首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 140 毫秒
1.
天津市PM10, PM2.5和PM1连续在线观测分析   总被引:9,自引:2,他引:7       下载免费PDF全文
利用2010年9月1日─11月30日在中国气象局天津大气边界层观测站采集的ρ(PM10),ρ(PM2.5)和ρ(PM1)数据,分析了观测期间可吸入颗粒物的统计特征,结合同期气象观测资料,分析了典型天气条件下ρ(PM10),ρ(PM2.5)和ρ(PM1)的日变化特征及与风速、风向的关系. 结果表明:观测期间,ρ(PM10)日均值有超过1/2的天数超过《国家环境空气质量标准》(GB 3095─1996)二级标准限值;ρ(PM2.5)有63 d超过美国国家环境保护局(US EPA)1997标准限值,超标率高达76.8%;不同天气条件下,ρ(PM10),ρ(PM2.5)和ρ(PM1)日变化特征明显,三者一般在大雾或扬沙/浮尘天气条件下出现高值,有降水过程时出现低值;可吸入颗粒物以粗粒子(PM2.5~10)和PM1为主,PM2.5~10,PM1~2.5和PM1主要分布在风速小于3 m/s,风向为225°~280°和70°~110°范围内;风速大于3 m/s时,ρ(PM2.5~10)和ρ(PM1~2.5)有所增加. ρ(PM10),ρ(PM2.5)和ρ(PM1)未出现周末效应,但存在明显的周内变化.   相似文献   

2.
以杭州市为例,利用美国国家环境保护局(US EPA)国家暴露研究实验室(NERL)所开发的颗粒物人类暴露剂量随机模拟模型(SHEDS-PM),考察了人群在不同微环境中的PM10暴露水平. 结合室外环境ρ(PM10)模拟结果、相关微环境参数和人群活动特征,对研究区域2004年不同季节室外环境、室内环境(住宅、办公室、学校、商店、餐馆)以及机动车内PM10暴露水平进行了模拟. 结果表明:PM10暴露量、吸入量和沉积量与ρ(PM10)日均值呈正相关;1月PM10暴露量、吸入量和沉积量最大,分别为18.22,326.99和277.46 μg/m3>/sup>,三者在住宅环境中的剂量最大;不同微环境PM10平均沉积速率有明显差异.   相似文献   

3.
青岛环境空气PM10和PM2.5污染特征与来源比较   总被引:9,自引:1,他引:8  
年分别在青岛设6个和2个采样点采集PM10和PM2.5样品,分析二者质量浓度及颗粒物中多种无机元素、水溶性离子和碳等组分的质量浓度,以研究PM10及PM2.5的污染特征. 采用CMB-iteration模型估算法,确定一次源类及二次源类对PM10和PM2.5的贡献,利用统计学方法比较PM10和PM2.5的污染源. 结果表明:青岛大气颗粒物质量浓度季节变化显著,表现为春、冬季高,夏、秋季低;Na、Mg、Al、Si、Ca和Fe元素主要富集在PM10中,SO42-、NO3-、EC和OC主要富集在PM2.5中;城市扬尘、煤烟尘、建筑水泥尘及海盐粒子等粗粒子在PM10中的分担率较PM2.5中的高,分担率分别为28.7%、17.2%、7.16%及4.47%;二次硫酸盐、二次硝酸盐、机动车尾气尘及SOC(二次有机碳)等在PM2.5中的分担率较PM10中的高,分担率分别为19.3%、8.97%、13.7%及6.07%;由PM10与PM2.5化学组分的分歧系数可见,春、秋季PM10和PM2.5化学构成存在一定差异,而冬、夏季二者的化学构成相似.   相似文献   

4.
重庆主城区大气PM10及PM2.5来源解析   总被引:8,自引:0,他引:8       下载免费PDF全文
为探讨重庆主城区4个季节大气PM10和PM2.5的主要来源,于2012年2—12月在重庆主城区的工业区、文教区和居住区5个环境监测点同步采集PM10及PM2.5样品,分析了无机元素、水溶性离子、有机碳和元素碳含量及其分布特征. 采集了重庆主城区土壤尘、建筑水泥尘、扬尘、移动源(包括机动车、施工机械及船舶)、工业源(包括固定燃烧源及工业工艺过程源)、生物质燃烧源及餐饮源等7类污染源,建立了重庆市本地化的污染源成分谱库. 利用CMB(化学质量平衡)受体模型及二重源解析技术分析了PM10及PM2.5的来源. 结果表明:重庆主城区大气中ρ(PM10)及ρ(PM2.5)的年均值分别为153.2和113.1 μg/m3,超过GB 3095—2012《环境空气质量标准》二级标准限值2倍以上. 大气PM10的主要来源为扬尘、二次粒子和移动源(贡献率分别为23.9%、23.5%和23.4%),大气PM2.5主要来源于二次粒子和移动源(贡献率分别为30.1%和27.9%).PM10和PM2.5的主要源类贡献率差别不大,表明研究区域内大气颗粒物污染控制应采取多源控制原则. 大气PM10来源的季节性变化特征表现为春季和秋季主要以扬尘为主、夏季和冬季主要以二次粒子为主.   相似文献   

5.
为了研究漯河市PM2.5和PM10及其水溶性离子变化特征,于2017年5月—2018年2月在漯河市3个采样点同步采集PM2.5和PM10样品,分别获得PM2.5和PM10有效样品191和190个.用离子色谱法分析样品中F-、Cl-、NO3-、SO42-、Na+、NH4+、K+、Mg2+、Ca2+等9种水溶性无机离子.结果表明:在采样期间,漯河市ρ(PM2.5)平均值为72.42 μg/m3,其中ρ(总无机水溶性离子)的年均值为34.76 μg/m3,占ρ(PM2.5)的46.72%;ρ(PM10)平均值为126.52 μg/m3,其中ρ(总无机水溶性离子)的年均值为46.40 μg/m3,占ρ(PM10)的35.67%.2种颗粒物水溶性离子质量浓度的季节性变化均呈冬季高、夏季低的趋势.PM2.5/PM10〔ρ(PM2.5)/ρ(PM10)〕在四季分别为0.50、0.61、0.56、0.57.采样期间漯河市PM2.5中NOR(氮氧化率)和SOR(硫氧化率)的年均值分别为0.17和0.30,PM10中NOR和SOR的年均值分别为0.22和0.34,说明颗粒物中SO42-的二次转化效率高于NO3-.PM2.5和PM10在采样期间均呈弱碱性,且碱性在夏季最强,秋季最弱.利用PMF模型分析PM2.5和PM10中水溶性离子的主要来源发现,PM2.5中水溶性离子来源主要包括生物质燃烧源、燃煤源、建筑扬尘源、工业源和二次污染源,PM10中水溶性离子来源主要包括燃煤源、建筑扬尘源、二次污染源、生物质燃烧源和工业源.研究显示,漯河市颗粒物污染中水溶性离子来源复杂,应采取多源控制的污染防治措施.   相似文献   

6.
利用卡尔费休法可直接测定PM2.5水分含量,方法精密度及准确度均较好.将该方法应用于北京市城区站点2020年全年的PM2.5分析,结果显示PM2.5水分浓度年均值为(5.0±4.1)µg/m3,在PM2.5占比为(12.5±4.8)%,与PM2.5质量浓度呈显著相关.水分质量浓度与PM2.5的质量浓度月度及季节变化趋势基本一致.研究发现,随着空气污染加重,水分质量浓度及其在PM2.5占比均呈上升趋势,二者相关性明显增强.可见污染发生时,水分增加有利于颗粒物吸湿增长从而推高污染水平,对PM2.5的贡献同步增强.当沙尘污染发生时湿度处于同期较低水平,不利于细颗粒物的吸湿增长,水分质量浓度及其占比均处于较低水平. PM2.5水分与二次离子及有机物均有很好的相关性,说明水分为气态污染物提供非均相转化载体,促进硝酸盐、硫酸盐、有机物的进一步生成.PM2.5水分与地壳物质无相关性,证实地壳元素为一次源,不受水分影响.  相似文献   

7.
天津市老年人PM2.5个体暴露化学组分特征   总被引:1,自引:1,他引:0  
分别于2011年6月13日—7月2日(夏季)和11月30日—12月12日(冬季),采用颗粒物个体暴露采样器对天津市某社区101名老年人(平均年龄67岁)的PM2.5个体暴露水平进行监测,以探讨PM2.5个体暴露化学组分的特征. 结果表明,天津市老年人夏、冬季PM2.5个体暴露浓度分别为(124.2±75.2)和(170.8±126.6)μg/m3. 斯皮尔曼相关分析表明,Si、NH4+和NO3-的暴露浓度均与PM2.5暴露浓度显著相关(P<0.01),R(相关系数)分别为0.61、0.55和0.46. 富集因子分析表明,Cd、Zn和Pb 3种元素高度富集,受人为源的影响强烈. SO42-是水溶性离子中含量最高的组分,其次是NO3-和NH4+,在夏、冬季这3种离子暴露浓度之和分别占PM2.5暴露浓度的34.3%和40.6%. OC是老年人PM2.5个体暴露的主要成分之一,夏、冬季OC暴露浓度分别占PM2.5暴露浓度的19.3%和27.4%. 老年人PM2.5个体暴露化学组分浓度受气象因素、室内源和室外源的共同影响,季节变化明显. 冬季Al、Si、K、Ca和Fe的暴露浓度高于夏季,但大部分微量金属元素(V、Cr、Mn、Ni、Cu、Zn、As、Sb和Pb)的冬季暴露浓度却低于夏季. 方差分析表明,冬季SO42-、NO3-、NH4+、OC和EC的暴露浓度显著高于夏季(P<0.05).   相似文献   

8.
精准预测大气污染颗粒物PM2.5、PM10浓度能为大气污染防治提供科学依据,但目前较多PM2.5和PM10浓度预测在缺少污染源排放清单和能见度数据时,预测精度不高。而目前深度学习模型应用于PM2.5和PM10浓度预测的研究还鲜见报道。基于广州市2015年6月1日—2018年1月10日的空气质量和气象监测历史数据,分别构建了随机森林模型(RF)、XGBoost模型2种传统的机器学习模型和长短时记忆网络(LSTM)、门控循环单元网络(GRU)2种深度学习模型,并对广州市的PM2.5、PM10日均浓度值进行预测。结果表明:在缺少污染源排放清单和能见度数据时,4种模型也能较好地预测PM2.5、PM10日均浓度。根据MSE、RMSE、MAPE、MAE和R2等评价指标,对4个模型的PM2.5、PM10预测效果进行测评,得出深度学习GRU模型预测效果均为最佳,RF模型的预测结果均为最差。相比目前研究及应用较多的RF模型、XGBoost模型、LSTM模型,基于深度学习的GRU模型能更好地预测PM2.5、PM10浓度。  相似文献   

9.
采用广义相加模型评估臭氧和细颗粒物(PM2.5)暴露对2008~2017年上海浦东居民慢性阻塞性肺疾病(COPD)死亡的超额危险度(ER)和寿命损失年(YLL)的影响.结果表明:臭氧污染集中在4~6月,PM2.5污染集中在12月、1~2月,10a间臭氧浓度逐年增加,PM2.5有小幅下降;在最大滞后效应下,臭氧每增加10μg/m3,ER和YLL分别为1.34%(95% CI:0.57%~2.12%)和54.98(95% CI:16.36~106.41)人·a;PM2.5每增加10μg/m3,两者分别为2.66%(95% CI:1.54%~3.79%)和130.92(95% CI:42.47~274.28)人·a;臭氧对男性和<85岁人群影响显著,PM2.5对女性和385岁人群影响显著;暖季时臭氧暴露相关的COPD死亡风险更高,冷季时PM2.5暴露相关的COPD死亡风险更高.臭氧和PM2.5致COPD死亡的影响可能因气温水平而异.  相似文献   

10.
细颗粒物(PM2.5)暴露与非酒精性脂肪肝病(NAFLD)的发病风险增加有关.NAFLD的典型特征是肝脏脂肪变性.然而,PM2.5诱导的肝脂肪变性的潜在机制和关键成分仍不清楚.本研究以HepG2细胞为体外模型,将采自我国4个城市(太原、北京、杭州和广州)的PM2.5暴露细胞24 h,暴露结束后通过细胞生化指标检测、染色观察、荧光定量PCR技术及皮尔森相关性检验评估PM2.5及其化学组分对肝细胞脂质积累的影响.结果发现,不同城市的PM2.5均以剂量依赖的方式降低了细胞活力,广州市PM2.5的细胞毒性相对较强.此外,同等浓度下(30μg·mL-1),广州市PM2.5暴露细胞引起的脂质积累现象明显高于对照组及其他城市暴露组,而北京市和杭州市PM2.5暴露细胞24 h并未引起明显的细胞脂质积累.相关性分析结果显示,钒(V)、铜(Cu)、砷(As)、锡(Sn)、锑(Sb)及钨(W)与至少两种肝细胞脂质...  相似文献   

11.
为探析PM10短期暴露对不同糖代谢水平人群空腹血糖和血脂的影响,以“金昌队列”为研究平台,收集金昌市2011~2017年污染物数据及气象数据.采用近邻模型完成个体PM10暴露评估.运用广义估计方程分析PM10对血糖和血脂指标的影响.采用广义相加混合模型绘制暴露-反应关系曲线.结果表明,PM10浓度每增加一个四分位数间距,空腹血糖(FPG)、总胆固醇(TC)、低密度脂蛋白胆固醇(LDL-C)和高密度脂蛋白胆固醇(HDL-C)分别升高0.58mg/dL (95% CI:0.35,0.82)、0.38mg/dL (95% CI:0.25,0.52)、0.44mg/dL (95% CI:0.31,0.57)和0.34mg/dL (95% CI:0.29,0.40),甘油三酯(TG)降低0.67mg/dl (95% CI:-0.86,-0.47).随着PM10浓度升高,FPG、TC、LDL-C和HDL-C均呈上升趋势,TG呈下降趋势.PM10对男性、年龄≥60岁者血糖和血脂指标影响更显著.因此,PM10与不同糖代谢状态人群血糖和血脂水平异常密切相关,男性和老年人应加强自身防护.  相似文献   

12.
为了探讨气态污染物NO2对高血压患者血压水平和脉压的短期影响,本文基于前瞻性队列研究,收集甘肃省金昌市2011年1月1日~2015年11月30日逐日NO2监测数据及同期气象观测数据,运用混合效应模型,在控制随机效应及其他混杂因素的基础上,分析NO2与高血压患者血压水平和脉压的关联性.结果表明:(1)NO2在滞后1d(lag1)时平均浓度每升高1个IQR,收缩压升高0.457mmHg(0.131~0.784),滞后7d(lag7)和4d(lag4)时,NO2的平均浓度每升高1个IQR,舒张压上升0.276mmHg(0.025~0.527),脉压上升0.402mmHg(0.047~0.758),且结果均具有统计学意义.(2)性别、年龄、BMI、吸烟、饮酒、季节在NO2对高血压患者血压水平和脉压的效应中可能具有修饰作用.多污染物模型及调整沙尘影响后,NO2对高血压患者血压及脉压的影响保持一致.  相似文献   

13.
南昌市大气颗粒物污染特征及PM2.5来源解析   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨2013年南昌市大气颗粒物的污染特征及分布状况,收集南昌市9个大气监测站点实时发布的PM10和PM2.5数据,分析了ρ(PM10)、ρ(PM2.5)和ρ(PM2.5)/ρ(PM10)的变化规律及其与气态污染物的相关性,并结合污染严重的秋季时段,采用PCA-MLR(主成分分析-多元线性回归)模型对大气PM2.5中化学组分来源进行解析.结果表明:①ρ(PM10)和ρ(PM2.5)的年均值分别为(115.4±39.1)(69.1±26.8)μg/m3,均超过GB 3095-2012《环境空气质量标准》二级标准限值,ρ(PM10)和ρ(PM2.5)的最高值分别出现在石化、省外办监测站点,最低值出现在林科所监测站点.ρ(PM10)和ρ(PM2.5)季节性变化特征明显,呈冬季>春、秋两季>夏季的趋势,全年ρ(PM10)超标天数占比为25.48%,ρ(PM2.5)超标天数占比为36.71%,各季度ρ(PM2.5)超标天数占比均高于ρ(PM10).②受人为活动和边界层高度的影响,ρ(PM2.5)和ρ(PM10)日变化呈双峰双谷形态,一个波峰出现在08:00-10:00,另一个波峰出现在20:00-22:00,并且晚间小时峰值高于早间,最低值出现在15:00.③ρ(PM2.5)/ρ(PM10)年均值为60.3%,在冬季最高达65.1%,相关性分析发现ρ(PM10)与ρ(PM2.5)存在较显著的线性关系,表明二者具有同源性.④ρ(PM10)、ρ(PM2.5)均与ρ(SO2)、ρ(NO2)、ρ(CO)呈显著正相关,并且冬季相关性高于夏、秋两季;而ρ(PM10)、ρ(PM2.5)均与ρ(O3)全年呈显著负相关,并且夏、秋两季相关性高于冬季,说明气态污染物的二次转化对ρ(PM2.5)和ρ(PM10)有较大影响.⑤南昌市秋季PM2.5的最大污染源为道路扬尘/机动车尾气混合污染源,其次分别为施工扬尘源、燃煤源、冶炼尘/生物质燃烧混合污染源,各污染源对PM2.5的贡献率分别为40.9%、35.8%、12.4%、10.9%.研究显示,南昌市PM2.5的污染程度较PM10严重,PM2.5已成为南昌市大气颗粒物污染的主要组分,PM2.5主要来源为城市扬尘和机动车尾气.   相似文献   

14.
为了研究焦作市大气中PM2.5和PM10污染状况,基于2018—2020年焦作市50个环境空气质量监测站点的PM2.5和PM10浓度逐时观测资料,结合气象资料,分析了焦作市PM2.5和PM10浓度的时空分布特征及气象因素影响。结果表明:1)焦作市PM2.5和PM10呈双峰型日变化,且具有显著的U形逐月变化规律及冬高夏低、春秋居中的季节性特征。2)2018—2020年PM2.5和PM10浓度年均值呈西南高东北低的空间差异性特征。与2018年相比,2020年修武县PM2.5和PM10浓度的下降幅度最大,分别为30.25%、22.72%。3) Spearman相关性分析表明,PM2.5和PM10浓度与气温、风速呈显著负相关;与气压呈显著正相关;相对湿度与PM2.5浓度呈显著正相关,与PM10浓度呈显著负相关。焦作市环保局监测站在东北风、西南风风向PM2.5和PM10浓度污染较重,博爱县清化镇、沁阳市西万镇和武陟县乔庙乡监测站在西南风风向易出现高浓度颗粒物。该研究结果可为日后工业地区大气污染防治,生产生活的合理规划与布局提供重要参考。  相似文献   

15.
在天津市内选取了4条不同等级的道路(次干道,主干道,快速路,外环线),于2015年4~5月分别在4条道路的路边进行了PM2.5和PM10样品和车流量信息的采集,并对其中的碳组分进行了分析.结果显示,天津路边PM2.5和PM10中OC、EC的浓度与国内已研究的其它城市相比处于中等水平,与国外城市相比,国内这些城市的OC、EC的浓度水平则较高.char-EC、soot-EC、OC、EC在PM2.5中的百分含量在4条道路之间存在显著性差异,在4条路上百分含量为主干道 > 快速路 > 外环线 > 次干道,而PM10不存在.PM2.5中OC/EC和char-EC/soot-EC的平均比值分别是2.95和2.3,PM10中分别为3.1和2.2.相关性分析的结果表明PM2.5和PM10中OC和EC有相同的来源,且EC与char-EC存在线性关系.  相似文献   

16.
汤宇磊  杨复沫  詹宇 《中国环境科学》2019,39(12):4950-4958
为深入了解四川盆地PM2.5与PM10污染情况,通过机器学习的方法,基于卫星遥感气溶胶产品(MAIAC)与国家环境空气质量监测网数据以及气象、地理、社会经济变量等,构建2个随机森林机器学习模型(R2均为0.86),反演四川盆地2013~2017年间1km网格逐日PM2.5与PM10浓度时空分布,并分析两者的时空关联性.结果表明:2013~2017年四川盆地地面PM2.5与PM10平均浓度分别为47.8,75.2μg/m3.PM2.5与PM10浓度空间上均整体呈现"倒月牙"状分布,西部与南部区域浓度值较高.5a间,区域颗粒物浓度逐年递减,总降幅均达到27%,季节上则均具有"冬高夏低"的特点;PM2.5与PM10浓度空间相关性显著(相关系数0.96),呈现"内强外弱"的格局,春夏季相关系数(0.91、0.90)低于秋冬季(0.96、0.96).盆地西南部PM2.5与PM10比值较高,比值高低的季节性排序为冬季 > 秋季 > 夏季 > 春季.  相似文献   

17.
为探讨颗粒物对金昌市高血压门急诊就诊人数影响的暴露反应关系,本文收集甘肃省金昌市2012年1月1日~2015年12月31日大气PM10、SO2、NO2数据及2014年1月1日~2015年12月31日大气PM2.5污染物监测数据及同期气象观测数据,同时收集近年金昌市三家综合医院的高血压门急诊日就诊病例.采用广义相加模型,分析不同大气污染物与高血压门急诊日就诊人数的关联性.结果表明,在单污染物模型中,滞后L07d时PM10平均浓度每升高一个IQR,高血压日门急诊人数增加2.30%(95% CI:1.30%~3.32%),L6d时PM2.5平均浓度每升高一个IQR,高血压日门急诊人数增加2.53%(95% CI:1.45%~3.62%).PM10和PM2.5对男性、65岁以上高血压患者门急诊影响更高.SO2和NO2与颗粒物之间存在协同效应,沙尘天气下PM10对高血压门急诊人数的影响由2.30%增加到2.36%,PM2.5的影响由2.53%减少到2.39%.研究得出颗粒物污染对金昌市高血压门急诊就诊人数具有不同程度的影响,其中细颗粒物(PM2.5)的效应更强.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号