首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 187 毫秒
1.
基于臭氧监测仪(OMI)遥感数据获取中国东北三省(黑龙江、吉林、辽宁)2005~2018年的甲醛柱浓度,对东北三省近14年来甲醛的时空分布变化规律以及影响因子进行研究。结果表明:近14年来东北三省的甲醛年平均柱浓度呈先增大再减少,再增大的趋势,最大增长率为14.3%,最大降低率为10.1%;甲醛的月、季平均柱浓度变化具有明显规律性,在每年夏季(6~8月)出现最高值,冬季3月左右出现最低值;甲醛的季平均柱浓度水平为:夏季 > 秋季 > 冬季 > 春季;东北三省的甲醛柱浓度在空间上基本呈南高北低分布,高浓度区域主要集中在中部平原较发达的地区。甲醛柱浓度的影响因子包括自然条件和人类活动两个方面。降水和温度等气象因素是甲醛柱浓度变化的重要影响因素,而地形、植被等自然因素对甲醛的分布有一定的影响。交通运输和工业生产等人类活动对甲醛浓度的区域性变化也有重要贡献。  相似文献   

2.
三北防护林工程区植被覆盖变化与影响因子分析   总被引:8,自引:0,他引:8       下载免费PDF全文
利用1982~2006年间GIMMS AVHRR NDVI植被覆盖数据和气象站点气候数据,分析了三北防护林工程区25a来植被覆盖的时空变化特征及其与气温、降水变化的相关性,并在此基础上通过采用残差分析法探讨了人类活动对研究区植被覆盖变化影响的空间格局.结果表明:研究区25a的年植被变化量增加幅度略大于减少幅度,植被覆盖整体呈缓慢上升趋势,其中Ⅰ区和Ⅳ区NDVI值上升最明显(P<0.001),Ⅱ区则呈微弱下降趋势,而四大建设区植被覆盖度有不同程度提高;研究区植被和气温、降水整体呈正相关关系,17.74%的地区植被与气温呈负相关,而6.84%的地区呈正相关,10.60%的地区植被与降水呈负相关,19.53%的地区则呈正相关,植被与降水正相关面积明显大于植被与气温正相关面积,说明降水是研究区植被生长的关键因子;研究区植被残差年际变化显著正相关面积大于显著负相关面积,人类活动对植被建设作用要强于破坏作用,三北防护林建设工程带来的生态效益正在呈现.  相似文献   

3.
广东省对流层HCHO柱浓度时空动态分布及影响分析   总被引:1,自引:0,他引:1  
本文基于OMI卫星遥感反演数据,结合趋势分析、残差分析及Hurst指数,对广东省2009—2018年对流层甲醛柱浓度时空分布特征进行了分析,并结合NDVI、工业总产值、汽车保有量等因素,进一步探究了广东省自然和社会要素结构变化与甲醛柱浓度变化的关系.结果表明,广东省近10年的甲醛柱浓度均值为15.365×1015 molec·cm-2,处于全国前列水平,且近10年来年际间浓度变化波动较大.研究发现,甲醛柱浓度四季变化较为明显,春季高、夏季低,且季节性增长较为明显,其中,春、秋、冬三季平均增幅达到15.5%;月际变化与季节变化较为一致,受自然因素影响较为强烈.空间变化主要表现为甲醛柱浓度值由西南往东北递增,其中,高值区分布在广东省的中部和东北部地区,低值区分布在南部和西南部地区;残差研究发现,人类活动依然是影响广东省甲醛分布的主要因素,占87.64%,影响因素主要包括规模以上企业数量、工业废气排放等经济发展要素,并与能源消耗总量及工业生产总值的增加密切相关.自然因素如气温、降水、NDVI对甲醛的生成和分布有促进作用.通过Hurst指数可以发现,未来广东省甲醛柱浓度整体呈下降的趋势,但部分地区如东莞、深圳市等地未来有增加的趋势.  相似文献   

4.
利用OMI遥感的甲醛逐日数据、MODIS传感器监测的NDVI数据以及湖南省能源消耗和氮氧化物排放量数据,对2009~2017年湖南省对流层大气中甲醛柱浓度时空变化特征及其影响因素进行了探究。结果表明:湖南省甲醛柱浓度总体空间分布具有西部山区低、北部洞庭湖平原和南部南岭地区高的特征;近九年湖南省甲醛柱浓度时间分布呈先增加后减小的趋势,最高值出现在2012年,最低值出现在2017年;年内甲醛柱浓度值夏季最高,秋季、春季次之,冬季最低,最低值出现在12月,最高值出现于9月;影响因素中地形与风向因素对甲醛柱浓度的空间分布有一定的影响,甲醛柱浓度与温度的相关性较高,降水次之,植被对甲醛的产生有很大的贡献,能源消耗与氮氧化物排放是湖南省甲醛柱浓度变化的重要人为因素。  相似文献   

5.
京津冀对流层甲醛的时空演变特征及其影响因素   总被引:1,自引:0,他引:1  
依据2009—2016年OMI卫星反演的逐日数据,结合遥感图像处理技术和克里金插值法,对京津冀地区对流层甲醛柱浓度的时空特征及影响因素进行了分析.结果发现,2009—2016年8年间京津冀地区甲醛柱浓度年际变化总体呈上升趋势,年均增长率为1.01%,最大增长率出现于2009—2010年,为12.91%.8年间,甲醛柱浓度值具有波动性,最低值和最高值分别出现于2009年和2013年.研究区甲醛柱浓度季节变化表现为夏季值秋季值冬季值春季值,甲醛柱浓度月均值在每年的6月达到最高.甲醛柱浓度空间分布的低值区大多处于地势较高的京津冀地区西北部,高值区主要分布在京津冀地区南部平原.甲醛柱浓度变化不仅与自然因素的温度呈显著正相关,与气压呈显著负相关,还与社会经济因素中的煤炭消耗量、原油消耗量及工业增加值等呈正相关.京津冀地区甲醛柱浓度时空特征总体受当地自然和社会经济因素的综合影响.  相似文献   

6.
基于臭氧监测仪(OMI)卫星反演数据,对2005~2018年西北4省区域大气甲醛柱浓度数据进行提取及分析,探讨其时空变化特征及影响因素.结果表明:在时间变化上,14a甲醛柱浓度整体呈先上升后下降的波动变化趋势,夏秋季显著高于冬春季,且冬季均值略高于春季.在空间分布上,甲醛柱浓度自西向东、自北向南逐渐升高,高值区集中于陕西和甘肃东南部及青海西南部;低值区集中于宁夏、青海和甘肃的西北部;稳定性呈现出东部分散、西部集聚、差异显著的分布格局.影响甲醛柱浓度变化的因素包括自然和人为因素,自然因素中,甲醛柱浓度受地形影响显著,与风向、气温均呈现显著正相关;人为因素中,甲醛柱浓度与人口密度、地区生产总值、工业废气排放量及建筑房屋竣工面积均表现出正相关关系,与工业废气排放量的相关度最高.大气中甲醛分子与气溶胶粒子二者间呈显著正相关关系,这进一步说明甲醛浓度受到了诸多因素的综合影响,但气溶胶粒子、气温及工业废气的排放是主导因素.  相似文献   

7.
为明确宁夏回族自治区(简称“宁夏”)大气中甲醛的含量及分布,基于OMI遥感反演数据,分析了2006—2015年宁夏甲醛柱浓度的时空分布,同时选取工业产值、机动车保有量、煤炭消耗量以及气温、地形地貌和风向等人为和自然因素进行相关性分析.结果表明:研究区内2006—2015年甲醛柱浓度整体呈上升趋势,年均增速为1.078×1015 molec/(cm2·a),其中2006—2011年逐年增大,2012—2015年呈波动上升趋势,并于2015年达到近10年的最高值;甲醛柱浓度季节性特征为夏季>冬季>秋季>春季;宁夏甲醛柱浓度月均值变化趋势整体上呈“W”型.空间上甲醛柱浓度高值区主要分布在宁夏中东部及南部地区,而北部及西部地区甲醛柱浓度相对较低.在人为因素中煤炭消耗量与甲醛柱浓度的相关性最高,相关系数达到0.88;在自然因素中甲醛柱浓度与气温相关系数达到0.63,地形地貌和风向对甲醛污染区域的分布有一定影响.研究显示,人为因素是影响宁夏甲醛柱浓度的主要因素.   相似文献   

8.
甘肃省植被与对流层甲醛关系及影响因素分析   总被引:1,自引:0,他引:1       下载免费PDF全文
植被可以截获和吸收大气中的颗粒物、SO2和NOx等,对大气污染物具有一定净化作用,但也释放大量挥发性有机物,对光化学烟雾污染的形成具有促进作用.以甘肃省为例,利用卫星资料反演手段,解译了2008-2016年NDVI(植被覆盖指数)和对流层HCHO(甲醛)柱浓度,并探讨了二者之间的关系及影响因素.结果表明:①甘肃省2008-2016年NDVI空间分布梯度呈东南向西北递减的趋势,其年际动态不显著,季节性动态显著,与对流层HCHO柱浓度时空分布及动态有一定的相似性.②甘肃省对流层HCHO柱浓度和NDVI的年变化范围分别为7×1015~11×1015 molec/cm2和0.22~0.25,并且二者之间呈显著正相关,相关系数为0.63.③甘肃省NDVI和对流层HCHO柱浓度的分布与气象因素(如辐射、气温和降水量)有关,并且甘肃省中部对流层HCHO柱浓度分布还与甘肃省人类足迹分布特征相似.研究显示:甘肃省中部人类足迹指数高,HCHO主要来源于人类活动;而甘肃省西部和南部人类足迹指数低,HCHO主要来源于自然排放.   相似文献   

9.
基于OMIHCHO数据日产品,对2016年全国甲醛柱浓度数据进行了提取分析,并结合全国各省市温度、降雨量、植被覆盖度、人类活动等数据,在空间上与甲醛柱浓度做了相关性分析.结果表明:我国甲醛柱浓度空间分布极不平衡,呈现出东部及东南部地区甲醛柱浓度值普遍较高,而我国的西部及西北部地区表现出较低值;甲醛柱浓度月均值最低为8.31×1015molec/cm2,出现在10月份,最高为11.87×1015molec/cm2,出现在6月份,如果按照季节划分甲醛柱浓度均值,夏季 > 春季 > 冬季 > 秋季;从气象因子与甲醛柱浓度相关性分析结果来看,温度与甲醛柱浓度之间的相关性更为密切,但表现出空间上的差异性,此外,雨水对甲醛有一定的消除作用,但也在空间上有差异;由植被与甲醛柱浓度相关性结果来看,植被主要对东部及东南部地区甲醛柱浓度影响作用明显.甲醛柱浓度与各省市的地区生产总值、各产业增加值、机动车保有量的变化也存在着明显的相关性,而各产业增加值中工业与其相关性最高,说明工业排放和汽车尾气也是甲醛的主要来源.  相似文献   

10.
基于OMI卫星遥感反演数据,对珠江三角洲地区2009年~2016年对流层甲醛柱浓度时空分布特征及其影响因素进行研究.结果表明,珠江三角洲甲醛柱浓度时间变化特征为:8年来呈波动变化趋势,年均值为13.11×1015 molec/cm2,最低值出现于2012年,最高值出现于2016年;最大降低率为5.8%,最大增长率为6.3%.每年夏季最高,冬季最低,大小依次为夏季 > 秋季 > 春季 > 冬季,8a来96个月甲醛月际变化幅度较大,呈单峰结构,其中每年6月最高;空间变化特征为:甲醛柱浓度值由西北往东南递减,其中以肇庆东北大部、佛山北部和广州西部组成高值区分布中心,以佛山中南部、广州东南半部和江门西北半部组成三级次高级分布区,以惠州、东莞、深圳、中山、珠海和江门等珠江三角洲近海岸地区为一二级低值浓度区;影响因素中气温与气压等气象因素对HCHO的生成和分布有着促进作用,植被对HCHO的产生有一定的贡献,甲醛柱浓度的变化与汽车保有量、地区生产总值等经济发展要素呈现正相关关系,能源消耗总量与工业废气排放总量的增加与甲醛柱浓度增长密切相关,人为因素是甲醛柱浓度变化的主要原因.  相似文献   

11.
基于Aura-OMI传感器L2-V003甲醛日产品数据,分析陕西省2010~2018年对流层的甲醛柱浓度时空分布特征,并结合自然和人为因素等进行探讨,结果表明:研究区9年间甲醛柱浓度年际均值呈波动上升趋势,空间分布上关中地区向南北两侧递减.最小值出现在2017年,为9.45×1015molec/cm2;最高值出现在2018年,为17.40×1015molec/cm2,年均值为12.82×1015molec/cm2,季节均值水平为:夏季 > 冬季 > 秋季 > 春季,其中秋季波动性最大,春季最小.月均值幅度较大,呈周期性现象.甲醛浓度稳定性沿秦岭山脉向南北两侧递减;风向、气温和降水等自然因素均对甲醛空间分布产生重要影响,以汉中市为主,植被覆盖度与甲醛呈正相关区域,房屋建筑竣工面积、工业废气排放量、汽车保有量及大气传输等也是引起甲醛浓度变化的重要因素,针对不同区域时空分布特征结合自然、社会因素的相关性分析,提出合理性建议.  相似文献   

12.
基于Aura卫星OMI传感器的甲醛逐日数据,开展了2010—2019年粤港澳大湾区对流层甲醛垂直柱浓度的时空变化研究,并应用气象、植被和社会经济数据,对甲醛柱浓度变化的影响因子进行了分析.结果表明:2010—2019年粤港澳大湾区甲醛柱浓度呈波动起伏的变化特征,季节均值变化趋势与年度均值变化趋势相似,秋季季节浓度均值最高,其后依次为春季、夏季、冬季;在空间上,2010—2019年甲醛柱浓度均呈现自西北向东南逐渐降低的趋势,在甲醛柱浓度变化趋势上,粤港澳大湾区大部分区域呈现缓慢增加的趋势;针对不同土地覆盖类型,春季,绿地上空甲醛柱浓度高于建筑用地与耕地,夏、秋、冬季,建筑用地上空甲醛柱浓度略高;在空间分布稳定性上,受地形、土地覆盖类型和气象条件影响,西北部稳定性较强,南部珠江入海口处稳定性较弱;自然因子和人为因子对甲醛柱浓度的增长都有一定的贡献,其中,生产总值、汽车保有量、能源消耗量等人为因子对甲醛柱浓度的影响更为显著.  相似文献   

13.
利用OMI传感器数据,研究黑龙江省2005~2016年对流层甲醛柱浓度时空分布特征,并探究甲醛柱浓度的主要影响因素.结果表明:近12年甲醛柱浓度值整体呈上升趋势,平均增速为0.43×1015(molec×a)/cm2,2005~2013年逐年加剧,2013~2014年小幅回降,2014~2016年趋于平稳;四季甲醛浓度水平为:夏季>秋季>冬季>春季;月均变化趋势符合正弦曲线分布,年内甲醛柱浓度最低值一般出现在2~3月,最高值一般在6~7月;空间整体分布具有明显梯度,呈现“南高北低”状态,高值区主要分布在哈尔滨市、大庆市等南部地区,低值区分布在大兴安岭地区、黑河市等地区;空间浓度变化显著,2005~2008年全省在1~4级水平污染内,2009年起首次出现6级污染,2009~2013年6级水平污染区域扩大,2014年6级水平污染区域明显缩小,2014~2016年以4~6级水平污染为主且分布均匀;甲醛柱浓度分布对地形地貌、风向、气温、降水变化均会产生响应,能源消费、工业生产、汽车保有量、建筑装修、化肥施用等是甲醛柱浓度变化的重要影响因素.  相似文献   

14.
利用臭氧监测仪(OMI)卫星反演的甲醛柱浓度产品,探讨了2005—2016年间华北五省区域对流层甲醛柱浓度的时空分布变化特征及相关的影响因子,结果表明:近12年对流层甲醛柱浓度整体呈现上升趋势,2005—2011年甲醛柱浓度呈逐渐升高趋势,最高增长达32.24×1013mole·cm~(-2),且高值区逐渐扩大.空间分布上高值区整体分布在北京、天津及周围区域,低值区分布在河北的北部、河南的南部和山东的东部区域;2012—2016年甲醛柱浓度波动较小,呈下降趋势.12年中,每年的2—4月份甲醛柱浓度出现最小值,6—8月份甲醛柱浓度出现最大值,而2005年2月份甲醛柱浓度值最小,2011年7月份甲醛柱浓度值最大.四季对流层甲醛浓度水平:夏季秋季春季冬季.风向会影响甲醛浓度的扩散方向,气温的增加导致甲醛柱浓度的升高.但12年间区域生产总值的提高、汽车保有量增加和农业秸秆焚烧是影响甲醛柱浓度增加的主导因素.  相似文献   

15.
通过OMI卫星数据分析了2005~2016年长江三角洲对流层甲醛柱浓度的时空变化规律.同时结合2008年和2010年各部门VOCs人为源排放量,利用BP神经网络和RBFN神经网络模型对对流层甲醛柱浓度进行了县域尺度上的回归模拟和各部门排放量贡献度分析.结果表明:长三角城市群对流层甲醛柱浓度在2005~2010年存在着增加趋势,2011~2016年甲醛浓度有下降的趋势.高值区域分布在皖北苏北、上海及其附近,低值区域分布在浙西南一带.人为源排放使得经济发达地区的甲醛柱浓度显著增高.工业源在长三角的分布较为广泛,电力源分布稀疏且VOC排放量远小于工业源排放量,居民源的VOC排放量介于工业源和电力源之间,有明显的南北差异.交通源主要集中在苏南、浙北和上海附近,少部分沿交通线条状分布.机器学习算法可以较好地利用人为源排放数据对甲醛柱浓度进行模拟.神经网络的拟合精度可以达到0.6~0.8,比线性回归的拟合精度超出0.3~0.4.模型变量重要性计算显示各部门中居民源对甲醛柱浓度的贡献程度最高.研究对流层甲醛柱浓度的长期时空变化及其影响因素有利于深入研究臭氧污染,同时也为大气治理和政策制定提供了科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号