首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
大同市大气颗粒物中苯并(a)芘的日变化研究   总被引:2,自引:0,他引:2  
在大同市三个不同功能区于冬、夏两季采集大气颗粒物样品,每日采样分为早晨、午间和晚上三次,对其中的苯并(a)芘进行分析测定.研究发现:该市大气颗粒物中苯并(a)芘浓度早晚高,午间低,采暖期大于非采暖期.除此以外,苯并(a)芘的日变化还与人类活动及相关气象因素有关.  相似文献   

2.
模拟实验研究了苯并(a)芘在黄河水体不同粒径颗粒物上的吸附作用,重点探讨了颗粒物粒径对苯并(a)芘的表面吸附和分配作用的影响.结果表明:(1)苯并(a)芘在黄河水体颗粒物上的吸附符合表面吸附-分配作用复合模式(2)苯并(a)芘在粒径d≥0.025 mm颗粒物上的吸附以表面吸附为主,表面吸附对吸附的贡献在68.7%至82.4%之间;当苯并(a)芘液相平衡浓度为0~8.87μg·L-1时,其在粒径0 007 mm≤d<0.025 mm颗粒物上的吸附以表吸附作用为主,当液相平衡浓度大于8.87μg·L-1时,吸附以分配作用为主;苯并(a)芘在粒径d<0.007 mm颗粒物上的吸附以分配作用为主;(3)苯并(a)芘在不同粒径颗粒物上的表面吸附对总吸附的贡献大小顺序为:(d≥0.025 mm)>(0.007 mm≤d<0 025 mm)>(d<0.007 mm);(4)苯并(a)芘在不同粒径颗粒物中的分配系数与有机质含量呈线性相关,其标化分配系数Koc约为1.26×105L·kg-1.  相似文献   

3.
天津污灌区苯并(a)芘的分布和迁移通量模型   总被引:7,自引:4,他引:7       下载免费PDF全文
建立了估算苯并 (a)芘在天津污灌区气、水、土壤及沉积物相间的迁移通量和浓度分布的逸度模型框架 ,利用通量资料作为模型输入 ,利用实测浓度数据验证了模型的可靠性 .结果表明 ,模型对大气、地表水、土壤和沉积物中浓度的估算大体吻合 ,沉积物和土壤是苯并 (a)芘的主要环境归宿 ,而大气中的平衡浓度相对较低 ,水体及土壤中的苯并 (a)芘可能通过作物和鱼体富集而进入生态系统 .  相似文献   

4.
天津市环境空气中苯并[a]芘的变化趋势   总被引:1,自引:0,他引:1  
分析了天津市环境空气中苯并[a]芘污染的程度及变化趋势,结果表明,天津市大气中苯并[a]芘污染成逐年下降趋势,同一年中苯并[a]芘浓度是非采暖期低于采暖期,月均值变化规律是夏季<春、秋季<冬季,天津市环境空气中苯并[a]芘污染总体来说处于较低的水平。  相似文献   

5.
以激光诱导荧光法测定大气飘尘中的苯并[a]芘。方法的检测限为0.01μg·l~(-1),降低了常规荧光法的检测限。综合溶剂提取、柱色层及纸色层分离技术,测定了上海市某些地区大气飘尘样品中苯并[a]芘的含量。  相似文献   

6.
黄曙昌 《环境》1999,(9):43-44
苯并(a)芘(BaP)是一种广泛存在于环境中,但含量一般很低的有害物质。苯并(a)芘有潜在的致癌性,但其含量较低因而它的污染容易被忽略,现仅在此提出来,希望引起关注。一、苯并(a)芘产生的途径苯并(a)芘是一种多环芳烃化合物,主要是由各种燃烧过程产生。焚烧垃圾产生的含苯并(a)芘的多环芳烃会对人体的感官起刺激作用,煤炭和石油的燃  相似文献   

7.
龙岩大气颗粒物中多环芳烃源识别及污染评价   总被引:2,自引:0,他引:2  
采用恒能量同步荧光法,研究了龙岩市区不同功能区冬、春季大气颗粒物中多环芳烃(PAHs)的污染状况和污染来源,并对不同功能区的PAHs含量进行了评价. 结果表明:龙岩市区各功能区大气颗粒物中ρ(PAHs)为278.95~ 718.25 ng/m3,且冬季高于春季. 根据PAHs中一些特征标志物的比值,可判断冬、春季市区内PAHs主要来源于汽车尾气和燃煤污染. 采用苯并[a]芘(BaP)及苯并[a]芘等效致癌浓度(BaPE)来评价3个功能区大气颗粒物中PAHs的污染状况显示,冬季3个功能区苯并[a]芘含量(ρ(BaP))均超过国家标准(10 ng/m3),且ρ(PAHs)均严重超标.   相似文献   

8.
对兰州市不同区域空气中苯并(a)芘和儿童尿液中1-羟基芘同步采样,分别采用气相色谱-质谱联用法和高效液相色谱法进行检测.结果表明:不同区域苯并(a)芘浓度有显著差别,研究区日均浓度约为对照区日均浓度的两倍.冬季大气中的浓度明显高于夏季,其中研究区冬季均值约为夏季的26.46倍,对照区冬季均值约为夏季的29.41倍.儿童尿中1-羟基芘的浓度与空气中苯并(a)芘的浓度呈一致的变化,冬季研究区儿童尿中1-羟基芘的均值为0.86μmol·(mol肌酐)-1,对照区为0.63μmol·(mol肌酐)-1.冬季研究区儿童的终生超额危险度最高,达到2.32×10-4,接近不可接受水平.  相似文献   

9.
南京市环境空气中苯并[a]芘的时空分布   总被引:1,自引:2,他引:1  
通过在南京市大气国控点采集PM10样品,测量苯并[a]芘浓度。结果表明:南京市大气中苯并[a]芘月均值浓度呈双峰型变化,季节变化是夏季<春季<秋季<冬季,受工业污染的影响,呈现北高南低的局面。南京市苯并[a]芘浓度在国内外部分大城市中处于较低污染水平。  相似文献   

10.
天津局部大气颗粒物上多环芳烃分布状态   总被引:31,自引:0,他引:31       下载免费PDF全文
通过对天津市内的几个典型地区大气颗粒物进行测定,检测出58种多环芳烃,并对11种多环芳烃进行定量测定。其结果表明,所涉及 的区域在采暖期内大多数点位的苯并(a)芘超标,超标倍数在1.1~4.6之间;交通繁忙地区的多环芳烃的污染程度高于其他地区;笔者还对多 环芳烃在不同粒径颗粒物上的分布特征、苯并(a)芘与大气颗粒物进行相关性分析和评价。   相似文献   

11.
北京市大气颗粒物中多环芳烃(PAHs)污染特征   总被引:25,自引:9,他引:16  
对北京市2003-09~2004-07的10个月空气中的TSP样品进行了连续采样,周期为1次/周.分析了15种3~7环的PAHs,其中以4~5环为主.∑PAHs浓度及BaP的最大值分别达到705 ng/m3和52 ng/m3;春夏秋冬4季∑PAHs的平均浓度分别为46 ng/m3,16 ng/m3,52 ng/m3,268 ng/m3;BaP的4季平均浓度分别为2.8ng/m3,0.23 ng/m3,3.3 ng/m3,16ng/m3;采暖期∑PAHs平均浓度为非采暖期的9.5倍.在所分析的3种气象条件中,降水能够明显降低PAHs的浓度;非采暖期的PAHs浓度随温度的升高而降低,采暖期的浓度与温度没有明显的相关性;采暖期风速水平的增加会导致PAHs浓度的下降,而非采暖期不同环数的PAHs和风速水平的关系各异,3环的PAHs浓度随风速水平增加而增加,4、5环的PAHs浓度变化不大,6、7环PAHs随风速水平的增加而浓度下降.  相似文献   

12.
针对芘(Pyr)和苯并[a]芘(BaP),以京津冀地区2014年为例分别构建CMAQ和BETR模型系统开展数值模拟,对比评估两种模型对PAHs大气迁移转化的模拟效果,并利用XGBoost模型识别CMAQ中影响PAHs环境行为的关键大气物理化学过程和参数.结果表明,BETR和CMAQ模拟年均值与实测年均值比值基本在1/2~2之间,且CMAQ模拟值和实测值季节变化趋势相同,验证了两类模型结果的可靠性.同时,将CMAQ模型9 km网格模拟浓度平均至27 km网格并和BETR模拟浓度的对比结果显示,BETR模型Pyr和BaP模拟浓度平均分别约为CMAQ年均模拟浓度的1.59倍和1.38倍,两类模型在年均浓度水平和空间分布方面具有较好的可比性.基于XGBoost模型的SHAP变量重要性分析表明,边界层高是对Pyr和BaP迁移转化影响最大的气象因素,其重要性在所有因素中占比高达22%~35%,在部分城市和污染物中对浓度变化的贡献甚至超过排放量,且和两种PAHs浓度呈显著负相关;PAHs浓度水平其次受风速影响最大,且风速和PAHs浓度呈负相关关系;风向对不同城市污染物浓度的影响则各不相同.  相似文献   

13.
苯并[α]芘〔benzo[α]pyrene,BaP〕是环境中广泛存在的一种致癌多环芳烃,带来的健康风险受到普遍关注. 基于生理的药代动力学(physiologically based pharmacokinetic, PBPK)模型是一种预测污染物在生物体内部剂量的数学模型,近年来在健康风险评估中应用广泛. 本文介绍了BaP对生物体的健康危害,概述了BaP的PBPK模型研究进展,指出了BaP人体PBPK模型存在BaP及代谢物的代谢机理尚未完全明确、代谢参数可靠性不高、模型还需继续完善等问题,并探讨了PBPK模型在BaP健康风险评估中的应用. 一方面,PBPK模型在阐明内暴露监测结果及补充完善污染物在人体内的代谢机理方面具有明显优势,基于PBPK模型分析完善了BaP生物标志物3-羟基苯并[α]芘在肾小管重吸收的肾脏排泄机制;另一方面,PBPK模型作为外推工具,通过种间外推可以量化污染物的种间药代动力学差异,减小动物健康剂量水平外推至人体基准值的不确定性;通过体外到体内的外推可以关联内外暴露剂量,利用反剂量学推导人体健康基准值. 这两种外推方法的应用均可以提高人体健康基准值推导的科学性、准确性. 并以BaP为例剖析了PBPK模型不确定性来源,提出了提高模型精确性的方法. 最后,为了进一步推动完善BaP的人体健康风险评估方法体系,本文探讨总结了3个重点研究方向:一是探索PBPK模型应用于BaP健康风险评估的方法体系;二是探索可靠性更高的BaP健康风险评估概率模型;三是开展BaP的生物标志物用于人体健康风险评估可行性研究.   相似文献   

14.
The rates of photodegradation and photocatalysis of benzo [a]pyrene (BaP) on soil surfaces under UV light have been studied. Different parameters such as temperature, soil particle sizes, and soil depth responsible for photodegradation, catalyst loads and wavelength of UV irradiation blamed for photocatalysis have been monitored. The results obtained indicated that BaP photodegradation follows pseudo-first-order kinetics. BaP photodegradation was the fastest at 30℃ . The rates of BaP photodegradation at different soil particle size followed the order: less than 1 mm〉less than 0.45 mm〉less than 0.25 mm. When the soil depth increased from 1 mm to 4 ram, the half-life increased from 13.23 d to 17.73 d. The additions of TiO2 or Fe2O3 accelerated the photodegradation of BaP, and the photocatalysis of BaP follows pseudo-first-order kinetics. Changes in catalyst loads of TiO2 (0.5%, 1%, 2%, and 3% (wt)) or Fe203 (2%, 5%, 7%, and 10% (wt)) did not significantly affect the degradation rates. Both BaP photocatalysis in the presence of TiO2 and Fe2O3 were the fastest at 254 nm UV irradiation.  相似文献   

15.
应用半静态双箱动力学模型在室内模拟了脊尾白虾(Exopalaemon carinicauda)、三疣梭子蟹(Portunus trituberculatus)对苯并[a]芘(benzo[a]pyrene,BaP)的生物富集实验,通过对富集与释放过程中两种海洋生物体内BaP的非线性曲线拟合,获得两种海洋生物对BaP的吸收速率常数k1、释放速率常数k2、生物富集因子BCF、平衡状态下生物体内BaP含量CAmax、生物学半衰期B1/2等动力学参数.拟合结果显示:脊尾白虾k1的平均值为18.80,k2的平均值为0.08,BCF的平均值为228.02,CAmax的平均值为46.78ng/g,B1/2的平均值为8.95d;三疣梭子蟹k1的平均值为22.55,k2的平均值为0.14,BCF的平均值为158.11,CAmax的平均值为32.70ng/g,B1/2的平均值为5.43d.两种海洋生物对BaP的k1、k2、BCF均随BaP暴露浓度的增大而减少,CAmax、B1/2随BaP暴露浓度的增大而增大.表明BaP容易在两种海洋生物体内富集,脊尾白虾对BaP的最高富集量高于三疣梭子蟹,前期富集速率高于后期,对BaP的释放主要集中在前期,后期释放速率放缓.  相似文献   

16.
应用基于生理的药代动力学(PBPK)模型预测苯并(α)芘(BaP)暴露的人体内部剂量,基于贝叶斯的马尔科夫链蒙特卡洛模拟(MCMC)方法对模型参数进行校准和优化,最后运用已优化的模型对BaP内暴露基准值进行推导.研究发现,基于贝叶斯的MCMC方法对模型后验参数校准后,模型精度明显提高,两个数据集验证结果显示残差平方和分别降低了72%和94%.PBPK模型以BaP和子代谢物3-羟基苯并(α)芘(3-OHBaP)的体内动力学过程为结构基础,模拟BaP体内浓度分布大小为脂肪>肾脏>皮肤>缓慢灌注组织>快速灌注组织>静脉血>肝脏;3-OHBaP体内浓度分布大小为肾脏>快速灌注组织>脂肪>肺>静脉血>缓慢灌注组织>肝脏>皮肤.敏感性分析显示,快速灌注组织-血分配系数对模型输出影响最大,灵敏度系数超过了200%;排泄系数影响最小,只有肾小球过滤率KBR的灵敏度系数超过了1%.以美国国家环境保护局推荐的参考浓度2.0×10-6mg/m3为外暴露安全基准值,基于PBPK模型推导了职业暴露的BaP生物监测当量(BE),结果显示BE值为0.405pmol/mol肌酐(尿液3-OHBaP平均浓度),为基于人体内暴露剂量水平进行定量健康风险评估奠定了基础.  相似文献   

17.
在人工气候室内用Poagland营养液栽培玉米,测定了玉米根、叶、茎、粒及伤流液中BaP的本底值。表明玉米根系可以吸收BaP并向上运输,但地上部的累积在一定程度上取决于根系环境中BaP的量。 在玉米的不同生育期向培养液添加BaP的试验表明,灌浆期的添加会增加籽粒中BaP的累积,因此,避免土壤的严重污染对控制进入食物链的BaP量是有意义的。  相似文献   

18.
几种芳香化合物对苯并芘在泥浆反应器中降解的影响   总被引:6,自引:0,他引:6  
苯并芘在土壤中难于被生物降解,其降解方式通常以共代谢方式进行.本研究考查了几种多环芳烃及2种单环芳香化合物对苯并芘降解的影响.先把几种芳香化合物投入到供试无污染土壤中进行3d的预培养,然后向土壤中加入苯并芘并使土壤在三角瓶内形成泥浆系统,放在摇床上培养.42d的实验表明,用菲对土壤进行预处Ζ理消除了苯并芘的降解滞后期,并提高了苯并芘的降解率.蒽、芘未能改变苯并芘的降解模式,而苯并蒽则相对抑制了苯并芘的降解.水杨酸和邻苯二甲酸同样消除了苯并芘降解的滞后阶段,且促进了苯并芘的降解,但质量差别未对苯并芘的降解产生影响.  相似文献   

19.
苯并(a)芘及其代谢产物的连续降解研究   总被引:2,自引:1,他引:1  
臧淑艳  李培军  周启星  王新  林桂凤  王娟 《环境科学》2006,27(12):2531-2535
在以驯化过的芽孢杆菌(BA-07)降解BaP的过程中,鉴定出2个BaP的未开环代谢产物顺式-4,5-二氢-4,5-二醇-BaP(cis-BP4,5-dihydrodiol)和顺式-7,8-二氢-7,8-二醇-BaP(cis-BP7,8-dihydrodiol).由于该产物对微生物有一定毒性,所以难于进一步降解.为提高BaP降解的同时,降低cis-BP4,5-dihydrodiol和cis-BP7,8-dihydrodiol的累积,对2种降解方法(即单纯用BA07降解和运用高锰酸钾与BA-07耦合的方法降解)进行了比较,并且优化了连续降解的参数.结果表明,①对BaP及其代谢产物的连续降解,化学氧化与微生物耦合(高锰酸钾与BA-07)的降解效果明显好于单纯利用微生物(细菌BA-07)的降解;②在同一时间取样,cis-BP4,5-dihydrodiol的残留率均高于cis-BP7,8-dihydrodiol;③当BaP的浓度为40μg/mL,培养基的最佳pH为7.0,以琥珀酸钠为共代谢底物,可以显著提高BaP降解率,降低cis-BP 4,5-dihydrodiol和cis-BP7,8-dihydrodiol的累积.同时提出了化学氧化与微生物协同的方法可以有效促进环境中持久有机污染物的连续降解.  相似文献   

20.
BaP和Cd单一复合对BaP蚯蚓亚细胞分配的影响   总被引:1,自引:0,他引:1  
选用钙离子通道阻断剂氯化镧(LaCl3)和巯基蛋白阻断剂N-乙马来酰亚胺(NEM)对赤子爱胜蚓进行预暴露,然后构建BaP单一或Cd-BaP复合污染,研究不同阻断剂对BaP在蚯蚓不同亚细胞组分(Fraction C:细胞溶质组分;Fraction D:固体颗粒组分;Fraction E:细胞碎片组分)中分配积累特征的影响.结果表明,无论单一或复合污染,BaP主要分布于细胞碎片组分中(占55.42%~69.96%),其次为固体颗粒组分(占27.91%~32.90%),在细胞溶质组分中的浓度最低(占2.13%~11.67%).单一BaP污染下,两种阻断剂对BaP的作用相近,即LaCl3和NEM的加入均能不同程度地促进3个亚细胞组分中BaP的积累.而在Cd和BaP复合污染下,两种阻断剂对BaP的分布积累的影响略有不同,LaCl3能够促进复合污染下BaP在3个亚细胞组分中的积累,而NEM促进了复合污染下BaP在固体颗粒组分和细胞碎片组分中的积累,但抑制了BaP在细胞溶质组分中的积累,浓度从原来的0.99mg/kg降低至0.59mg/kg.因此,钙离子通道和巯基蛋白可能参与BaP在蚯蚓亚细胞的分配积累,相比单一污染,Cd的复合污会进一步改变BaP的积累分配特征.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号