首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
利用2011年10月17~22日连续在线观测沈阳地区大气能见度、颗粒物质量浓度ρ(PM10)、ρ(PM2.5)、ρ(PM1.0)、以及通过太阳光度计测量数据反演得到的气溶胶光学厚度、Angstrom波长指数、气溶胶粒子谱分布数据,结合相对湿度、风速、温度等气象资料,分析了2011 年秋季沈阳一次雾霾天气过程中能见度与颗粒物质量浓度及气溶胶光学特征变化.结果表明:相对温度偏高、小风天气以及颗粒物质量浓度累积是造成沈阳能见度下降、引发雾霾天气的主要因素;雾霾期间细粒子所占比例较高,ρ(PM10)、ρ(PM2.5)、ρ(PM1.0)平均值分别为138.8、103.3、94.9μg/m3,比雾霾过程前均增加约2倍左右,PM2.5/PM10和PM1.0/PM10分别为74.7%和68.6%;当RH0.90),RH >80%时, 能见度与颗粒物浓度间的相关性减弱;雾霾期间气溶胶光学厚度明显增加,雾霾前气溶胶光学厚度和Angstrom波长指数平均值分别为0.82和0.94,雾霾期间气溶胶光学厚度和Angstrom波长指数平均值分别为1.42和1.25;雾霾天气过程中,细模态粒子的峰值浓度约是雾霾前细粒子浓度的2倍,说明沈阳地区大气污染物以细粒子为主,进而影响气溶胶光学特征发生变化.  相似文献   

2.
西安城区大气PM_(2.5)中有机碳与元素碳的污染特征   总被引:1,自引:1,他引:0  
为研究西安市夏、秋、冬3季大气细颗粒物中碳组分的污染变化规律,于2013年夏、秋、冬3季在西安市明城墙内采集大气中的PM2.5样品,测定了样品中的有机碳和元素碳的含量。结果显示,PM2.5中OC和EC的季节平均浓度冬季最高,秋季次之,夏季最低。OC/EC的比值在夏、秋、冬3季均超过2.0,说明采样期间夏、秋、冬3季均存在二次污染。OC/PM2.5的比值夏秋两季差异较小,冬季明显高于夏秋两季;EC/PM2.5的比值在夏、秋、冬3季的变化不大。OC和EC的相关性:夏季秋季冬季。OC与PM2.5的相关程度冬季秋季夏季,且随季节更替变化明显;EC与PM2.5的相关性:秋季夏季冬季。即随着季节变化PM2.5浓度水平整体升高、污染加重时,PM2.5中的OC所占比例明显升高,EC比较稳定,说明受人为影响的二次排放为主要成分的OC对PM2.5贡献更大。  相似文献   

3.
北京东北部城区大气细粒子与相关气体污染特征研究   总被引:11,自引:0,他引:11       下载免费PDF全文
于2008年7月~2009年4月的4个季节,在北京市朝阳区北部,利用VAPS通用型大气污染物采样仪(URG3000K)对大气细粒子(PM2.5)和环境空气中相关气体进行了同时采集,并利用IC离子色谱仪(DX-600型)分析了PM2.5中水溶性无机离子成分和环境空气中相关气体的含量.结果表明,PM2.5质量浓度春季>夏季>冬季>秋季;SO42-、NO3-和NH4+是PM2.5中最主要的3种水溶性无机离子,年均质量浓度分别为14.82μg/m3、11.57μg/m3和8.35μg/m3,三者浓度之和占PM2.5中总水溶性无机离子浓度的86.28%.SO42-、NH4+浓度占PM2.5浓度百分比均为夏、秋季高于冬、春季; NO3-浓度占PM2.5浓度的百分比为秋季>春季>夏季>冬季.空气中的SO2、NO2和NH3等气态污染物的含量直接影响PM2.5中二次离子SO42-、NO3-和NH4+的浓度, SO2、NO2浓度的季节特征为冬、春季高于夏、秋季,与SO42-、NO3-的季节变化规律相反; NH3浓度在夏季最高,冬季最低. PM2.5酸度在夏、秋季高于冬、春季,且夏、秋季PM2.5样品全部呈酸性,冬、春季PM2.5样品一部分呈酸性,一部分呈碱性.夏季SOR值和NOR值分别为冬季的4.8倍和3倍,表明夏季SO2和NO2更易转化生成SO42-和NO3-.PM2.5中SO42-、NO3-和NH4+主要以(NH4)2SO4、NH4NO3的形式共存于气溶胶体系中.  相似文献   

4.
城市空气质量数值预报系统对PM2.5的数值模拟研究   总被引:9,自引:2,他引:9  
发展了南京大学城市空气质量数值预报模式系统(NJU-CAQPS),在模式系统中引入了气溶胶模块.运用该系统对南京地区冬夏两季PM2.5浓度的时间变化规律和空间分布特征进行了数值模拟研究,通过与实际观测资料对比,检验发展后的模式系统对于细颗粒物的模拟性能.结果表明,南京市城近郊内冬夏两季PM2.5浓度具有明显的时空变化特征,一般在半夜和清晨会出现较高浓度,午后至傍晚浓度较低.冬季浓度高于夏季,冬夏两季算例的浓度日均值之比为1.51.空间分布受到排放源位置、地面流场等因素影响.二次气溶胶在PM2.5中占相当的份额,冬夏两季算例中二次气溶胶在PM2.5中所占比例分别为12%和15%,夏季二次气溶胶对PM2.5浓度贡献较冬季大.与实际观测资料的对比验证表明,经过发展的该模式系统对于城市PM2.5等颗粒物的模拟性能良好.  相似文献   

5.
兰州市大气PM10对质粒DNA的损伤   总被引:2,自引:1,他引:1       下载免费PDF全文
使用质粒DNA 评价法研究了2005年12月~2006年10月兰州市区、郊区大气中PM10对质粒DNA的氧化性损伤,并初步探讨了其损伤原因.结果表明, PM10对质粒DNA的氧化性损伤具有冬、夏季相对较高,春、秋季相对较低的特征.市区冬、春、夏、秋季大气PM10全样的TD20平均值分别为17,625,56,260μg/mL,水溶部分的TD20平均值分别为62,840,193,403μg/mL.沙尘暴期间和降雨数天后, PM10对质粒DNA的氧化性损伤相对较小,其全样和水溶部分的TD20值均大于1000μg/mL.PM10 全样和水溶部分的TD20值均与样品中12种水溶性微量元素总含量呈明显的负相关关系,表明PM10对质粒DNA的氧化性损伤能力主要来自其水溶性微量元素.  相似文献   

6.
分析呼和浩特市2011年8月到2012年7月逐日的PM10,PM2.5的质量浓度监测值,结果表明,呼和浩特市PM10和PM2.5污染在春季和冬季较夏季、秋季严重;PM10和PM2.5有良好的线性关系;PM2.5/PM10(β)平均值为0.55.  相似文献   

7.
为了研究青浦城厢地区可吸入颗粒物污染状况,分析了2005年至2010年空气质量资料,结果表明:青浦城厢地区首要污染物为PM10,其质量浓度呈逐年下降趋势。PM10浓度的月度变化幅度比较大,全年PM10浓度及超标率呈现"高一低一高"的变化趋势。春、冬季比较高,夏、秋季比较低。PM10质量浓度的日变化非常明显,呈现出"双峰"状分布。PM2.5和PM10的平均比值为0.531,表明该地区可吸人颗粒物中细颗粒物的比例较高,细颗粒物对人群的健康影响更为严重。PM10和PM2.5各月日均值之间和各月均值之间均呈高度相关,线性关系非常显著,二者之间回归直线关系存在,可用回归方程y=ax+b进行计算。  相似文献   

8.
兰州市夏秋季颗粒物谱分布特征研究   总被引:12,自引:6,他引:6  
采用APS-3321空气动力学粒径谱仪对兰州市2010年8~10月0.5~20μm大气颗粒物浓度及其谱分布进行了实时监测,并通过聚类分析方法结合气象观测数据对体积浓度谱特征及其影响因素进行了分析.以阐明兰州市夏秋季不同粒径段颗粒物浓度水平和粒谱分布特征及其成因.结果表明,0.5~20μm大气颗粒物小时平均数浓度、表面积浓度和体积浓度分别为(108.1±92.2)个.cm-3、(282.9±267.9)μm2.cm-3和(92.2±127.3)μm3.cm-3,细粒子(0.5~2.5μm)分别占0.5~20μm大气颗粒物数浓度、表面积浓度和体积浓度的98.7%、73.8%和52.9%.观测期间数浓度谱呈单峰分布,峰值出现在积聚模态,表面积浓度谱和体积浓度谱呈双峰型,峰值分别位于积聚模态和粗模态.颗粒物体积浓度谱主要有7类代表不同源和气象条件影响的分布型.受浮尘天气和局地扬尘影响的颗粒物体积谱分布在粗模态有明显的峰,而受机动车直接燃烧排放和二次扬尘影响的颗粒物体积谱分布呈双峰型,峰值分别位于积聚模态和粗模态.  相似文献   

9.
为研究太原大气颗粒物中水溶性无机离子的质量浓度水平、季节变化和粒径分布特征,于2012年6月~2014年5月使用惯性撞击式分级采样器采集大气颗粒物样品,并用离子色谱分析了其中的水溶性无机离子组成.结果表明,PM_(1.1)、PM_(2.1)和PM_9中总水溶性无机离子浓度平均值分别为(15.39±9.91)、(21.10±15.49)和(36.34±18.51)μg·m-3.PM1.1和PM2.1中,二次离子(SO_4~(2-)、NO_3~-和NH_4~+)占总水溶性无机离子质量分数最高;PM9中SO_4~(2-)和Ca~(2+)占比较高.各粒径段中SO_4~(2-)和NH+4季节变化特征相似,均为冬夏季节高、春秋季节低;NO_3~-、K+和Cl-季节变化特征一致:冬季秋季春季夏季;Ca~(2+)和Mg~(2+)季节变化特征一致:春季冬季秋季夏季.SO_4~(2-)和NH+4为细模态单峰分布,春秋季节在0.43~0.65μm处出现峰值,而夏季出现在0.65~1.1μm处,细粒径段峰值出现由凝结模态向液滴模态转移的现象.NO_3~-为双模态离子,冬季在0.43~2.1μm出现明显细粒径段峰值,夏季在4.7~5.8μm出现明显粗模态峰值.K~+、Na~+和Cl~-为双模态离子,分别在0.43~1.1和4.7~5.8μm出现峰值;Ca~(2+)、Mg~(2+)和F-呈粗模态单峰分布,在4.7~5.8μm出现峰值.主成分分析结果显示,水溶性无机离子来源主要是二次源、燃煤、工业源、生物质燃烧和土壤尘或降尘.  相似文献   

10.
采用仪器对10家建筑陶瓷企业空气中PM10、PM2.5和PM1日均浓度进行了实时监测.结果表明,不同粒径颗粒物的质量浓度在车间内的空间变化存在差异.Pearson双尾相关性分析表明,各车间内PM10与PM2.5、PM10与PM10、PM2.5与PM10之间有显著的线性相关.所有车间内PM1/PM10与PM2.5/PM10平均值分别为0.517与0.623,低于佛山背景值0.697和0.84,但PM1/PM2.5的平均值为0.825,接近于背景值0.829.因此,陶瓷车间内细颗粒物比例相对较小,显示了不同于市区空气颗粒物粒径分布的特征.  相似文献   

11.
乌鲁木齐大气PM2.5对质粒DNA的损伤研究   总被引:1,自引:0,他引:1       下载免费PDF全文
2012年1月~2012年12月采集乌鲁木齐大气PM2.5样品,使用质粒DNA评价法研究了不同季节PM2.5的氧化能力,并进行氧化性毒性与相应气象因素和质量浓度之间的相关性研究.结果表明,乌鲁木齐大气PM2.5的质量浓度具有冬季最高,春季和秋季次之,夏季最低的季节性变化特征;PM2.5全样和水溶部分氧化能力的季节差异较大,对质粒DNA的氧化性损伤具有冬季最大,春季和夏季之次,秋季最低.冬、春、夏、秋季大气PM2.5全样的TD30(PM2.5对质粒DNA造成破坏达到30%所需要的颗粒物的剂量)平均值分别为440,491,503,515μg/mL,水溶部分分别为474,721,666,600μg/mL.绝大部分PM2.5样品全样的TD30值均小于水溶部分样,表明全样的毒性大于相应的水溶部分样.全样TD30值与平均温度显著(P<0.05)正相关,表明寒冷的天气/季节可能造成PM2.5的高毒性.水溶样TD30值与风速显著(P<0.01)正相关,与相对湿度显著负相关.这表明,高的风速和低的相对湿度可能跟较低和较高的PM2.5的毒性有关.PM2.5氧化性损伤能力的大小与其质量浓度之间的相关性不明显,表明仅以颗粒物的质量浓度来评价大气颗粒物氧化性损伤能力大小的方法并不能真实地反映其对人体健康的危害程度,起决定作用的还是颗粒物的化学组成及其表面吸附的有害成分.  相似文献   

12.
2012年1月~2012年12月采集乌鲁木齐大气PM2.5样品,使用质粒DNA评价法研究了不同季节PM2.5的氧化能力,并进行氧化性毒性与相应气象因素和质量浓度之间的相关性研究.结果表明,乌鲁木齐大气PM2.5的质量浓度具有冬季最高,春季和秋季次之,夏季最低的季节性变化特征;PM2.5全样和水溶部分氧化能力的季节差异较大,对质粒DNA的氧化性损伤具有冬季最大,春季和夏季之次,秋季最低.冬、春、夏、秋季大气PM2.5全样的TD30(PM2.5对质粒DNA造成破坏达到30%所需要的颗粒物的剂量)平均值分别为440,491,503,515μg/mL,水溶部分分别为474,721,666,600μg/mL.绝大部分PM2.5样品全样的TD30值均小于水溶部分样,表明全样的毒性大于相应的水溶部分样.全样TD30值与平均温度显著(P0.05)正相关,表明寒冷的天气/季节可能造成PM2.5的高毒性.水溶样TD30值与风速显著(P0.01)正相关,与相对湿度显著负相关.这表明,高的风速和低的相对湿度可能跟较低和较高的PM2.5的毒性有关.PM2.5氧化性损伤能力的大小与其质量浓度之间的相关性不明显,表明仅以颗粒物的质量浓度来评价大气颗粒物氧化性损伤能力大小的方法并不能真实地反映其对人体健康的危害程度,起决定作用的还是颗粒物的化学组成及其表面吸附的有害成分.  相似文献   

13.
西安泾河夏季黑碳气溶胶及其吸收特性的观测研究   总被引:4,自引:0,他引:4       下载免费PDF全文
为研究西安泾河夏季黑碳气溶胶及其吸收特性,利用2011年夏季西安远郊泾河大气成分站观测的黑碳气溶胶浓度、颗粒物质量浓度、探空资料、地面气象资料,计算边界层顶高度、气溶胶吸收系数、大气消光系数,导出单次散射反照率,并对其进行分析讨论.结果表明:西安夏季黑碳气溶胶浓度为6.07μg/m3;黑碳气溶胶占颗粒物质量浓度PM1.0比值为21.9%,黑碳气溶胶与颗粒物质量浓度PM1.0、PM2.5、PM10相关系数分别为0.69、0.85、0.91;黑碳气溶胶浓度受城市边界层顶高度影响,风向、风速对泾河黑碳气溶胶的堆积输送有不同作用;气溶胶吸收系数和大气消光系数日变化显著,气溶胶吸收系数占大气消光系数比值范围在12%~30%;季单次散射反照率平均值为0.76,变化范围在0.70~0.84.  相似文献   

14.
以夏、秋、冬三个季节合肥大气颗粒物PM10和PM2.5中PAHs为研究对象,通过采样、测定与分析,得出如下结论:合肥市大气PM10和PM2.5中PAHs的浓度季节变化特征明显,冬季秋季夏季。夏季PM10中不同环数PAHs的分布规律与该季PM2.5不同,而秋冬季则相同,分布规律都是5~6环4环2~3环。通过采用BaP毒性当量法对PAHs进行健康风险评估,发现合肥大气PM10和PM2.5中PAHs的BEQ值除了夏季低于国家标准限值外,秋、冬季节均高于国家标准限值和国际标准限值。  相似文献   

15.
气溶胶通过直接或间接影响辐射对气候有着重要影响.利用在成都地区2019年1月23日—2020年8月31日期间6个时间段的亚微米气溶胶数浓度粒径谱分布(10~400 nm)、PM2.5浓度和气象资料,在对气溶胶谱分布进行统计分析和参数化的基础上研究了不同季节谱分布的日变化规律及不同PM2.5浓度下气溶胶数浓度谱分布的演变.结果表明:10~400 nm气溶胶总数浓度在春季最大(18269 cm-3),其次为冬季(16524cm-3)、夏季(14139 cm-3)和秋季(12635 cm-3).春季和夏季由于新粒子生成(NPF)事件发生频率较高(35%和22.46%),两季核模态粒子浓度和占比(35.7%和31.2%)较高.秋季总数浓度的低值主要是受到华西秋雨降水事件频率高(59.34%),持续时间较长的影响.冬季静稳天气导致粒子的累积老化,造成冬季积聚模态粒子数浓度占比(31.2%)较高.秋冬季节气溶胶数浓度日变化受早晚高峰和边界层发展的影响呈明显的双峰分布,春夏季除上述变化外,还受到二次生成的影响,总数浓度在上午呈现持续的高值.较清洁环境下受NPF事件的影响,成都地区100 nm以下粒子...  相似文献   

16.
太湖上空大气气溶胶光学厚度及其特征分析   总被引:2,自引:0,他引:2  
基于高精度的太阳光度计(CE-318)得到太湖上空气溶胶长期观测数据,获得了太湖上空从2005年9月~2010年10月的气溶胶光学厚度(AOT)以及相应的ngstrm参数α.5 a的观测资料表明,太湖上空AOT的高值区出现在夏季的6~7月,低值区出现在秋冬季节的10月~次年1月;α的低值区和高值区分别出现在春季的3~4月和秋季的9~11月,AOT及对应的α的变化主要与该地区的天气形势有关.从频率分布来看,AOT(500 nm)只有一个峰值,最高频率值为0.4~0.6,约占总样本的26%,年均值为0.80.按照平均AOT(500 nm)计算,气溶胶造成的太阳直射辐射的透过率衰减至少为50%,致使太湖地区的大气较为混浊,形成严重的雾霾天气;ngstrm波长指数α有2个峰值,最高频率区间为1.1~1.3和1.3~1.5,分别占总样本的30%,年平均值为1.17.结果还表明AOT(500 nm)和α的日均值变化范围均较大,表明太湖上空有不同类型的气溶胶粒子共存;当α增大时,AOT(500 nm)的均值呈递减趋势.总体结果分析表明,太湖上空的AOT值随时间变化较大,属于城市-工业型气溶胶类型.  相似文献   

17.
为了建立乌鲁木齐市近地面PM10浓度监测的关系模型,利用乌鲁木齐市2013年3—11月、2014年3—11月MODIS AOD产品与同期地面观测的PM10质量浓度进行相关分析,结果表明二者直接相关程度较低(r=0.433,p0.01);然后以WRF模式模拟的大气边界层高度及地面观测的相对湿度数据对AOD进行垂直、湿度订正后,二者相关性得到较大程度提高(r=0.630,p0.01);按照季节分类统计和订正春、夏、秋季的相关系数r分别为0.779、0.393、0.523,均大于统计学上99%的置信度要求,其中春季的订正最为有效,可用性更高;最后,建立全年和各季AOD-PM10最优拟合模型并反演乌鲁木齐市地面PM10质量浓度,全年和三季的反演结果与实测数据的相关系数分别为0.757、0.748、0.652、0.715(p0.01);同时基于卫星遥感AOD反演得到的PM10质量浓度的空间分布与AOD呈现出整体的一致性,并且3个季节AOD平均值表现为:春季秋季夏季.证实了卫星遥感AOD经过垂直和湿度订正后,可以作为辅助监测乌鲁木齐市PM10地面浓度分布的一个有效手段.  相似文献   

18.
南京市生活区夏秋季节大气颗粒物垂直分布特征   总被引:3,自引:0,他引:3  
文章实验研究了2008年7月24日-28日(夏季)和2008年10月13日-17日(秋季)南京市河西生活区距地面1.5 m、54 m和80 m高度处大气颗粒物质量浓度垂直分布特征。夏季和秋季监测结果的对比分析表明:随着高度的增加,采样期间夏季和秋季的PM10和PM2.5平均质量浓度均呈现逐渐减小的趋势,其中秋季衰减幅度明显比夏季小,而且秋季采样期间PM10和PM2.5平均质量浓度远远高于夏季;另一方面,夏秋两季不同尺度颗粒物浓度的相对含量也发生了明显变化,相比于夏季1.5 m高度处秋季细颗粒物的所占比例明显增加,而80 m处却明显降低。  相似文献   

19.
北京夏冬季霾天气下气溶胶水溶性离子粒径分布特征   总被引:15,自引:11,他引:4  
黄怡民  刘子锐  陈宏  王跃思 《环境科学》2013,34(4):1236-1244
为研究北京夏、冬季霾粒子中水溶性离子的粒径谱分布,并进一步分析其来源及形成机制,于2009年夏季和冬季利用惯性撞击式8级采样器(Andersen)和石英微量振荡天平(TEOM)对北京城区大气气溶胶分别进行了为期2周的连续采样和监测,并用离子色谱(IC)对气溶胶中的水溶性离子进行了分析.结果表明,夏季霾天PM10和PM2.5的质量浓度分别为(245.5±8.4)μg.m-3和(120.2±2.0)μg.m-3,冬季霾天对应的数值分别为(384.2±30.2)μg.m-3和(252.7±47.1)μg.m-3,无论夏季还是冬季,霾天大气细粒子污染均十分严重.细粒子中总水溶性离子(TWSS)的浓度霾天远高于对照天,其中霾天浓度上升较快的是SO24-、NO3-和NH4+,二次无机离子对霾天气的形成过程扮演重要作用.除NO3-外,其余7种水溶性离子夏、冬季霾天粒径谱分布一致,即,SO24-、NH4+主要分布于PM1.0以下的细粒子模态,Mg2+、Ca2+主要分布于PM2.5以上的粗粒子模态,Na+、Cl-和K+呈双模态分布;夏季霾天NO3-呈双模态分布,而冬季则主要分布于细粒子中.夏季霾天SO24-的平均质量中值粒径(MMAD)为0.64μm,SO24-主要来自远程SO2的云内反应,并且SO2表观转化率(SOR)高于对照天,使得霾天光化学反应生成的细粒子远远高于对照天气过程;冬季霾天SO24-的MMAD增至0.89μm,冬季因局地SO2排放并被非均相化学反应过程氧化为SO24-亦为北京大气细粒子的重要来源.夏、冬季霾天NO3-的MMAD分别为2.85μm和0.80μm,受到温度的影响,NO3-夏、冬季节分别以硝酸钙和硝酸铵的形式存在于粗、细粒子中.  相似文献   

20.
为分析京津冀及周边地区的PM2.5时空变化特征,先利用MODIS数据反演1km分辨率的AOT产品,采用地理加权回归模型实现京津冀及周边地区2016~2017年逐日PM2.5浓度的遥感反演,并在此基础上对多种时间尺度PM2.5浓度合成结果进行验证分析,最后从不同时间尺度对2016年和2017年PM2.5时空变化特征进行了对比分析.结果表明本研究反演的日均、月均和年均这3种时间尺度的PM2.5浓度结果总体上效果较为理想,时间尺度越大,遥感估算的PM2.5效果越好,年均PM2.5结果相对精度达80%以上,并且2016年和2017年同一时间尺度的PM2.5遥感结果精度较为接近.京津冀及周边地区PM2.5分布总体均呈现“冬季秋季?春季夏季”和“南高北低”的季节变化和空间分布趋势.与2016年相比,2017年京津冀及周边地区PM2.5浓度平均下降约9.2%,且高值区范围明显减小,PM2.5浓度高值一般发生在11月和12月,而低值则一般发生在8月.2017年与2016年PM2.5浓度时空变化与2017年的大气污染综合治理攻坚行动巡查和空气质量专项督查活动密切相关,这也能间接说明大气污染减排的成效.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号