首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
北京市交通扬尘PM2.5排放清单及空间分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为建立一种自下而上的交通扬尘PM2.5排放清单方法,对北京市不同区域、不同类型道路的路面积尘负荷进行了采样和实验室分析,对各类路网的道路车流量和车辆类型进行了调查和统计,建立了北京市道路交通扬尘PM2.5排放清单,并对其空间分布进行了分析. 结果表明:北京市城区快速路、主干道、次干道、支路和胡同的交通扬尘PM2.5排放因子分别为(0.05±0.03)(0.09±0.05)(0.11±0.05)(0.16±0.14)和(0.27±0.20)g/(km·辆),相应各类型道路的交通扬尘PM2.5排放强度分别为(7.21±4.66)(5.27±3.03)(3.34±1.49)(2.84±2.49)和(0.54±0.40)kg/(km·d);郊区高速路、国道、省道、县道、乡道和城市道路的交通扬尘PM2.5排放因子分别为(0.10±0.03)(0.50±0.33)(0.39±0.37)(0.41±0.41)和(0.65±0.31)(0.19±0.08)g/(km·辆),各类型道路交通扬尘的PM2.5排放强度分别为(3.82±1.31)(10.00±6.58)(3.93±3.74)(1.64±1.63)(0.65±0.31)和(0.74±0.32)kg/(km·d). 北京市道路交通扬尘PM2.5的年排放量为13 565 t,从空间分布上看,郊区交通扬尘PM2.5年排放量、单位道路长度排放量以及排放因子均高于市区,而城区单位行政区面积的交通扬尘PM2.5排放量高于远郊区县. 从交通扬尘PM2.5排放的空间分布特征看,在继续加强城区交通扬尘控制的同时,应采取措施控制远郊区县公路的扬尘排放. 自下而上的交通扬尘PM2.5排放清单提高了排放的时空分辨率,能够识别路网中高排放的区域和路段,为交通扬尘总量管理和减排目标考核提供了一种技术手段.   相似文献   

2.
民用燃煤大气污染物排放清单的建立方法及应用   总被引:6,自引:0,他引:6  
民用燃煤是大气污染的重要来源,虽然其消耗总量不大,但由于缺乏污染控制措施,多为直接排放,对周边大气环境造成较大的影响。因此建立民用燃煤大气污染物排放清单,识别民用燃煤大气污染时空分布规律,量化民用燃煤在不同污染天气等级下的排放贡献及作用,掌握民用燃煤污染排放特征,能够为环境管理部门提供决策依据和参考,因此具有重要的作用。根据民用燃煤污染排放特点,本文阐述了民用燃煤大气污染物排放清单建立方法,介绍了排放因子法中活动水平和排放因子两个重要因素的获取途径及数据质量控制和保证,排放清单的验证和评估,排放清单的应用等方面内容,为各地开展区域内民用燃煤大气污染物排放清单提供参考。  相似文献   

3.
长三角农田轮作系统氨排放特征、转化机制和减排潜力   总被引:3,自引:2,他引:1  
为评估长三角农田轮作系统氨排放特征和减排潜力,通过密闭室间歇通气法对典型农田轮作系统的氨排放水平进行同步对比观测,探讨不同条件下的氨排放影响因素和转化机制;通过整理近10年长三角地区农田氨排放实测系数,建立基于本地因子的长三角农田轮作系统氨排放时空分布清单,并获取了不同氨减排路径下的减排效果.结果 表明,常规稻麦轮作模...  相似文献   

4.
环境化学     
X1312(X户灯l3()l区域高时空分辨率VOC天然源排放清单的建立/胡泳涛…(北京大学环境科学中心环境模拟与污染控制国家重点联合实验室大气环境模拟分室)//环境科学/中科院生态环境研究中心一2阅1,22(6)一l二6环图X一5 将中尺度气象模式MMS应用于估算VOC天然源排放的研究,建立了高时空分辨率VOC天然源排放清单的估算方法。根据方法需要,确定了我国部分树木排放异戊二烯和枯烯的标准排放因子,各植被类型排放各种VOC的标准排放因子,以及各植被类型季节平均的叶生物量密度。应用该方法估算了华南地区满足区域空气质量数值模拟要求的高时空…  相似文献   

5.
区域高时空分辨率VOC天然源排放清单的建立   总被引:20,自引:9,他引:11  
将中尺度气象模式MM5应用于估算VOC天然源排放的研究,建立了高时空分辨率VOC天然源排放清单的估算方法.根据方法需要,确定了我国部分树木排放异戊二烯和萜烯的标准排放因子,各植被类型排放各种VOC的标准排放因子,以及各植被类型季节平均的叶生物量密度.应用该方法估算了华南地区满足区域空气质量数值模拟要求的高时空分辨率VOC天然源排放清单.结果表明,华南地区夏季典型日的VOC天然源排放总量约1.12×104t,VOC排放速率具有明显的时空分布,其中地理分布取决于植被类型及其分布,日变化规律则依赖于太阳辐射和温度的高低.并讨论了VOC天然源排放估算过程中误差的来源  相似文献   

6.
呼和浩特交通扬尘排放清单研究   总被引:4,自引:0,他引:4  
颗粒物污染是影响中国城市空气质量的首要因素,交通扬尘是城市大气颗粒物污染的主要来源之一,排放清单及排放特征研究是进行环境影响分析、控制措施成本效益分析、控制方案制定以及进行环境管理的基础。本文对呼和浩特城区典型道路路面尘负荷进行采样分析,现场调研不同类型道路车流量和车辆构成,应用AP-42排放因子计算典型道路交通扬尘排放因子,建立了基于G IS的排放清单数据库。结果显示:胡同的PM10排放因子最大,其次分别为环城路、支路、次干道和主干道;环城路的PM10排放强度最大,其次为主干道、次干道、支路和胡同;基准年2006年呼和浩特城区交通扬尘PM10排放量为22 715 t;从空间分布看,环城路以内网格排放源强较高,中心城区排放强度最大。  相似文献   

7.
2013~2017年江苏省人为源氨排放清单的建立及特征   总被引:2,自引:7,他引:2       下载免费PDF全文
根据江苏省各类氨排放源活动水平数据,采用合理的清单测算方法和排放因子,建立了2013~2017年江苏省人为源氨排放清单,对其历年来人为源氨排放量的变化趋势进行分析.利用Arc GIS软件对江苏省人为源氨排放量及排放强度的分布特征进行分析.结果表明,江苏省的氨排放量由2013年的624. 84 kt减少至2017年的562. 47 kt,年均下降率约为2. 6%.农业源一直是江苏省最主要的氨排放源,2017年时占江苏省氨排放总量的82. 4%;蛋鸡是畜禽养殖源中最大的氨排放源,占畜禽源氨排放量的49. 3%. 2017年江苏省氨平均排放强度为5. 3 t·km~(-2),其中盐城市和徐州市是江苏省人为源氨排放量和排放强度最大的两个城市,镇江市的氨排放量和排放强度最小.  相似文献   

8.
目前国内外关于道路扬尘排放的计算多采用美国环境保护局推荐的AP-42排放因子法,直接计算道路扬尘的年均排放总量,但其动态化程度不足,难以满足日益增长的精细化管理需求. 本研究采用车速-流量模型构建高时间分辨率的道路车流量获取方法. 以天津市为例,采用自下而上的方法,结合本地化的排放因子以及天津市采取的道路扬尘控制措施,借助GIS平台编制高时空分辨率的道路扬尘排放清单,精细反映天津市道路扬尘排放的时空分布特征. 结果表明:①时间尺度上,受早晚高峰的影响,城市道路在08:00—09:00与18:00—19:00扬尘排放强度较大,13:00—14:00是白天扬尘排放强度的低值时段. ②空间尺度上,夜间(03:00—04:00)道路扬尘排放强度的高值区域集中在高速路段,白天扬尘排放强度的低值时段(13:00—14:00)集中在城市道路中支路密集的地区,道路扬尘排放强度高峰时期(18:00—19:00)集中在各类型的城市道路. 全年道路扬尘排放高值区域集中在城市支路和郊区道路. ③天津市内六区全年道路扬尘PM2.5、PM10、TSP排放量分别为603、2 492和12 986 t,相较以往研究有所下降. 从区域看,道路扬尘排放总量呈偏远郊区>环城四区>市内六区的规律. 城市道路采取的洒水措施明显降低了道路扬尘排放总量. 研究显示,受交通扰动影响,道路扬尘排放呈现明显的时空分布差异.   相似文献   

9.
以华北地区典型农业县曲周县为研究对象,通过收集本地人为源活动水平数据和相关氨排放因子,利用排放因子法建立2002~2019年人为源氨排放清单,并且采用当地实测的农田氮肥施用氨排放因子和县域农户生产调研数据优化2019年氨排放清单.结果表明,曲周县氨排放总量呈现“双峰”模式,从2002年的6 682.9 t增加到2004年的7 195.0 t,随后下降到2008年的5 872.0 t; 2015年增加到7 010.5 t,随后逐步下降到2018年的5 636.3 t.畜禽养殖(61%~75%)和氮肥施用(14%~28%)是主要氨排放源. 2019年曲周县氨排放总量为6 559.7 t,其中氮肥施用和畜禽养殖分别贡献28%和61%.小麦为氨排放最高的作物,占种植业氨排放总量的40%;蛋鸡为氨排放量最大的畜禽,贡献率为畜禽养殖的40%.在空间分布上呈现南高北低的趋势,南里岳乡和白寨乡为主要排放热区,全县平均氨排放强度达到13.5 t·km-2.在县域尺度上重点开展小麦种植和蛋鸡养殖氨减排将有助于华北平原大气氨污染治理.  相似文献   

10.
道路交通扬尘排放因子测量系统研发及应用   总被引:3,自引:0,他引:3  
道路交通扬尘排放是城市大气环境颗粒物(PM_(10)和PM_(2.5))的主要来源之一,对其排放测量研究是进行排放清单建立、环境影响分析和制定控制方案的依据.本研究设计了一种道路交通扬尘排放因子测量系统,通过测量行驶中车辆尾羽不同位置的颗粒物浓度,应用浓度剖面积分的方法计算单车行驶过程中扬尘PM_(10)排放量.在北京市典型道路测量了小汽车和大客车在不同车速下的交通扬尘颗粒物排放因子,结果显示,车辆尾羽的颗粒物浓度特征呈明显的"层状"分布,距离路面越近浓度越高,在车辆行驶方向中心浓度最高,向两侧浓度逐渐降低,车速越快浓度越高.在试验车速范围内,排放因子与车速呈幂函数关系,幂指数为2.7~2.8.排放因子与积尘负荷呈幂函数关系,幂指数为0.85.不同路段或同一路段的不同区域排放因子空间变异性较大,应用排放因子测量系统进行实测的结果更加准确可靠.  相似文献   

11.
西宁市农牧源氨排放清单及其分布特征   总被引:1,自引:1,他引:0  
杨益  姬亚芹  高玉宗  林孜  林宇  马妍 《环境科学》2022,43(4):1844-1852
以西宁市为研究区域,通过实地调研获得西宁市农牧源活动水平数据,利用排放因子法编制了西宁市2018年农牧源氨排放清单.分析了西宁市农牧源氨排放特征,利用ArcGIS进行3 km×3 km的空间网格化分配,利用蒙特卡罗模拟对畜禽养殖和氮肥施用氨排放清单进行不确定性分析.结果表明,西宁市2018年农牧源氨排放总量为4 644...  相似文献   

12.
氨对于大气细颗粒物中二次无机盐的生成具有十分重要的作用,近年来引起了国内外学者的高度关注.相对准确地定量氨排放对于深入研究二次气溶胶的理化过程、实现较好的数值模拟性能,以及开展氨排放精细化管控具有极为重要的科学意义和现实意义.已有研究表明,农业源是大气氨的主要排放源,其中,畜禽养殖业的氨排放占比最大.已有针对畜禽养殖业氨排放的研究大多采用排放系数法建立氨排放清单,然而,不同参数的选取会对研究结果造成较大差异.本文从活动水平和排放系数选取上做出了多种假设,构建了8种情景,以2017年为基准年,分别计算了长三角地区畜禽养殖业大气氨排放.结果表明,选取不同的活动水平对清单估算结果的影响最大,选取出栏量计算的结果较选取存栏量高出27.6%~34.1%.选取更细致的月均温的计算结果高出以年均温结果0.3~0.4万t.此外,清单的时空分布特征也与该两项参数密切相关,以存栏量进行估算的结果中,舟山地区排放强度最低,淮南市最高;以出栏量进行估算的结果中,丽水排放强度最低,南京最高.以月均温度估算情景中将获得更准确的月排放廓线,全年中5~9月排放量最高,冬季(12、 1和2月)排放量最小.  相似文献   

13.
通过调研分析苏州大市范围内的农业、工业、生活及交通等相关活动水平数据,采用排放因子法建立了2013年苏州市人为源氨排放清单. 结果表明:2013年苏州市人为源氨排放总量为22 020.18 t,排放强度为3.06 t/km2;畜禽养殖、工业源、氮肥施用是苏州市氨排放的主要来源,排放量分别为8 080.99、7 103.50、4 841.23 t,共占氨排放总量的90.94%. 其中,工业源的氨排放分担率为32.25%,高于全国平均值,火电行业和化肥制造行业的氨排放占工业源排放总量的90.14%,烟气脱硝过程的氨逃逸值得关注;在畜禽源中,肉鸡和生猪是最大的氨排放源,二者排放量分别占畜禽养殖氨排放总量的42.59%和37.14%. 太仓、张家港、常熟依次为苏州市氨排放量和排放强度最大的3个地区,共占氨排放总量的69.02%,苏州市区氨排放量位列第四但排放强度最低. 空间分布特征表明,苏州市东北部氨排放较集中,中部排放量较小,周边地区特别是沿江县级市的排放量较大. 研究显示,氨排放清单的建立可为苏州市氨排放控制提供基础数据.   相似文献   

14.
大气污染物排放清单是大气污染预报预警的重要基础,也是制定污染防治政策的根本依据,建立完善、精准的动态源清单已经成为空气质量管理决策的首要环节。本文综述了我国近年来在排放清单技术方面的进展,包括排放参数库本地化、排放清单编制方法、时空和物种分配技术等方面所取得的进步。在此基础上,结合我国当前大气复合污染防治需求,提出了目前大气污染物排放清单编制面临的挑战,并对排放清单的编制技术的未来发展进行了展望。  相似文献   

15.
四川省2012年人为源氨排放清单及分布特征   总被引:10,自引:1,他引:9  
根据收集到的各类人为氨源的活动水平数据,采用合理的估算方法和排放因子,建立了四川省2012年人为源氨排放清单,并分析了氨排放的空间分布特征.结果表明:四川省2012年人为源氨排放总量为994.8×103t,排放强度为2.12 t·km-2;畜禽养殖为最主要的排放源,分担率达62.31%,其次为氮肥施用,分担率为23.14%;生猪和牛是畜禽养殖中主要贡献者,共占畜禽排放总量的64%;成都市和达州市为氨排放量较大的城市,均占四川省排放总量的10%;空间分布特征显示排放量较大的网格主要集中在四川省东部,且多来自于城市周边区县.  相似文献   

16.
广东省人为源BC、OC排放清单建立与校验   总被引:4,自引:0,他引:4       下载免费PDF全文
根据收集的人为源活动水平数据和最新的排放因子,采用"自下而上"和"自上而下"相结合的排放因子法建立了广东省2012年人为源BC、OC排放清单.结果显示,2012年广东省人为源BC、OC排放量分别为53.5×103、78.8×103t.BC排放主要来自道路移动源和生物质燃烧源,贡献率分别为30.1%和29.4%,生物质燃烧源和餐饮源是主要的OC排放贡献源,贡献率分别为48.5%和16.9%.建立的BC、OC排放源清单仍然具有较大的不确定性,分别为-66%~154%和-63%~126%.其中,道路移动源和生物质燃烧源是主要的不确定贡献源,餐饮源和扬尘源次之,不确定性主要来自由质量分数间接得到的BC和OC排放因子.最后,采用清单结果横向比较法和基于环境监测浓度结果对比法2种方法对本研究的结果进行了校验,结果表明,本研究清单结果基本合理.建议统一不同排放源成分谱的建立方法,加强排放源颗粒物测试,并重视清单结果校验的研究以降低不确定性,从而改进BC、OC排放源清单.  相似文献   

17.
通过实地调研等方式获取农牧业源的活动水平,采用NARSES模型确定氮肥施用排放因子,其它排放因子通过文献调研确定,建立了2016年兰州市农牧业源氨排放清单,并进一步分析了农牧业源氨排放的时空分布特征。2016年兰州市农牧业源大气氨排放量为9356.90t;其中畜禽养殖源氨排放量7584.03t,分担率81.05%;永登县是氨排放量最大的区县,氨排放量为2820.59t,分担率为30.14%。在兰州市各区县氨排放量分担率中,畜牧业源氨排放的分担率在65.83%~97.38%之间;氮肥施用源的分担率在2.27%~28.66%之间。从空间分布来看,兰州市农牧业源氨排放主要集中在皋兰县西北部与中部、红古区东南部、七里河区东西两部与榆中县东部。从时间分布来看,畜牧业源氨排放主要集中在4~9月,氮肥施用源的氨排放主要集中在3~7月和9月,其它月份排放量相对较小。  相似文献   

18.
基于大数据分析的杭州市农业源高分辨率氨排放清单研究   总被引:1,自引:0,他引:1  
基于实地调查并辅以统计的方法获得大数据,采用排放因子法,估算了杭州市2015年农业源氨排放清单,并选取经纬度坐标、土地类型和人口等数据作为权重因子,建立1 km×1 km高精度网格化空间分布,研究了该地区农业排放源氨排放空间分布特征.结果表明:杭州市2015年农业源NH3排放总量为54787.9 t,其中畜禽养殖和农田种植是最主要的氨排放来源,分别占农业源总排放量的86.7%和12.8%.在畜禽养殖各主要环节的氨排放过程中,圈舍固态粪便的氨排放贡献量最大,占总氨排放量的52.8%;其次是存储固态,占总氨排放量的35.1%.氮肥施用主要集中在萧山区、建德市、临安市和余杭区.秸秆堆肥和秸秆焚烧与秸秆综合利用率高低密切相关,两者氨排放量占有率不高,占杭州市农业源氨排放总量的1%以下.  相似文献   

19.
成都市大气污染物排放清单高分辨率的时空分配   总被引:6,自引:3,他引:3       下载免费PDF全文
传统的污染物时空分配方法由于分辨率较低而常无法满足空气质量模拟的需要.本研究根据各污染源的排放特点,确定可用于高分辨率时空分配的识别因子和建立时空分配权重的估算方法,并以成都市为例,建立了2012年成都地区高分辨率时空分配清单.结果表明,根据清单的时空分配结果,成都市的污染物排放主要集中在成都市区、成都周边的工业区(特别是东部城区)及交通流量大的高速路地区,且排放时间大部分集中在冬季和春季.这与实际的污染排放来源及环境空气质量的实际监测结果较为一致.说明本研究提出的高分辨时空分配方法较为合理可靠,可以有效降低传统方法空间分配的偏差和提高分配结果的精度,可满足后续的空气质量模拟的需要.  相似文献   

20.
APEC会议期间北京市交通扬尘控制效果研究   总被引:8,自引:3,他引:5       下载免费PDF全文
为了评估APEC会议期间严格的交通扬尘控制措施的效果,选取北京地区不同类型道路,在会议之前和会议期间分别采集40个道路积尘负荷样品,并调研了道路车流量及车型比例等机动车活动水平变化.采用AP-42方法计算不同类型道路PM10排放因子和排放强度,基于Arc GIS平台应用自下而上的方法建立了排放清单,分析交通扬尘PM10排放的空间分布特征,评估APEC会议期间北京市道路交通扬尘控制效果.结果表明:APEC会议期间北京市日均车流量减少12%,快速路、主干道、次干道、支路、郊区道路的积尘负荷分别下降31%、58%、73%、54%和46%,PM10排放因子分别下降63%、67%、86%、63%和40%,排放强度分别下降73%、71%、87%、78%和49%.在空间分布上,城区道路交通扬尘PM10排放量减少77%,郊区道路减少49%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号