、设备制造业和有色金属业是排放量最大的3个行业,排放量分别为1 924.2、1 396.3和813.4 t;各VOCs组分中,烷烃占比最大(40.9%),其次是含氧VOCs(32.2%)和芳香烃(20.3%);异丙醇、正十二烷、甲苯、甲基环己烷和丙酮是排放量最大的5种物质;OFP总量为8 753.8 t,最大贡献源和VOCs种类分别为设备制造业和芳香烃;SOAp总量为643.0 t,贡献较大的排放源为设备制造业和铝箔制造业,烷烃和芳香烃是两种主要贡献组分.  相似文献   

16.
采集太原市城区夏季VOCs样品并分析其浓度特征,使用参数修正法得到VOCs初始浓度,分析其来源及对O3生成的贡献.结果显示:太原市城区总VOCs平均浓度为48.13 μg/m3,烷烃(25.52 μg/m3)为主要组分.VOCs浓度呈明显日变化特征,在日间(10:00~14:00)光化学产生O3的关键时段浓度最低.油品挥发、机动车排放、燃煤、植物排放与液化石油气/天燃气(LPG/NG)使用源对修正后环境VOCs的贡献分别为26.89%、25.55%、21.14%、14.99%、11.44%,对O3生成的贡献分别为21.44%、33.10%、24.07%、13.77%、7.62%.机动车为新鲜排放气团VOCs的重要来源,而油品挥发、燃煤的输送与本地积累是其他(混合、夜间与反应)气团VOCs的重要来源.机动车排放、油品挥发与燃煤为VOCs与O3生成的重要贡献源,控制此类源排放可减少太原市城区环境VOCs浓度并有效降低O3生成.  相似文献   

17.
北京市典型溶剂使用行业VOCs成分谱   总被引:16,自引:11,他引:5  
方莉  刘文文  陈丹妮  李国昊  王迪  邵霞  聂磊 《环境科学》2019,40(10):4395-4403
基于北京市挥发性有机物(VOCs)排放清单和下一阶段VOCs减排的需求,针对汽车整车制造、木质家具制造和出版物印刷这3个主要溶剂使用行业,分别选取典型企业作为研究对象,采用负压法对重点排放环节进行采样,以GC-MS/FID系统测定样品中VOCs组分构成,从而获取了北京市典型溶剂使用行业VOCs成分谱.结果表明,汽车整车制造主要排放环节排放的VOCs组分存在明显差异,色漆涂装工序以含氧VOCs和芳香烃为主,分别占比71. 26%和27. 14%,罩光工序芳香烃达到84. 10%;木质家具制造业不同排放环节的VOCs组分差异不大,均以含氧VOCs和芳香烃为主,分别占55. 08%和18. 98%;出版物印刷业不同排放环节无法单独监测,其混合废气VOCs组分以烷烃和含氧VOCs为主,分别占比47. 29%和44. 57%.  相似文献   

18.
成都市典型工艺过程源挥发性有机物源成分谱   总被引:12,自引:8,他引:4  
选取成都市人造板、医药制造和化工制品等工艺过程源典型企业,通过采样瓶和SUMMA罐采样及GC-MS和国标分析方法,获取了人造板等行业各生产工艺环节的挥发性有机物(VOCs)排放组分特征.其中,人造板生产工艺分为制胶、调胶、分选和热压,医药制造分为生产车间和废水处理.结果表明,人造板和医药制造VOCs贡献组分以OVOCs为主,占VOCs总排放的50%以上.甲醛制造有组织和无组织排放组分差异较大,有组织以OVOCs为主而无组织以卤代烃为主.涂料制造VOCs排放与其原辅料相关性较高,VOCs排放组分以芳香烃和OVOCs为主.人造板各工艺环节除调胶外,最主要的VOCs组分均为甲醛,其排放占比达到50%以上.医药制造各工艺环节的首要VOCs组分均为乙醇,1,4-二烷、乙酸乙酯和甲苯等亦为主要组分.甲醛制造以丙酮和乙醇等组分为主.涂料制造主要以间,对-二甲苯等芳香烃为主.以臭氧生成潜势表征人造板、医药制造和化工的VOCs污染源反应活性,结果表明不同行业VOCs组分对反应活性的贡献类似,均主要以甲醛、乙醇等OVOCs和部分芳香烃等高活性组分为主.应对工艺过程源等行业分环节监管,并重点关注臭氧生成潜势较大的VOCs组分,分析行业排放特征和化学机制,从源头控制O3生成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号