首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
任何  卢轩  刘洋  尹沙沙  胡鹤霄 《环境科学》2021,42(12):5687-5697
基于本地污染源调查,同时对重点工业行业进行实地采样测试,建立了郑州市高新区工业VOCs排放清单及组分清单,并评估了 VOCs各组分的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAp).结果表明,2017年郑州市高新区工业源VOCs排放总量为4 566.0 t,橡胶和塑料制品业、设备制造业和有色金属业是排放量最大的3个行业,排放量分别为1 924.2、1 396.3和813.4 t;各VOCs组分中,烷烃占比最大(40.9%),其次是含氧VOCs(32.2%)和芳香烃(20.3%);异丙醇、正十二烷、甲苯、甲基环己烷和丙酮是排放量最大的5种物质;OFP总量为8 753.8 t,最大贡献源和VOCs种类分别为设备制造业和芳香烃;SOAp总量为643.0 t,贡献较大的排放源为设备制造业和铝箔制造业,烷烃和芳香烃是两种主要贡献组分.  相似文献   

2.
卢轩  张瑞芹  韩跞锎 《环境科学》2020,41(10):4426-4435
基于人为源挥发性有机物(VOCs)活动水平统计和源成分谱梳理,采用排放因子法,建立了郑州市2016年VOCs组分排放清单,评估了各类源臭氧生成潜势(OFP).结果表明,2016年郑州市人为源VOCs排放总量为96215.3 t,排放量最高的是道路移动源(29.7%),其次是有机溶剂使用源(28.1%);排放量最高的组分是烷烃(29.8%),其次是芳香烃(29.0%).郑州市人为源VOCs的OFP为341291.0 t,贡献最高的排放源是道路移动源(30.5%),其次是溶剂使用源(28.8%),其中轻型汽油车、内墙涂料使用、机动车表面涂层、加油站装卸油和非金属矿物制造是OFP的主要次级排放源,也是郑州市降低臭氧污染时需重点管控的VOCs排放源.对于VOCs种类而言,贡献较高的是芳香烃(42.8%),其次是烯烃(38.9%),未来应加强对间/对-二甲苯、丙烯和乙烯等物种排放来源的控制.  相似文献   

3.
基于“第二次全国污染源普查”基础信息和工业行业VOCs源成分谱,建立了重庆市2017年主要工业源VOCs组分清单,并估算其臭氧生成潜势(OFP),识别工业源VOCs重点管控物种及其来源.结果表明,重庆市2017年工业源VOCs排放总量及其OFP分别为144.12 kt和477.34 kt,汽车制造、装备制造、塑料制造和化学原料与化学制品行业的VOCs排放量及其OFP贡献较大,VOCs排放量分别为37.18、 33.09、 19.47和18.14 kt, OFP分别为191.43、 153.69、 27.21和57.51 kt.芳香烃是VOCs排放量和OFP贡献最大的组分,分别占VOCs排放总量和总OFP的62.55%和82.15%,其主要来源于金属表面涂装和石油化工业.工业源VOCs中主要的活性物种为间/对-二甲苯、甲苯、乙苯、邻-二甲苯和丙烯,OFP分别为130.47、 103.37、 46.37、 42.83和28.26 kt,累积占总OFP高达71.11%.从空间分布来看,全市各区县VOCs排放强度与O3污染程度较为一致;VOCs排放量和OFP高值点均主要分...  相似文献   

4.
使用SUMMA罐采集华东地区5类典型合成树脂企业有组织排口样品,通过气相色质联用技术(GC-MS)定量分析106种VOCs,计算了合成树脂行业排放量、排放系数和不确定性,分析了VOCs的排放特征和臭氧生成潜势,建立了5类合成树脂VOCs排放成分谱.结果表明:合成树脂企业VOCs排放量为346~3467kg/a,5类合成树脂排放系数为0.06~1.24g/kg,其中涂料树脂(CR)类企业排放量和排放系数均最大.芳香烃、含氧烃(OVOCs)和卤代烃是合成树脂行业VOCs排放基本组分,累计占比范围是73.2%~98.3%.涂料树脂、酚醛树脂(PF)、聚氨酯(PU)、共聚物树脂(ABS)和聚碳酸酯(PC)特征污染物分别为:甲基异丁基酮、苯、甲苯、苯乙烯和二氯甲烷.合成树脂企业臭氧生成潜势(OFP)为22.7~202.5mg/m3,源反应性(SR)为0.3~4.6g/g,CR类企业OFP和SR均最大.合成树脂行业SR处于各行业平均水平.芳香烃、OVOCs和烯炔烃是合成树脂行业的主要光化学活性组分,累计OFP贡献率为64.1%~100.0%,苯、甲苯、甲基异丁基酮、乙烯、苯乙烯是合成树脂行业关键活性物种.研究显示,合成树脂行业VOCs治理应管控芳香烃和OVOCs的排放,重视污染物恶臭问题和卤代烃溶剂的危害,减排VOCs排放量大、臭氧生成能力强的CR类企业.  相似文献   

5.
选取四川省12家典型餐饮单位开展了NMHCs浓度和VOCs组分监测,结合已有数据,综合建立了含117种VOCs组分的餐饮源组分谱,获得本地化NMHCs排放因子,基于自下而上的研究方法,建立了四川省餐饮源挥发性有机物排放清单.结果表明,含氧和烷烃两类组分为川菜、烧烤和食堂餐饮的最主要的组分,二者合计质量分数在75%以上,主要VOCs物种为乙醇、甲醛、乙烷、己醛、乙烯、 1,3-丁二烯和丙烯醛等;含氧组分对OFP的贡献最大,其次是烯烃,主要OFP贡献物种为甲醛、乙烯、乙醇、 1,3-丁二烯、丙烯醛和己醛等. 2019年四川省餐饮源VOCs排放量和OFP值分别为32 kt和141 kt,分别占四川省人为源VOCs排放量和OFP值的5%左右,餐饮源对臭氧生成可能有重要贡献,应加大餐饮源挥发性有机物管控力度.  相似文献   

6.
挥发性有机物(VOCs)是影响大气复合污染形成的关键前体物,来源众多且化学组成差异较大. 为满足城市尺度VOCs精准管控需求,本文基于“自下而上”的人为源活动水平数据与植被遥感资料,并与文献调研和实测VOCs源谱信息相耦合,采用排放因子法构建了城市尺度高空间分辨率VOCs组分清单的编制方法,并以河南省驻马店市为研究区域开展应用. 结果表明:①本文构建的清单编制方法能够获取城市尺度高空间分辨率的VOCs组分排放清单,根据现阶段可获取的活动水平分辨率,清单分辨率可在1 km×1 km及以上. ②驻马店市烯烃组分排放量最高,其次是烷烃和含氧VOCs (OVOCs),其中排放量较高的物种为异戊二烯、苯乙烯和乙酸乙酯等;对于臭氧生成潜势(OFP),烯烃和OVOCs是主要贡献者,OFP贡献较高的物种为异戊二烯、乙烯、乙醛和甲醛等;在空间分布上,研究区域VOCs排放空间分布呈明显差异,林地茂密、工业企业密集、人口和路网密度较大的区域VOCs排放量较高. ③将清单结果与受体模型解析结果对比发现,二者在主要源类的识别上基本一致,印证了所构建清单的可靠性. 对比PMF解析因子谱和清单参考源谱发现,清单参考源谱中燃烧源以及工艺过程和溶剂使用源适用性较好,移动源谱适用性较低. 研究显示,驻马店市VOCs总量及组分排放空间特征明显,高空间分辨率清单可为城市差异化管理提供基础.   相似文献   

7.
选取成都市5大典型有机溶剂使用行业——包装印刷业、人造板制造业、家具制造业、制鞋业和化学品制造业具有代表性的15家企业测定挥发性有机物(VOCs)排放组分,并对其不同组分的臭氧生成潜势(OFP)进行分析.研究结果表明:不同行业排放的VOCs之间存在较大差异,包装印刷业和人造板制造业主要排放含氧VOCs(OVOCs),家具制造业主要排放芳香烃和OVOCs,制鞋业和化学品制造业主要排放OVOCs、芳香烃和烷烃;芳香烃是化学反应活性最强的组分,对臭氧的生成贡献普遍较大,其中贡献最大的邻二甲苯及间二甲苯的OFP值分别为92.13 mg·m~(-3)和89.65 mg·m~(-3),二者占总OFP的40%;五大典型有机溶剂使用行业中,家具制造业对O_3生成的贡献最大,OFP贡献率为34.59%.  相似文献   

8.
吴健  高松  陈曦  杨勇  伏晴艳  车祥  焦正 《环境科学》2020,41(4):1582-1588
采用不锈钢采样罐对华东地区8家涂料制造企业生产车间排口进行采集,运用气相色谱-质谱联用技术(GC-MS)测定了106种VOCs组分,识别了VOCs排放特征,建立了溶剂型涂料和水性涂料VOCs排放成分谱,分析了VOCs对臭氧生成的贡献.结果表明,涂料制造行业VOCs特征组分主要为芳香烃和含氧烃,两者浓度范围在65.5%~99.9%,溶剂型涂料VOCs排放主要以芳香烃为主,占总VOCs的63.0%~94.0%;水性涂料VOCs排放主要以含氧烃为主,占总VOCs的54.5%~99.9%.间/对-二甲苯(32.4%)、乙苯(19.0%)和乙酸乙酯(12.1%)为溶剂型涂料源排放特征,乙酸乙酯(83.7%)与2-丁酮(8.0%)为水性涂料源排放特征.芳香烃和含氧烃是涂料制造行业的主要活性组分,对臭氧生成潜势(OFP)的总贡献率在92.9%~99.9%之间.源反应活性分析(SR)表明,水性涂料单位质量VOCs对臭氧的生成贡献低于溶剂型涂料,因此可显著降低臭氧的生成潜势.研究显示,针对涂料制造行业VOCs污染治理,应重点关注芳香烃和含氧烃中对臭氧生成潜势贡献较大的VOCs组分,进行源头和精细化控制.  相似文献   

9.
成都市工业挥发性有机物排源成分谱   总被引:6,自引:4,他引:2  
选取成都市汽车制造和石油化工等典型工业行业,通过瓶采样和SUMMA罐采样及GC-MS分析方法,研究了不同生产工艺环节的挥发性有机物(VOCs)排放特征.结果表明,汽车制造各工艺环节均有各自的优势组分,其中喷漆排放以烷烃(32%)和芳香烃(35%)为主.家具制造排放特征与使用原辅料高度相关,以芳香烃(50%)和OVOCs(38%)为主.石油化工各装置区VOCs浓度范围为49~1 387μg·m~(-3),不同装置区存在较大差异,主要是由于炼油区主要产品为C_5~C_9的汽油和苯系物等,化工区则较多使用了溶剂同时生成烯烃类产品.电子制造均以OVOCs为主,占VOCs总排放的50%以上.制鞋行业排放VOCs主要由烷烃和OVOCs贡献,平均占比分别为52%和36%,与所用溶剂组分高度相关.汽车制造VOCs排放组分差异较大,主要以正十二烷和2-丁酮等为主.家具制造排放组分主要为苯乙烯、乙酸乙酯和间/对-二甲苯等,为涂料和稀释剂的典型组分.石油化工各装置区排放组分有差异,炼油区以苯乙烯等为主,化工区主要为1,3-丁二烯等,仓储区主要为C_3~C_5烷烃等,废水处理则主要为C_6~C_8烷烃等.电子制造主要组分均为乙醇和丙酮等醛酮组分.制鞋企业排放组分以C_5和C_6等烷烃为主.通过臭氧生成潜势计算比较,汽车制造和石油化工行业对臭氧生成潜势贡献较大的VOCs排放组分以烯烃和芳香烃为主,具有较高的污染源反应活性.研究表明各工业行业OVOCs排放比例(17%~96%)和对臭氧生成潜势贡献均较为显著,因此在进行VOCs排放控制时,除重点管控芳香烃和烯烃外,亦应提高对OVOCs组分的关注.  相似文献   

10.
长三角区域人为源活性挥发性有机物高分辨率排放清单   总被引:1,自引:1,他引:0  
基于长三角区域41个城市本地实测,结合美国EPA的SPECIATE 4.4数据库,建立了长三角区域人为源活性挥发性有机物(VOCs)高分辨率排放清单,分析了区域内VOCs的排放特征和组分构成;计算了VOCs的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAP).结果表明,2017年,长三角区域人为源VOCs排放总量为4.9×106 t,其中工艺过程源、工业溶剂使用源、移动源、生活源、储运源、农业源和废弃物处理源排放贡献分别为:34.3%、27.1%、19.5%、9.7%、6.1%、2.5%和0.4%.芳香烃和烷烃是VOCs的主要种类,均各占长三角VOCs排放总量的25%.工艺过程源、工业溶剂使用源、移动源和生活源OFP贡献率分别为38.3%、21.5%、16.4%和13.2%,SOAP贡献率分别为26.2%、34.1%、18.1%和17.9%,与VOCs排放量的主要贡献源基本一致.各城市VOCs重点排放行业存在较大差异,重点城市群以石化化工和装备制造为主,区域北部则以木材家具等涂装行业为主.计算表明,丙烯、间/对-二甲苯和乙烯是臭氧主要贡献源;甲苯、1,2,...  相似文献   

11.
珠江三角洲印刷行业VOCs组分排放清单及关键活性组分   总被引:5,自引:1,他引:4  
根据珠江三角洲地区印刷行业活动数据和不锈钢罐采样-气质联用技术,获取了印刷工艺VOCs成分谱,建立了该地区2010年印刷行业VOCs组分排放清单,研究了不同工艺排放的臭氧生成潜势. 结果表明:该地区2010年印刷行业VOCs排放总量达8591.26t,深圳、东莞、佛山排放量较大.凹印是印刷行业主要VOCs排放工艺,排放量达5762.01t;平印和凸印次之,分别为1954.01和37.82t.不同工艺排放的VOCs组分差异较大,平印工艺排放的VOCs成分中异丙醇含量最多(306.58t),其次为正庚烷(115.87t);苯和甲苯是凸印工艺排放的VOCs成分中含量最大的2种化合物,分别达5.58和4.83t;乙酸乙酯是凹印工艺排放的VOCs成分中的首要化合物,达2482.85t.凸印工艺排放的VOCs单位浓度臭氧潜势最大,达1.30μg/m3,平印和凹印较小,分别为0.89和0.72μg/m3,各工艺排放的含氧有机物对臭氧生成潜势的贡献均为最大.   相似文献   

12.
崔茹  莫梓伟  袁斌  邵敏 《环境科学学报》2021,41(6):2272-2281
溶剂使用源是挥发性有机物(VOCs)的重要排放源之一.近年来,VOCs排放清单中对工业生产类溶剂的VOCs排放估算较多,但对于生活类溶剂使用的研究有所欠缺.本研究以日化用品为研究对象,基于产品消费量、产品中的溶剂含量及其挥发特性,建立了我国2000—2017年日化用品使用的VOCs排放清单,并基于最大增量反应活性值(MIR)评估了日化用品对臭氧生成的潜在贡献.结果表明,2000年我国日化用品VOCs排放量为36.1×104 t,到2017年排放量达218.5×104 t,年平均增长率为11%.护肤品、香水和洗护用品是日化用品中VOCs的主要排放类别,2017年这3类的VOCs排放量分别占总量的40%、30%和21%.上海(8.0×104 t)、北京(7.0×104 t)、广州(4.5×104 t)、重庆(4.5×104 t)、深圳(3.7×104 t)是日化用品VOCs排放量前5的城市.含氧VOCs是日化用品排放的主要VOCs组分,其排放量贡献达到64%.2017年日化用品VOCs产生的臭氧生成潜势(OFP)为306.4×104 t,含氧VOCs、烯烃和烷烃分别占OFP总量的67%、18%和14%.对OFP贡献最大的前8个物种是乙醇、柠檬烯、异丁烷、丙二醇、二丙二醇、异戊烷、二甲醚和异丙醇,其排放量占VOCs总量的77%,但贡献了OFP总量的93%.针对日化用品的VOCs排放及其引起的臭氧污染防控应重点关注护肤品、香水和洗护用品3类产品.  相似文献   

13.
电子制造业塑料件生产过程的挥发性有机物排放特征分析   总被引:2,自引:0,他引:2  
选取珠三角地区典型电子制造企业,通过气袋采样及预浓缩-GC-MS/FID分析方法,获得塑料件生产过程的挥发性有机物(VOCs)浓度水平与组分特征.实验共检出包括烷烃、烯烃、芳香烃、醛类、卤代烃等在内的101种VOCs组分.其中,塑料件生产过程可分为注塑成型期和塑料件加工期,塑料件加工期包括喷涂工艺和非喷涂工艺.结果表明,注塑成型期总VOCs排放浓度较塑料件加工期低,含氧VOCs(OVOCs)、烷烃是最重要的组分;塑料件加工期的喷涂工艺VOCs排放浓度普遍高于非喷涂工艺,OVOCs、卤代烃是塑料件加工期主要的VOCs组分,其中,丙酮和三氯乙烯为主要成分.与其他研究相比,本研究中卤代烃排放比例明显提高,芳香烃排放比例下降.注塑成型期臭氧生成潜势标准化反应活性系数R值比塑料件加工期高24%,其中,丙烯醛是贡献最大的物种;在塑料件加工期,喷涂工艺的R值比非喷涂工艺高31%,正己醛是最主要的臭氧贡献物种.苯系物对二次有机气溶胶(SOA)生成潜势贡献起主导作用.在臭氧控制的背景下,不仅排放浓度高的喷涂工艺需受到控制,对于标准化反应活性大的其他工艺也需关注.  相似文献   

14.
我国人为源挥发性有机物反应性排放清单   总被引:21,自引:16,他引:5  
以我国人为源挥发性有机物(VOCs)为研究对象,使用具有代表性的VOCs总量排放清单、各污染源成分谱及物种最大增量反应活性值(MIR),建立了2010年我国人为源VOCs基于臭氧生成潜势(OFP)的反应性排放清单.结果表明,2010年我国人为源挥发性有机物总OFP为84 187.61 kt,其中,烷烃6 882.53 kt,烯炔烃41 496.92 kt,芳香烃32 945.32 kt,卤代烃161.45kt,含氧有机化合物2 701.40 kt.OFP贡献前10种物种分别为丙烯、乙烯、间/对-二甲苯、甲苯、1-丁烯、邻-二甲苯、1,2,4-三甲苯、1,3-丁二烯、间-乙基甲苯和乙苯,占人为源总OFP的63.95%,仅占VOCs排放总量的31.84%.人为源三大污染源中,工业源贡献了49.29%的OFP,为最大贡献源,其次是交通源28.31%和农业源22.40%.建筑装饰、石油炼制、储存与运输、机械设备制造、交通设备制造和包装印刷为工业OFP主要贡献源;轻型载客汽车、重型载客汽车及摩托车为交通源OFP污染控制的重点;生物质燃烧两类子源均为农业源OFP重点控制对象.山东、江苏、广东、浙江和河南是我国人为源OFP贡献最大的省份,占人为源总OFP的39.65%.该反应性清单的建立,对我国基于反应性臭氧(O3)控制对策的制定具有重要意义.  相似文献   

15.
成都市典型工艺过程源挥发性有机物源成分谱   总被引:12,自引:8,他引:4  
选取成都市人造板、医药制造和化工制品等工艺过程源典型企业,通过采样瓶和SUMMA罐采样及GC-MS和国标分析方法,获取了人造板等行业各生产工艺环节的挥发性有机物(VOCs)排放组分特征.其中,人造板生产工艺分为制胶、调胶、分选和热压,医药制造分为生产车间和废水处理.结果表明,人造板和医药制造VOCs贡献组分以OVOCs为主,占VOCs总排放的50%以上.甲醛制造有组织和无组织排放组分差异较大,有组织以OVOCs为主而无组织以卤代烃为主.涂料制造VOCs排放与其原辅料相关性较高,VOCs排放组分以芳香烃和OVOCs为主.人造板各工艺环节除调胶外,最主要的VOCs组分均为甲醛,其排放占比达到50%以上.医药制造各工艺环节的首要VOCs组分均为乙醇,1,4-二烷、乙酸乙酯和甲苯等亦为主要组分.甲醛制造以丙酮和乙醇等组分为主.涂料制造主要以间,对-二甲苯等芳香烃为主.以臭氧生成潜势表征人造板、医药制造和化工的VOCs污染源反应活性,结果表明不同行业VOCs组分对反应活性的贡献类似,均主要以甲醛、乙醇等OVOCs和部分芳香烃等高活性组分为主.应对工艺过程源等行业分环节监管,并重点关注臭氧生成潜势较大的VOCs组分,分析行业排放特征和化学机制,从源头控制O3生成.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号