首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
An experiment for studying the effects of sediment dredging on denitrification in sediments was carried out through a one-year incubation of undredged (control) and dredged cores in laboratory. Dredging the upper 30 cm of sediment can significantly affect physico-chemical characteristics of sediments. Less degradation of organic matter in the dredged sediments was found during the experiment. Denitrification rates in the sediments were estimated by the acetylene blockage technique, and ranged from 21.6 to 102.7 nmol N2/(g dry weight (dw)·hr) for the undredged sediment and from 6.9 to 26.9 nmol N2/(g dw·hr) for dredged sediments. The denitrification rates in the undredged sediments were markedly higher (p0.05) than those in the dredged sediments throughout the incubation, with the exception of February 2006. The importance of various environmental factors on denitrification was assessed, which indicated that denitrification was regulated by temperature. Nitrate was probably the key factor limiting denitrification in both undredged and dredged sediments. Organic carbon played some role in determining the denitrification rates in the dredged sediments, but not in the undredged sediments. Sediment dredging influenced the mineralization of organic matter and denitrification in the sediment; and therefore changed the pattern of inherent cycling of nitrogen.  相似文献   

2.
A detailed investigation of seven heavy metals (Cu, Cd, Cr, As, Pb, Zn, Ni) in the water column, interstitial water and surface sediment was conducted to quantify the extent of their contamination in Taihu Lake. Results showed the average total concentrations ranged from 0.93 μg/L for Cd to 47.03 μg/L for Zn. The dissolved concentrations in the overlying water ranged from 0.06 μg/L for Cd to 15.86 μg/L for Zn. The metals in the Taihu Lake surface water were primarily in the particulate phase, especially for Cd, whose particulate concentration represented 94.3% of the total. In the surface sediment, the mean concentrations for Cr, Ni, Cu, Zn, As, Cd and Pb were 41.50, 28.72, 27.82, 65.46, 5.94, 0.82 and 41.17 mg/kg, respectively. The metals in the water column and sediments of Taihu Lake displayed significant spatial variations, and the higher metal concentrations mainly occurred in the north and west of Taihu Lake, especially in Zhushan Bay and West Taihu Lake. A quality assessment indicated that most of the metals in the surface water of Taihu Lake had no or low adverse health effects on organisms, except for Pb and Cu, which may cause chronic toxicity. Compared with the "Consensus-Based Sediment Quality Guidelines", the polluting metals were Cr, Ni and Cd, and the polluted regions were confined to Zhushan Bay, Meiliang Bay and the west of Taihu Lake, especially for north of Zhushan Bay. The polluted areas for Cr, Ni and Cd were 14.36, 34.70 and 13.24 km2, respectively. We suggest that Cr, Ni, and Cd in the polluted areas should be addressed and that tissue chemistry and sediment toxicity assessments be performed as soon as possible.  相似文献   

3.
Surface water was taken from river mouth to the central area of Meiliang Bay, Taihu Lake, a large shallow eutrophic lake in China. Suspended solids were condensed by centrifugation 25L surface water samples from each selected site. Suspended solids and surface sediments were further freeze-dried and microwave digested before determining the metals by ICP-AES. Among the metals analyzed in suspended solids and sediments, contents of Cr, Cu, Mn, Ni, and Zn in suspended solids were significantly higher than those in sediments while contents of AI, Ba, Be, Ca, Co, Fe, K, Mg, Pb, and V in suspended solids were 10%-30% higher than those in sediments. Sr and Ti contents in suspended solids and sediments were very similar. Na content in suspended solids was lower than that in sediments. Heavy metals were significantly accumulated in suspended solids. From the river mouth to the center of Meiliang Bay, contents of Cr, Cu, Pb, and Zn in suspended solids showed a gradual decreasing trend indicating the river(Zhihugang River) still discharged large quantity of heavy metals to Meiliang Bay. The study suggests that the geochemical behaviors and ecological effects of heavy metals in suspended solids may serve as a good indicator for the pollution of lake.  相似文献   

4.
Characteristics of metal enrichment in Deep Bay, Hong Kong   总被引:1,自引:0,他引:1  
Abstract: Sediment cores, suspended particles and overlying water were collected in Deep Bay, Hong Kong. Enrichment of Zn in surface sediments in the landward direction and the decreasing of exchangeable Cd, Ni and Zn in sediment from the inner bay to the outer bay indicated the influence of anthropogenic pollutants discharged from the riparian runoffs.  相似文献   

5.
Effect of carbon source on the denitrification in constructed wetlands   总被引:4,自引:0,他引:4  
The ability of constructed wetlands with di erent plants in nitrate removal were investigated. The factors promoting the rates of denitrification including organic carbon, nitrate load, plants in wetlands, pH and water temperature in field were systematically investigated. The results showed that the additional carbon source (glucose) can remarkably improve the nitrate removal ability of the constructed wetland. It demonstrated that the nitrate removal rate can increase from 20% to more than 50% in summer and from 10% to 30% in winter, when the nitrate concentration was 30–40 mg/L, the retention time was 24 h and 25 mg/L dissolved organic carbon (DOC) was ploughed into the constructed wetland. However, the nitrite in the constructed wetland accumulated a little with the supply of the additional carbon source in summer and winter, and it increased from 0.15 to 2 mg/L in the e uent. It was also found that the abilities of plant in adjusting pH and temperature can result in an increase of denitrification in wetlands. The seasonal change may also impact the denitrification.  相似文献   

6.
The microscale distribution of oxygen,the nitrogen flux and the denitrification rates in sediment inhabited by chironomid larvae(Tanypus chinensis) were measured in eutrophic Lake Taihu,China.The presence of the chironomids in the sediment increased the oxygen diffusional flux from 10.4 ± 1.4 to 12.7 ± 2.5 mmol O 2 /(m 2 ·day).The burrows of the larvae represented "hot spots" and strongly influenced the nitrogen cycles and diagenetic activity in the sediment.The results indicate that the bioturbation effects of Tanypus chinensis chironomid larvae increased the capacity of the sediment as a sink for nitrate and a source for ammonium.Nitrate influx and ammonium outflux were increased 8.8 and 1.7 times,respectively.Under bioturbation,the amount of nitrate consumed was greater than the amount of ammonium released.The total denitrification rate was also enhanced from 0.76 ± 0.34 to 5.50 ± 1.30 mmol N/(m 2 ·day).The net effect was that the bioturbated sediments acted as a net sink for inorganic nitrogen under direct and indirect bioturbation effects compared to the control.  相似文献   

7.
Estuarine ecosystems in SE Asia have been poorly studied when compared to other tropical environments. Important gaps exist particularly in the understanding of their biogeochemical function and contribution to global change. In this work we looked into N-turnover in the water column and sediments of the Bangpakong estuary(13°N). A seasonal sampling program was performed along the salinity gradient covering different stretches of the estuary(68 km).Key physical and chemical characteristics were also monitored in order to unravel possible environmental controls. Results showed the occurrence of active denitrification in sediments(5.7–50.9 nmol N-N2/(cm3·hr)), and water column(3.5–1044 pmol N-N2/(cm3·hr)). No seasonal or spatial variability was detected for denitrification potential in sediment samples. However, in the water column, the denitrification activity peaked during the transition season in the downstream sites coinciding with high turbidity levels. Therefore, in that period of the year, the water column compartment may be an important contributor to nitrate reduction within the estuary. The rather low nitrification rates detected were not always measurable, probably due to the reduced oxygen content and high siltation. This study is one of the few dealing simultaneously with sediments and water column processes in a highly turbid tropical estuary.Therefore, it emerges as a valuable contribution for the understanding of the dynamics of the nitrogen cycle in tropical environments by exploring the role of estuarine N microbial activity in reducing the effects of increased nitrogen loads.  相似文献   

8.
Denitrification plays an important role in nitrogen(N) removal in freshwater ecosystems.This internal process regulates the fluctuations of N concentration, especially for lakes with high nutrients concentrations and long residence time. Lakes in Yunnan plateau(southwestern China) provide typical cases, while studies in this region have been rare.Therefore, we studied denitrification of two lakes(Lake Dianchi in hypereutrophic state and Lake Erhai in mesotrophic) in this region. We used acetylene inhibition technique to quantify potential denitrification rate(PDR) of these lakes in April and August, 2015 and 2016. PDR of the sediments ranged 0–1.21 μmol/(N·m~2·hr), and that of overlying water ranged 0–0.24 μmol/(N·L·hr). Then, we used Least Angle Regression to determine the controlling factors for denitrification. Nutrients controlled PDR from two aspects: providing essential nitrogen sources; and affecting the richness and metabolism of denitrifying bacteria. In April, both aspects limited PDR; while only nitrogen sources limited PDR in August, due to depleted nitrate and enhanced denitrifying bacteria activity. Ammonia was most significant to denitrification, indicating that nitrate from nitrification transported to the bottom of wellmixed lake provide major N source by denitrification. The high PDR and low nitrate concentrate in August were evidence of an enhanced internal N cycling by algal blooms.  相似文献   

9.
Spatial distribution patterns of total mercury (THg) in 36 surficial sediment samples representing five regions of Lake Taihu were assessed using the ArcGis geostatistical analyst module. The pollution levels of THg were also evaluated from the same five lake regions. Concentrations of THg were in a ranged of 23-168 ng/g (mean 55 ng/g) in surfical sediments, which was significantly higher than those established baseline levels of the lake. Results of THg indicated that the northern region exhibited notably higher values, the bay regions showed elevated values relative to open areas, and the lakeside regions were higher than those observed in the central area. Lake Taihu suffered moderate to high Hg pollution, and expressed clear Hg enrichment status according to monomial pollution index I geo and human activity factors. The concentrations of THg in the surficial sediments of Lake Taihu showed moderate-strong variation (coefficient of variation 52%). Geostatistical analysis indicated a weak spatial self-correlation, suggesting the contamination of Hg in Lake Taihu is primarily the result of anthropogenic activities.  相似文献   

10.
In order to monitor the changes of Microcystis along with temporal and spatial variations, seasonal variation of Microcystis in Lake Taihu was investigated by 16S-23S rRNA internal transcribed spacer denaturing gradient gel electrophoresis (16S-23S rRNA-ITS DGGE) and microscopic evaluation. Samples were collected quarterly at four sites (River Mouth, Meiliang Bay, Cross Area, and Lake Center) from August 2006 to April 2007. Results showed that Microcystis dominated total phytoplankton abundance at the four sites in all seasons except winter. The average annual abundance of Microcystis was relatively high at River Mouth and Meiliang Bay, reaching 81.22×106 and 61.32×106 cells/L, respectively. For temporal variations, Shannon-Wiener diversity index (H') according to DGGE profile revealed the richness of Microcystis in summer (H'=1.375±0.034) and winter (H'=1.650±0.032) was lower than that in spring (H'=2.078±0.031) and autumn (H'=2.365±0.032) (P<0.05). While for spatial variations, the richness of Microcystis at River Mouth (H'=2.015±0.074) was higher than at other sites during four seasons (P<0.01). Very few differences of Microcystis diversity in the same season were observed among the other three sites (P>0.05). Canonical correspondence analysis (CCA) was performed to elucidate the relationships between Microcystis operational taxonomic units (OTUs) composition and the environmental factors. Results of CCA revealed that temperature was strongly positively correlated with the first axis (r=0.963), while TSS was negative correlated with the second axis (r=-0.716). Phylogenetic tree based on the sequencing results of target bands on DGGE gel indicated that samples collected in summer and winter constituted two separated clusters.  相似文献   

11.
菹草在太湖梅梁湾生存对策分析   总被引:1,自引:0,他引:1  
对太湖梅梁湾及贡湖两个1000m^2湖滨带观测场为期1年的调查研究表明:梅梁湾观测场沉水植物仅有菹草1种;贡湖观测场沉水植物虽多达3种,但其中并没有菹草生长。分析可知:①梅梁湾观测场3面环山,为相对静水的环境,适合菹草生长。②菹草的生长季节避开了水体藻类水华暴发带来的生存压力。③菹草更能适应营养盐水平较高的底质。④贡湖观测场水面开阔,有利于波浪的发育,破坏了静水环境,不利于喜静水缓流的菹草的生长。  相似文献   

12.
分析了太湖竺山湾、梅梁湾、南太湖的3个柱状沉积物样品中8种溴代阻燃剂(PBDEs)和12种类二英多氯联苯(DL-PCBs).结果表明太湖PBDEs污染水平为竺山湾最高,其余依次为梅梁湾、南太湖;DL-PCB污染水平梅梁湾最高,其次则为竺山湾、南太湖.沉积物中PBDEs的水平垂直分布显示:近年来在太湖PBDEs污染呈现指数式增长趋势,BDE-209为最主要的PBDEs同族体;沉积物中DL-PCBs的水平垂直分布显示:DL-PCBs污染近年仍有增加,说明在太湖地区存在PCBs的释放源.太湖梅梁湾不同深度的沉积物中PBDEs同族体组成差异明显,具体原因需要进一步研究证实.PCBs在垂直分布模式显示:在0~15 cm的上层沉积物中PCB-77、-118、-105水平随深度增加而明显降低,下层则无明显变化.  相似文献   

13.
为探讨太湖附泥藻类时空分析及与N、P等环境因子之间的关系,在不同季节采取太湖不同湖区表层沉积物,采用常规理化分析方法测定环境中的氮、磷含量及其他理化指标,利用高效液相色谱技术(HPLC)分析附泥藻类光合色素叶绿素a(Chl.a)、叶绿素b(Chl.b)、岩藻黄素(Fuco)及玉米黄素(Zea)含量。结果表明:太湖水体及表层沉积物N、P浓度空间差异明显,水体中TN、TP及总溶解性磷均表现为梅梁湾>贡湖湾>胥口湾,且空间差异显著(P<0.05),而胥口湾表层沉积物中TP及Fe-P含量显著低于梅梁湾及贡湖湾(P<0.05)。太湖附泥藻类生物量(Chl.a)及3种特征色素含量存在显著的时空差异。从空间上看,Chl.a最高值出现在贡湖湾,其值为(12.79±3.69)μg/g,最低值出现在胥口湾,其值为(2.46±1.14)μg/g。在秋季及夏季,贡湖湾附泥藻类Chl.a及3种特征色素含量高于梅梁湾,梅梁湾又高于胥口湾;在春季,梅梁湾附泥藻类Chl.a高于贡湖湾及胥口湾。从季节上看,附泥藻类Chl.a与特征色素Chl.b变化一致,梅梁湾与胥口湾在春季较高,夏季和秋季相对较...  相似文献   

14.
太湖氮素出入湖通量与自净能力研究   总被引:12,自引:5,他引:7  
陈小锋  揣小明  曾巾  刘涛  杨柳燕 《环境科学》2012,33(7):2309-2314
为了探索太湖氮素迁移转化过程,对2009~2010水文年环太湖25条主要河流及太湖梅梁湾、东太湖等典型区域的各形态氮素进行分析,并利用太湖出入湖水量、蓝藻人工打捞量和鱼产量等相关数据,分析计算太湖氮素流动和转化潜力.结果表明太湖全年河道输入氮素总量约7.00×104t,河道出湖氮素总量约4.01×104t.整个水文年中,太湖氮素自净量约3.22×104t,其中反硝化约3.02×104t,沉积物吸附约0.20×104t.在反硝化潜力上,太湖西湖区(如梅梁湾)反硝化潜力远高于东部湖区(如东太湖),而夏季太湖反硝化潜力又高于其它季节.因此,太湖氮素自净作用在湖泊氮素迁移转化中发挥重要作用.  相似文献   

15.
太湖典型湖区中胶体有机碳浓度的时空变化   总被引:3,自引:0,他引:3  
利用切向流超滤技术研究了太湖梅梁湾与贡湖湾2个不同生态类型的典型湖区在不同季节胶体有机碳(COC)的浓度变化,并同步观测了浮游植物、叶绿素(Chla)、悬浮物(SS)等背景指标.结果表明,作为藻型湖区的梅梁湾,其COC浓度夏季最高,秋季最低;作为草型湖区的贡湖湾.其COC浓度在秋季最高,冬季最低;太湖梅梁湾和贡湖湾COC浓度的差异和季节变化有关,夏季梅梁湾COC浓度高于贡湖湾,差异为一年中最大;太湖水体COC浓度和Chla浓度显著正相关(r=0.81,P=0.015),表明浮游植物的生命活动址太湖水体COC的一个重要来源.  相似文献   

16.
湖泊水质模型SALMO在太湖梅梁湾的应用   总被引:2,自引:0,他引:2  
郭静  陈求稳  李伟峰 《环境科学学报》2012,32(12):3119-3127
改进了湖泊水质模型SALMO,针对太湖梅梁湾,利用2005年实测数据进行模型参数率定,并模拟了2006年水质.结果发现,绿藻、蓝藻、硅藻3种藻类的模拟结果与藻类的实测年变化格局一致,反应了3种藻类的季节性演替,其中,硅藻、绿藻在冬末春初占优势,蓝藻在夏秋季占优势;溶解氧模拟结果与实测数据非常一致,年平均相对误差为14.3%;NO-3-N和PO3-4-P的变化趋势与实测结果基本一致.研究结果表明,SALMO能很好地模拟藻类和营养盐的浓度动态,并在一定程度上揭示水华机制.  相似文献   

17.
运用实时荧光定量PCR(Quantitative real-time PCR,QPCR)技术研究了太湖蓝藻水华期间不同湖区水体和底泥中产毒微囊藻与总微囊藻种群丰度.结果表明,湖区间产毒微囊藻种群和总微囊藻种群丰度明显不同:在水体中,竺山湾(N5)和梅梁湾(N2)产毒微囊藻和总微囊藻种群丰度高于贡湖湾(N4)和湖心(S4...  相似文献   

18.
冒泡是甲烷排放的主要途径之一,为量化太湖藻型湖区CH4冒泡通量及其占总通量的比例,本研究采用静态箱-便携式温室气体自动分析仪方法对春、夏季太湖梅梁湾进行了多日连续观测.结果表明,太湖藻型湖区春、夏季CH4冒泡通量均存在白天高于夜间的日变化特征.春、夏季CH4冒泡通量分别为1.843、104.497nmol/(m2·s),占总通量的比例分别为31.2%和68.6%,即冒泡是夏季CH4排放的主要方式,而春季CH4排放则以扩散为主.在小时及日尺度上,CH4冒泡通量与温度(气温、表面水温和底泥温度)和气压显著相关,且随着温度升高、气压降低,CH4冒泡排放分别呈指数增加和线性增加趋势.本研究可为准确估算太湖流域CH4总排放量及明确我国湖泊对全球碳循环的贡献提供重要的基础数据.  相似文献   

19.
太湖湖滨带底泥氮、磷、有机质分布与污染评价   总被引:22,自引:0,他引:22       下载免费PDF全文
采集了环太湖湖滨带表层(0~10cm)底泥,研究分析了湖滨带底泥中有机质(OM)、总氮(TN)、总磷(TP)的空间分布特征,并对太湖湖滨带底泥进行营养评价.结果表明,湖滨带底泥中OM含量在1.42%~9.96%之间,空间分布趋势为:东太湖>竺山湾>贡湖>梅梁湾>南部沿岸>东部沿岸>西部沿岸; TN含量在458~5211mg/kg之间,空间变化趋势为东太湖>竺山湾>东部沿岸>贡湖>南部沿岸>梅梁湾>西部沿岸; TP含量在128.56~1392.16mg/kg之间,空间变化趋势为竺山湾>梅梁湾>东太湖>南部沿岸>贡湖>东部沿岸>西部沿岸,OM与TN分布趋势相似,TN与OM之间极显著正相关(r = 0.903, P<0.01),TP与OM之间弱相关(r = 0.073, P<0.332).结合综合污染指数和有机指数评价法可知,太湖湖滨带底泥环境质量整体较好,氮、磷污染除东太湖和竺山湾属重度污染外其他各区属轻中度污染;有机污染除东太湖外大部分区域属较清洁区.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号