首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
针对2017年8月4—7日在上海市及周边城市发生的臭氧污染过程,结合30个采样点连续4 d的大气挥发性有机物(VOCs)苏玛罐样品分析数据及O_3和NO_2在线监测数据,分析了此次污染过程的O_3和NO_2的时间变化特征、VOCs组分及臭氧生成潜势(OFP)的空间分布特征,并对VOCs来源进行了研究.结果表明,采样期间,上海市的O_3和NO_2平均浓度水平总体均高于周边的5个城市.VOCs均值浓度的空间分布总体为西北部高于东南部,上海市VOCs均值浓度为48×10~(-9),相较周边城市处于中间水平.上海市各类VOCs浓度为OVOCs烷烃卤代烃芳香烃烯炔烃,OFP贡献为芳香烃烯炔烃烷烃OVOCs和卤代烃.VOCs源解析结果显示机动车、溶剂使用、化工和石化工艺过程是上海市VOCs的3个主要来源.结合VOCs来源解析与OFP的贡献分析,控制上海市臭氧污染需重点削减溶剂使用和化工工艺过程中的甲苯、乙苯、间/对二甲苯、邻二甲苯和苯等芳香烃的排放,同时加强机动车和石化工艺过程中丙烯、乙烯和乙炔的排放控制.  相似文献   

2.
成都市工业挥发性有机物排源成分谱   总被引:6,自引:4,他引:2  
选取成都市汽车制造和石油化工等典型工业行业,通过瓶采样和SUMMA罐采样及GC-MS分析方法,研究了不同生产工艺环节的挥发性有机物(VOCs)排放特征.结果表明,汽车制造各工艺环节均有各自的优势组分,其中喷漆排放以烷烃(32%)和芳香烃(35%)为主.家具制造排放特征与使用原辅料高度相关,以芳香烃(50%)和OVOCs(38%)为主.石油化工各装置区VOCs浓度范围为49~1 387μg·m~(-3),不同装置区存在较大差异,主要是由于炼油区主要产品为C_5~C_9的汽油和苯系物等,化工区则较多使用了溶剂同时生成烯烃类产品.电子制造均以OVOCs为主,占VOCs总排放的50%以上.制鞋行业排放VOCs主要由烷烃和OVOCs贡献,平均占比分别为52%和36%,与所用溶剂组分高度相关.汽车制造VOCs排放组分差异较大,主要以正十二烷和2-丁酮等为主.家具制造排放组分主要为苯乙烯、乙酸乙酯和间/对-二甲苯等,为涂料和稀释剂的典型组分.石油化工各装置区排放组分有差异,炼油区以苯乙烯等为主,化工区主要为1,3-丁二烯等,仓储区主要为C_3~C_5烷烃等,废水处理则主要为C_6~C_8烷烃等.电子制造主要组分均为乙醇和丙酮等醛酮组分.制鞋企业排放组分以C_5和C_6等烷烃为主.通过臭氧生成潜势计算比较,汽车制造和石油化工行业对臭氧生成潜势贡献较大的VOCs排放组分以烯烃和芳香烃为主,具有较高的污染源反应活性.研究表明各工业行业OVOCs排放比例(17%~96%)和对臭氧生成潜势贡献均较为显著,因此在进行VOCs排放控制时,除重点管控芳香烃和烯烃外,亦应提高对OVOCs组分的关注.  相似文献   

3.
该文以2020年5-10月烟台市117种VOCs监测数据为基础,对烟台市VOCs污染特征、臭氧生成潜势及污染来源进行分析。研究表明:烟台市VOCs平均体积分数为27.70×10~(-9)(75.43μg/m~3),VOCs体积分数月际波动较小,在25.61×10~(-9)~30.54×10~(-9)之间。烟台市VOCs化学组成由高到低排序,依次为烷烃OVOCs卤代烃芳香烃烯烃炔烃有机硫,其中烷烃和OVOCs比重最大,二者之和占总VOCs的68.5%;VOCs体积分数最高的3种组分依次为甲醛、丙烷、丙酮。烟台市VOCs组分的总OFP值为177.41μg/m~3,臭氧生成潜势量表现为OVOCs芳香烃烯烃烷烃炔烃卤代烃有机硫,OFP值排名前3的组分分别是甲醛、乙醛、甲苯。烟台市大气中芳香烃主要受机动车排放影响,同时工业排放影响也不可忽略;羰基化合物主要受机动车尾气和人为源影响。  相似文献   

4.
成都市典型工艺过程源挥发性有机物源成分谱   总被引:12,自引:8,他引:4  
选取成都市人造板、医药制造和化工制品等工艺过程源典型企业,通过采样瓶和SUMMA罐采样及GC-MS和国标分析方法,获取了人造板等行业各生产工艺环节的挥发性有机物(VOCs)排放组分特征.其中,人造板生产工艺分为制胶、调胶、分选和热压,医药制造分为生产车间和废水处理.结果表明,人造板和医药制造VOCs贡献组分以OVOCs为主,占VOCs总排放的50%以上.甲醛制造有组织和无组织排放组分差异较大,有组织以OVOCs为主而无组织以卤代烃为主.涂料制造VOCs排放与其原辅料相关性较高,VOCs排放组分以芳香烃和OVOCs为主.人造板各工艺环节除调胶外,最主要的VOCs组分均为甲醛,其排放占比达到50%以上.医药制造各工艺环节的首要VOCs组分均为乙醇,1,4-二烷、乙酸乙酯和甲苯等亦为主要组分.甲醛制造以丙酮和乙醇等组分为主.涂料制造主要以间,对-二甲苯等芳香烃为主.以臭氧生成潜势表征人造板、医药制造和化工的VOCs污染源反应活性,结果表明不同行业VOCs组分对反应活性的贡献类似,均主要以甲醛、乙醇等OVOCs和部分芳香烃等高活性组分为主.应对工艺过程源等行业分环节监管,并重点关注臭氧生成潜势较大的VOCs组分,分析行业排放特征和化学机制,从源头控制O3生成.  相似文献   

5.
于2020年9~10月在深圳北部典型工业区开展在线观测以分析该地VOCs污染状况,并使用基于观测的模型(OBM)研究臭氧生成敏感性.观测期间VOCs的总浓度为48.5×10-9,浓度水平上烷烃>含氧有机物(OVOCs)>卤代烃>芳香烃>烯烃>乙炔>乙腈.臭氧生成潜势(OFP)为320μg/m3,其中芳香烃、OVOCs以及烷烃贡献最大,这3类物种OFP贡献总和超过90%.乙烯与苯呈现“两峰一谷”的日变化特征,主要受到机动车排放的贡献.相对增量反应性(RIR)分析表明,削减人为源VOCs对控制当地臭氧生成最为有效,当中又应优先控制芳香烃;经典动力学曲线(EKMA)分析表明该片区臭氧生成处于过渡区,在开展VOCs区域联防联控的同时,需要在当地进行有力的NOx控制以强化该地区臭氧污染长期管控.  相似文献   

6.
鄂州市大气VOCs污染特征及来源解析   总被引:5,自引:4,他引:1  
2018年3月~2019年2月,在鄂州市主城区采用在线气相色谱仪对102种大气挥发性有机物(VOCs)定量检测,对比分析了VOCs组成、季节变化特征和日变化规律,并利用最大增量反应活性(MIR)估算了VOCs的臭氧生成潜势(OFP).结果表明,鄂州大气VOCs年均体积分数为(30.78±15.89)×10~(-9),总体表现为冬季高夏季低,具体表现为烷烃含氧化合物卤代烃烯烃芳香烃炔烃.日变化规律表现为夜晚体积分数高于白天,且总体上呈"双峰"分布,芳香烃、卤代烃和OVOCs在00:00至02:00出现"第三峰".对VOCs臭氧生成潜势(OFP)贡献较大的是芳香烃和烯烃,贡献率分别为35.45%和29.5%,其中对OFP贡献率最高的物种为乙烯,达到24.217%.分析VOCs特征物种,发现机动车尾气和溶剂使用是鄂州VOCs的主要来源,其中机动车排放是最主要来源,控制鄂州机动车排放有助于削减大气VOCs活性较大的组分,从而减少臭氧的生成.  相似文献   

7.
基于调研文献测试数据,对不含含氧有机物(oxygenated volatile organic compounds,OVOCs)组分的源成分谱进行修订和重构,得到归一化的VOCs源成分谱,根据2015年四川省大气污染源排放清单建立了基于源成分谱的1 km×1 km VOCs组分排放清单,并估算其臭氧生成潜势以评估对臭氧生成的影响.所建立的VOCs源成分谱库包括45个源成分谱和519种组分,由于针对富含OVOCs的生物质燃烧和汽车排放等源类进行了修订和重构,因此所建立的源成分谱库对于VOCs组分清单构建和源解析具有更好地应用性.VOCs组分清单结果表明,四川省人为源VOCs总排放量为773.8 kt,其中烷烃、烯烃、炔烃、芳香烃、OVOCs、卤代烃和其它VOCs分别占VOCs总排放量的21.6%、10.0%、1.7%、28.0%、26.2%、4.2%和8.3%,总臭氧生成潜势(ozone formation potential,OFP)为2584.9 kt,上述各类VOCs分别占总OFP的6.9%、26.1%、0.5%、42.3%、23.2%、0.4%和0.5%.四川省各城市VOCs排放组分均以芳香烃、OVOCs和烷烃为主,但亦存在显著差异:成都、雅安、阿坝、甘孜和凉山机动车排放贡献较大,烷烃排放量占VOCs排放总量的比例较高;攀枝花为工艺过程源贡献较大的重工业城市,烷烃排放量占比较高;德阳、眉山、遂宁和资阳溶剂使用源排放较大,OVOCs排放量占比较高.四川省VOCs排放量和OFP较大的组分主要集中分布于人口和工业较为密集和发达的四川盆地区域以及凉山和攀枝花的部分地区,其中间-二甲苯和甲苯主要贡献源为溶剂使用源,导致其在城市建成区的分布更为集中,生物质燃烧对乙烯和甲醛排放有大量贡献,造成其在农业发达的川东和川南的耕地区域有大量分布.  相似文献   

8.
选取成都市5大典型有机溶剂使用行业——包装印刷业、人造板制造业、家具制造业、制鞋业和化学品制造业具有代表性的15家企业测定挥发性有机物(VOCs)排放组分,并对其不同组分的臭氧生成潜势(OFP)进行分析.研究结果表明:不同行业排放的VOCs之间存在较大差异,包装印刷业和人造板制造业主要排放含氧VOCs(OVOCs),家具制造业主要排放芳香烃和OVOCs,制鞋业和化学品制造业主要排放OVOCs、芳香烃和烷烃;芳香烃是化学反应活性最强的组分,对臭氧的生成贡献普遍较大,其中贡献最大的邻二甲苯及间二甲苯的OFP值分别为92.13 mg·m~(-3)和89.65 mg·m~(-3),二者占总OFP的40%;五大典型有机溶剂使用行业中,家具制造业对O_3生成的贡献最大,OFP贡献率为34.59%.  相似文献   

9.
由于挥发性有机物(VOCs)是O3生成的关键前体物,因此了解VOCs的污染特征以及主要来源对控制O3污染具有重要的意义.本研究于2019年9~10月在深圳市开展了在线VOCs观测,共计监测104个物种.观测期间,臭氧超标率达17.8%.TVOCs总浓度为38.9×10-9,污染日浓度明显高于非污染日.从大类物种来看,浓度从高到低依次为烷烃>含氧有机物(OVOCs)>卤代烃>芳香烃>烯烃>乙炔>乙腈,臭氧生成潜势(OFP)中芳香烃、OVOCs以及烯烃贡献较大.由PMF源解析模型分析结果可知,VOCs主要来源包括生物质燃烧、汽油挥发、机动车尾气、工业过程以及溶剂使用等,而其中对OFP贡献较大的排放源为溶剂使用(45.8%)、机动车尾气(27.3%).臭氧污染日发生时,清晨低风速可能导致了机动车尾气与汽油挥发源在交通早高峰快速积累,而当日高温亦会加快汽油源与溶剂源组分挥发并促进光化学反应.  相似文献   

10.
为了解邢台市不同行业企业挥发性有机物(VOCs)污染特征,通过Summa罐采集样品,采用预浓缩-气质联用仪系统(GC-MS/FID)进行测定分析,探究不同行业VOCs特征组分变化,并分析了VOCs排放对OFP(臭氧生成潜势)贡献影响.结果表明:①光伏元件制造、木材深加工及印刷行业排放的VOCs中以OVOCs(含氧挥发性有机物)为主,其占比在52.7%以上,特征物种为异丙醇、丙酮及乙酸乙酯等;玻璃深加工、汽车表面喷涂及家具制造行业排放的VOCs中以芳香烃为主,占比为36.7%~93.8%,特征物种为间/对-二甲苯、邻-二甲苯和对-二乙基苯等.②玻璃深加工、汽车表面喷涂及家具制造行业排放的VOCs中对OFP贡献较大组分为芳香烃,占比为88.3%~98.2%,活性物种为间/对-二甲苯、甲苯及邻-二甲苯等C7~C9的苯系物;光伏元件制造和印刷行业排放的VOCs中对OFP贡献较大的组分为OVOCs,占比为92.8%~95.2%,活性物种为异丙醇、乙酸乙酯及甲基乙基酮等;木材深加工行业排放的VOCs中对OFP贡献较大的组分为OVOCs和烯烃,占比分别为39.0%~53.4%和23.0%~25.3%,活性物种主要为丙酮、甲基乙基酮及1-丁烯等.研究显示,邢台市玻璃深加工和汽车表面喷涂企业中芳香烃对OFP影响较大,其次是印刷企业,亟需优先加强管控.   相似文献   

11.
任何  卢轩  刘洋  尹沙沙  胡鹤霄 《环境科学》2021,42(12):5687-5697
基于本地污染源调查,同时对重点工业行业进行实地采样测试,建立了郑州市高新区工业VOCs排放清单及组分清单,并评估了 VOCs各组分的臭氧生成潜势(OFP)和二次有机气溶胶生成潜势(SOAp).结果表明,2017年郑州市高新区工业源VOCs排放总量为4 566.0 t,橡胶和塑料制品业、设备制造业和有色金属业是排放量最大的3个行业,排放量分别为1 924.2、1 396.3和813.4 t;各VOCs组分中,烷烃占比最大(40.9%),其次是含氧VOCs(32.2%)和芳香烃(20.3%);异丙醇、正十二烷、甲苯、甲基环己烷和丙酮是排放量最大的5种物质;OFP总量为8 753.8 t,最大贡献源和VOCs种类分别为设备制造业和芳香烃;SOAp总量为643.0 t,贡献较大的排放源为设备制造业和铝箔制造业,烷烃和芳香烃是两种主要贡献组分.  相似文献   

12.
为了解南宁市冬季期间挥发性有机物(VOCs)污染特征及来源,采用在线连续监测系统于2020年12月9日~2021年2月22日在南宁市区对116种VOCs进行了在线连续观测.结果显示,观测期间VOCs体积分数为37.57x10-9,烷烃、烯烃、芳香烃、OVOCs及卤代烃体积分数占VOCs比例分别为44%、15%、8%、19%和11%.VOCs体积分数白天低,夜晚高;采用OH消耗速率(LOH)和臭氧生成潜势(OFP)估算了观测期间VOCs大气化学反应活性,结果表明醛酮类、芳香烃和烯烃是主要的活性物质;使用气溶胶生成系数法(FAC)估算了VOCs对二次有机气溶胶(SOA)的贡献,发现芳香烃对SOA生成贡献最大,占比为98%,其中苯、间/对二甲苯和甲苯为优势物种;正交矩阵因子(PMF)解析结果表明,冬季期间南宁市VOCs主要来源于:机动车尾气排放源(30.1%)>固定燃烧及生物质燃烧源(22.2%)>工业工艺排放源(16.8%),而OFP贡献较高的源分别为溶剂使用源(23.9%)、固定燃烧及生物质燃烧源(22%)、机动车尾气排放源(21.8%).因此,机动车尾气排放源和固定燃烧及生物质燃烧源应为南宁市冬季的优先管控源类,其次为工业工艺排放源、溶剂使用源.  相似文献   

13.
制药行业VOCs排放组分特征及其排放因子研究   总被引:1,自引:0,他引:1  
为研究制药行业产品工艺过程的挥发性有机物(VOCs)排放特征,以华东地区某工业园区的两家化学合成类制药企业为研究对象,采集并分析了来自不同生产线和生产环节的VOCs样品.结果表明,同行业不同企业、同企业不同车间的VOCs排放特征差异显著,基于获得的产品生产线不同环节的VOCs排放特征,结合产品工艺流程,推测排放的VOCs组分主要与原料和生产工序有关;处理设施对不同VOCs组分的脱除效率也存在明显差别,RTO对不同VOCs种类的处理效率由高至低依次为OVOCs(80.5%)、芳香烃(72.7%)、烷烯烃(68.3%)和卤代烃(66.1%);根据浓度测试结果,计算得到48种VOCs的排放量和排放因子,制药企业A和B的VOCs排放总量分别为14.2 t·a-1和0.4 t·a-1,均以卤代烃占比最大,分别为56.1%和48.2%.  相似文献   

14.
吴健  高松  陈曦  杨勇  伏晴艳  车祥  焦正 《环境科学》2020,41(4):1582-1588
采用不锈钢采样罐对华东地区8家涂料制造企业生产车间排口进行采集,运用气相色谱-质谱联用技术(GC-MS)测定了106种VOCs组分,识别了VOCs排放特征,建立了溶剂型涂料和水性涂料VOCs排放成分谱,分析了VOCs对臭氧生成的贡献.结果表明,涂料制造行业VOCs特征组分主要为芳香烃和含氧烃,两者浓度范围在65.5%~99.9%,溶剂型涂料VOCs排放主要以芳香烃为主,占总VOCs的63.0%~94.0%;水性涂料VOCs排放主要以含氧烃为主,占总VOCs的54.5%~99.9%.间/对-二甲苯(32.4%)、乙苯(19.0%)和乙酸乙酯(12.1%)为溶剂型涂料源排放特征,乙酸乙酯(83.7%)与2-丁酮(8.0%)为水性涂料源排放特征.芳香烃和含氧烃是涂料制造行业的主要活性组分,对臭氧生成潜势(OFP)的总贡献率在92.9%~99.9%之间.源反应活性分析(SR)表明,水性涂料单位质量VOCs对臭氧的生成贡献低于溶剂型涂料,因此可显著降低臭氧的生成潜势.研究显示,针对涂料制造行业VOCs污染治理,应重点关注芳香烃和含氧烃中对臭氧生成潜势贡献较大的VOCs组分,进行源头和精细化控制.  相似文献   

15.
使用SUMMA罐采集华东地区5类典型合成树脂企业有组织排口样品,通过气相色质联用技术(GC-MS)定量分析106种VOCs,计算了合成树脂行业排放量、排放系数和不确定性,分析了VOCs的排放特征和臭氧生成潜势,建立了5类合成树脂VOCs排放成分谱.结果表明:合成树脂企业VOCs排放量为346~3467kg/a,5类合成树脂排放系数为0.06~1.24g/kg,其中涂料树脂(CR)类企业排放量和排放系数均最大.芳香烃、含氧烃(OVOCs)和卤代烃是合成树脂行业VOCs排放基本组分,累计占比范围是73.2%~98.3%.涂料树脂、酚醛树脂(PF)、聚氨酯(PU)、共聚物树脂(ABS)和聚碳酸酯(PC)特征污染物分别为:甲基异丁基酮、苯、甲苯、苯乙烯和二氯甲烷.合成树脂企业臭氧生成潜势(OFP)为22.7~202.5mg/m3,源反应性(SR)为0.3~4.6g/g,CR类企业OFP和SR均最大.合成树脂行业SR处于各行业平均水平.芳香烃、OVOCs和烯炔烃是合成树脂行业的主要光化学活性组分,累计OFP贡献率为64.1%~100.0%,苯、甲苯、甲基异丁基酮、乙烯、苯乙烯是合成树脂行业关键活性物种.研究显示,合成树脂行业VOCs治理应管控芳香烃和OVOCs的排放,重视污染物恶臭问题和卤代烃溶剂的危害,减排VOCs排放量大、臭氧生成能力强的CR类企业.  相似文献   

16.
基于重型底盘测功机,利用质子转移反应质谱(PTR-MS)研究了柴油公交车在中国典型城市公交车循环(CCBC)下,不同CDPF贵金属负载量对尾气中挥发性有机物(VOCs)组分排放特性的影响.结果表明,柴油公交车VOCs主要组分为含氧有机物(OVOCs)、芳香烃和烯烃等,且OVOCs占比达50%以上;在贵金属成分、配比相同时,VOCs减排率随CDPF贵金属负载量增加而增加:贵金属负载量为15 g·ft~(-3)(A型后处理装置)、25 g·ft~(-3)(B型)和35 g·ft~(-3)(C型)时,VOCs总量的减排率依次为36.2%、40.1%和41.4%.C型后处理装置对烷烃全循环减排率高达70.2%,且对OVOCs的催化有微弱优势;对于不饱和烃类,3种不同贵金属负载量的后处理装置均有一定催化效果,但无明显差异;A型对含氮有机物减排率可达50.5%,但减排率随贵金属负载量增加而降低.采用DOC+CDPF后能较好地降低公交车VOCs排放量进而降低臭氧生成潜势(OFP).同时考虑不同方案减排效果与成本因素,当加权系数分别为0.8和0.2时,B型为最优方案.  相似文献   

17.
以工业密集的珠江三角洲地区为研究对象,通过建立2010~2017年主要工业源VOCs排放趋势清单和成分谱数据集,识别了VOCs总量排放趋势和组分结构变化特征,并探讨了典型工业行业VOCs排放结构与组分特征变化的原因.结果显示,2010~2013年珠三角主要工业源VOCs排放量从38万t上升至41万t,而后由于VOCs减排政策的落实持续下降,2017年降至32万t.VOCs组分以间对二甲苯、甲苯、乙苯等芳香烃、乙酸乙酯、丁酮等含氧VOCs和异丁烷等烷烃组分为主.水性涂料替代和末端治理设施等控制政策对工业源VOCs排放与组分结构均有一定程度的影响,排放结构上,金属表面涂装、家具制造、橡胶与塑料制品等行业排放贡献有所下降,组分结构上,芳香烃组分总体下降显著,而烷烃和OVOCs组分占比上升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号