首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
道路扬尘是城市大气颗粒的主要来源之一,扬尘中含有的重金属、碳质组分和水溶性离子会危害人体健康 . 为研究西安市道路扬尘的排放量及颗粒物的化学组分,在西安市环路、主干路、次干路和支路设监测点,采集了 141个道路积尘样品,估算了不同类型道路的积尘负荷 . 采用 AP-42 模型估算了不同类型道路的扬尘排放因子,建立了 2018 年西安市道路扬尘 PM2.5和 PM10的排放清单,分析了道路扬尘颗粒物的化学组分 . 基于西安市路网分布、GIS信息和车流量对道路扬尘 PM2.5和 PM10的排放量进行了空间分配 . 结果表明,西安市机动车道、非机动车道和人行道的积尘负荷分别为(0.88±0.83)、(2.62±2.23)和(1.41±1.42)g·m-2. 按道路长度加权平均的扬尘中 PM2.5和 PM10的排放因子分别为 0.22和0.93 g·km-1·veh-1. 2018 年西安市道路扬尘...  相似文献   

2.
为研究轻型汽油车尾气PM2.5的排放特征,利用整车测试台架和颗粒物稀释采样系统,对12辆轻型汽油车尾气的PM2.5进行了采集,并进一步分析了PM2.5排放因子及其碳质组分——OC(有机碳)和EC(元素碳)的排放特征;在此基础上,参考文献研究结果,计算了我国轻型汽油车分阶段PM2.5排放因子,结合活动水平数据估算轻型汽油车PM2.5排放量.结果表明:测试的国Ⅰ前~国Ⅳ轻型汽油车PM2.5平均排放因子分别为(73.2±3.8)(50.5±45.4)(34.7±18.4)(22.6±10.3)和(1.0±0.2)mg/km,随排放阶段升级而显著降低.OC是轻型汽油车尾气PM2.5中的主要碳质组分,在TC(总碳)中所占比例超过90%. 2012年我国轻型汽油车PM2.5排放量为21 828.7 t,占机动车颗粒物排放总量的3.5%,其中仅占轻型汽油车保有量17%的国Ⅰ及以前车辆排放了约43%的PM2.5. 研究显示,轻型汽油车尤其是国Ⅰ及国Ⅰ前车辆颗粒物排放不容忽视,在机动车颗粒物减排工作中应给予足够重视.   相似文献   

3.
颗粒物是影响西安市环境空气质量的主要因子.结合《西安统计年鉴2015》《2014年环境统计数据》和现场调查等确定了西安市各类PM2.5排放源的活动水平数据,采用物料衡算法和排放因子法测算了西安市2014年大气中PM2.5的年排放总量,并从行业和区域角度详细分析了PM2.5的排放贡献率.在此基础上,以2014年为基准年,依据西安市地方政策和各行业最新排放标准,对PM2.5的减排潜力进行了预测.结果表明:2014年西安市人为源一次PM2.5排放总量为33 660.1 t,其中,固定燃烧源、工艺过程源、移动源、生物质燃烧源、扬尘源和餐饮源的贡献率分别为27.6%、23.5%、6.8%、10.7%、31.1%和0.3%.道路扬尘、窑炉和发电为西安市PM2.5的重点排放行业,其PM2.5排放量分别占排放总量的21.4%、20.3%和11.0%.各区县中,鄠邑区、灞桥区和未央区的PM2.5排放量较高,其贡献率分别为15.7%、13.7%和12.7%;新城区PM2.5排放量最小,为297.8 t/a.2014年西安市PM2.5平均排放强度为2.07 t/km2,其中,碑林区排放强度(16.80 t/km2)最大,高陵区(0.48 t/km2)最小.按照《西安市2017年"铁腕治霾保卫蓝天"工作实施方案》等新政策的规定,预测在新的排放标准下西安市PM2.5排放量将比2014年削减63.7%.研究显示,固定燃烧源、工艺过程源和生物质燃烧源有较大的减排潜力.   相似文献   

4.
东北地区农业源一次颗粒物排放清单研究   总被引:3,自引:0,他引:3  
采用自下而上的清单编制方法,搜集各农业环节(秸秆燃烧、整地、收割、谷物处理、化肥施用、农机排放、风蚀)排放因子、作物面积和耕作方式等信息,编制了2010年东北地区县级尺度的农业一次颗粒物(PM10和PM2.5)排放清单,并分析了农业源颗粒物排放的时空分布特征.结果表明:1)2010年东北地区农业源一次颗粒物PM10总排放量54.6万t,PM2.5总排放量35.6万t;2)东北地区农业源一次颗粒物PM10排放量最大的农业活动环节是秸秆燃烧,占农业源总排放量的比例为60%,秸秆燃烧排放PM2.5占PM2.5农业源排放量的87%,整地环节是一次颗粒物排放的第2大农业排放源,对农业源排放PM10和PM2.5总量的贡献率分别是27%和6%; 3)PM10和PM2.5的排放强度空间分布表明,东北地区农业源颗粒物排放区域集中在黑龙江省东北部和中部地区,吉林省中部和辽宁省中部地区; 4)PM10和PM2.5排放的时间变化特征显示,PM10农业源排放年变化曲线中,5月份和9、10月份是农业源排放一次颗粒物PM10较多的月份,PM2.5排放集中在9、10月份;5)本研究估算的污染物排放清单的不确定性为184.3%.未来的工作将侧重于典型农业区本土排放因子测定,从而有效减小排放清单的不确定性.  相似文献   

5.
北京市平原区裸露地风蚀扬尘排放量   总被引:1,自引:0,他引:1  
以北京市平原区为研究对象,基于美国国家航空航天局(NASA)的陆地卫星(Landsat系列)遥感资料,设计算法批量提取裸露地信息,并结合通用扬尘排放模型,计算估计北京市平原区的裸露地风蚀扬尘源中PM10、PM2.5的排放系数及年排放量,建立了北京市各区的裸露地风蚀扬尘排放清单.研究表明,1987~2016年间北京市平原区裸露地面积减小了约600km2;风蚀扬尘最严重的地区为大兴区,其次为通州区;以气候年均值为参数计算获得,2016年北京平原区裸露地由于风蚀扬尘效应产生的PM10年排放量为7591.7t,这一排放量与前人研究估算的北京裸地风蚀扬尘PM10排放量较为接近.在此基础上,进一步引入月和季度尺度气候参数,并对模型进行改进,探讨了逐月和季度累计的扬尘排放结果.进一步的研究表明:北京市平原区裸露地面积具有显著季节变化特征,2月裸露地面积最大,可达4500km2,8月最小为500km2;基于月气候参数和季度气候参数结合每月卫星资料反演获得的裸地面积估算,逐月累计的PM10年排放量可达55175t,分季度累计PM10年排放量为39294t.这说明当前常采用的裸地扬尘估算方法,由于扬尘排放模型的气候参数采用年均值,忽视了风蚀过程的季节差异,将会导致裸地风蚀扬尘的极大低估.  相似文献   

6.
沈嵩  刘蕾  温维  邢奕  苏伟  孙嘉祺 《环境工程》2022,40(2):71-80
为研究《打赢蓝天保卫战三年行动计划》等政策实施后北京及其周边区域夏季环境PM2.5含碳组分特征及来源,2019年7月分别在北京城区与河北郊区的2个站点同步连续采集大气PM2.5样品,利用热光碳分析仪分别测定了有机碳(OC)和元素碳(EC)及其组分的质量浓度;通过最小OC/EC比值法、最小相关系数法估算了二次有机碳(SOC)浓度;利用主成分分析、后向轨迹分析等方法探究了含碳气溶胶的来源。结果表明:夏季北京城区PM2.5中ρ(OC)和ρ(EC)平均分别为(6.34±0.64),(1.96±0.29)μg/m3,分别占ρ(PM2.5)的18.65%和5.78%;河北郊区PM2.5中ρ(OC)与ρ(EC)平均分别为(6.29±0.79),(3.54±0.63)μg/m3,分别占ρ(PM2.5)的17.69%和9.53%。2种方法估算出北京城区的ρ(SOC)分别为(3.35±0.59),3.98μg/m3,分别占ρ(OC)的(51.77±6.97)%和68.48%;河北郊区的ρ(SOC)分别为(3.28±0.69),4.17μg/m3,分别占ρ(OC)的(62.42±9.62)%和68.32%。此外,夏季北京城区与河北郊区均存在较为严重的二次污染;北京城区含碳组分主要污染源是混合机动车排放、道路扬尘及燃烧源;而工业燃煤排放、机动车尾气及扬尘是河北郊区含碳组分的主要污染源。后向轨迹分析发现,夏季气团轨迹主要来自东南、西南及偏南方向,且对北京城区与河北郊区2个区域PM2.5中碳组分的影响较大。  相似文献   

7.
基于唐山市机动车定期环保检测数据获取不同类型车辆的本地年均行驶里程,建立城区内典型车辆的"里程-注册年"特征曲线.采用车载排放测试法获取唐山市典型国Ⅵ阶段轻重型汽车实际道路排放因子.利用COPERT模型进行机动车排放因子本地化修正,建立涵盖不同排放阶段和燃料动力类型的唐山市机动车排放清单,结合唐山市路网信息,建立基于ArcGIS的3km×3km高时空分辨率网格化排放清单,并分析了国三及以下中重型柴油车(简称高排放车)不同淘汰与DPF排放治理比例情景下机动车减排与投入成本效益.研究表明,2020年机动车CO,HC,NOx,PM2.5,PM10年排放量分别为92403.51,10034.53,70568.35,2036.51,2160.65t,其中:NOx,PM2.5和PM10排放主要来源于柴油车,分担率分别为92%,89%和89%;CO和HC排放主要来自汽油车,分担率分别为71%和73%.唐山市实施二环内国Ⅳ及以下柴油货车限行区政策后,二环内CO和HC年排放量削减率分别为22.41%和21.68%;而NOx,PM10和PM2.5污染物排放强度显著降低,年排放量削减率分别为78.60%,84.85%和84.79%.在高排放车淘汰与治理情景下,随着高排放车淘汰比例的增长,投入成本和NOx年均减排量呈线性上升趋势,且NOx减排效果更加显著,而PM减排辆略呈下降趋势.高排放车淘汰率每增长10%,NOx年均减排量增加892.41t,PM年均减排量减少7.56t,年投入成本增加1.13亿元.  相似文献   

8.
基于全面开展大气污染源排放清单编制工作的要求,研究制定了天津市港口自有移动源排放清单.对道路和非道路移动源各源类6种大气污染物建立了分辨率为3 km×3 km的网格化排放清单,并分析其污染物排放时空分布特征,利用蒙特卡罗方法分析了清单的不确定性.结果表明,2020年港口自有移动源共排放PM10 148.22 t、 PM2.5 135.34 t、 SO2 1 061.04 t、 NOx 4 027.16 t、 CO 756.60 t和VOCs 237.07 t,其中道路和非道路移动源污染物总排放量占移动源排放量的比例分别为6.66%和93.34%.全港区自有道路移动源机动车污染物排放的主要贡献源是小型、中型、大型载客汽车(汽油)和重型载货汽车(柴油),非道路移动源排放的各污染物的主要贡献源均是船舶和工程机械.不确定性分析结果表明,移动源总体不确定性范围为-13.3%~16.53%.  相似文献   

9.
为准确掌握贵州省生物质燃烧源大气污染物的排放状况,基于收集资料和实地调查结合的方式获取活动水平,引用文献和本地实测数据结合的方式选取排放系数,采用排放系数法结合GIS技术,建立了贵州省2019年3 km×3 km生物质燃烧源9种大气污染物排放清单.结果表明:(1)全省生物质燃烧源CO、 NOx、 SO2、 NH3、 VOCs、 PM2.5、 PM10、 BC和OC的排放量分别为:293 505.53、 14 781.19、 4 146.11、 8 501.07、 45 025.70、 39 463.58、 41 879.31、 6 832.33和15 134.74 t.户用生物质炉具CO、 SO2、 NH3和BC的排放量贡献率最大,秸秆露天焚烧NOx、 VOCs、 PM2.5、 PM10和OC的排放量贡献率最大.(2)各市(州)生物质燃烧源排放的大气污染物分布不均衡,主...  相似文献   

10.
为探究长时间跨度的道路积尘变化特征,于2019~2020年对北京市大兴区内主要道路进行尘负荷检测,并于2020年四季收集道路PM10和PM2.5积尘样品,分析化学组分,建立成分谱.结果表明,2019年和2020年大兴区道路尘负荷年均值分别为1.05g/m2和0.74g/m2,2020年大兴区道路尘负荷较2019年下降29.5%.2019年道路尘负荷热点聚集区分散,大兴区内道路尘负荷高值区较多,2020年热点区集中出现在西北部,冷点区集中在东部区域.2020年大兴区道路扬尘排放因子低于2019年,大部分乡镇/街道中,2020年的扬尘排放因子和排放量低于2019年,呈现出东南部 > 中部 > 西北部的趋势.2020年大兴区道路扬尘排放量低于2019年,大兴区南部和西北部乡镇/街道内的扬尘排放量大于中部.受建筑施工活动影响.2020年大兴区道路PM10和PM2.5积尘化学组分中以土壤风沙和建筑施工活动相关的元素为主,Ca、Mg、Si、Al元素分别共占比39.39%和41.71%.对大兴区道路尘负荷进行针对性管控,首先需要对运输车辆进行及时冲洗,降低轮胎的尘土夹带量.其次应加强工地出口至附近1km的道路清扫保洁频次,将工地出口处道路尘负荷对周边道路的辐射影响降低.  相似文献   

11.
APEC会议期间北京市交通扬尘控制效果研究   总被引:8,自引:3,他引:5       下载免费PDF全文
为了评估APEC会议期间严格的交通扬尘控制措施的效果,选取北京地区不同类型道路,在会议之前和会议期间分别采集40个道路积尘负荷样品,并调研了道路车流量及车型比例等机动车活动水平变化.采用AP-42方法计算不同类型道路PM10排放因子和排放强度,基于Arc GIS平台应用自下而上的方法建立了排放清单,分析交通扬尘PM10排放的空间分布特征,评估APEC会议期间北京市道路交通扬尘控制效果.结果表明:APEC会议期间北京市日均车流量减少12%,快速路、主干道、次干道、支路、郊区道路的积尘负荷分别下降31%、58%、73%、54%和46%,PM10排放因子分别下降63%、67%、86%、63%和40%,排放强度分别下降73%、71%、87%、78%和49%.在空间分布上,城区道路交通扬尘PM10排放量减少77%,郊区道路减少49%.  相似文献   

12.
道路交通扬尘排放因子测量系统研发及应用   总被引:3,自引:0,他引:3  
道路交通扬尘排放是城市大气环境颗粒物(PM_(10)和PM_(2.5))的主要来源之一,对其排放测量研究是进行排放清单建立、环境影响分析和制定控制方案的依据.本研究设计了一种道路交通扬尘排放因子测量系统,通过测量行驶中车辆尾羽不同位置的颗粒物浓度,应用浓度剖面积分的方法计算单车行驶过程中扬尘PM_(10)排放量.在北京市典型道路测量了小汽车和大客车在不同车速下的交通扬尘颗粒物排放因子,结果显示,车辆尾羽的颗粒物浓度特征呈明显的"层状"分布,距离路面越近浓度越高,在车辆行驶方向中心浓度最高,向两侧浓度逐渐降低,车速越快浓度越高.在试验车速范围内,排放因子与车速呈幂函数关系,幂指数为2.7~2.8.排放因子与积尘负荷呈幂函数关系,幂指数为0.85.不同路段或同一路段的不同区域排放因子空间变异性较大,应用排放因子测量系统进行实测的结果更加准确可靠.  相似文献   

13.
基于车载移动监测系统,对丰台区各类型道路、不同季节典型道路的积尘负荷特征进行分析.探讨不同环线区域内的道路车流量、积尘负荷、扬尘排放量的变化规律及原因,并运用ArcGIS软件得到道路扬尘积尘负荷和排放量的空间分布图.结果表明,各类型道路的积尘负荷均值和道路扬尘排放因子的大小顺序都为支路 > 次干道 > 主干道 > 快速路.车流量对道路扬尘积尘负荷和排放强度的影响呈反向关系.PM2.5、PM10和TSP的年排放量分别为1824、7539、39274 t·a-1.从PM2.5的年排放空间分布上来说,三环内网格排放量较大,其次是三环至四环,六环外的单位面积道路扬尘排放量最小.不同环线区域内的单位面积车流量和排放量大小顺序为三环内 > 三环至四环 > 四环至五环 > 五环至六环 > 六环外.而三环内、三环至四环、四环至五环、五环至六环、六环外的年均积尘负荷分别为0.67、0.73、0.76、0.80、0.79 g·m-2.  相似文献   

14.
目前国内外关于道路扬尘排放的计算多采用美国环境保护局推荐的AP-42排放因子法,直接计算道路扬尘的年均排放总量,但其动态化程度不足,难以满足日益增长的精细化管理需求. 本研究采用车速-流量模型构建高时间分辨率的道路车流量获取方法. 以天津市为例,采用自下而上的方法,结合本地化的排放因子以及天津市采取的道路扬尘控制措施,借助GIS平台编制高时空分辨率的道路扬尘排放清单,精细反映天津市道路扬尘排放的时空分布特征. 结果表明:①时间尺度上,受早晚高峰的影响,城市道路在08:00—09:00与18:00—19:00扬尘排放强度较大,13:00—14:00是白天扬尘排放强度的低值时段. ②空间尺度上,夜间(03:00—04:00)道路扬尘排放强度的高值区域集中在高速路段,白天扬尘排放强度的低值时段(13:00—14:00)集中在城市道路中支路密集的地区,道路扬尘排放强度高峰时期(18:00—19:00)集中在各类型的城市道路. 全年道路扬尘排放高值区域集中在城市支路和郊区道路. ③天津市内六区全年道路扬尘PM2.5、PM10、TSP排放量分别为603、2 492和12 986 t,相较以往研究有所下降. 从区域看,道路扬尘排放总量呈偏远郊区>环城四区>市内六区的规律. 城市道路采取的洒水措施明显降低了道路扬尘排放总量. 研究显示,受交通扰动影响,道路扬尘排放呈现明显的时空分布差异.   相似文献   

15.
大气PM2.5是当前我国城市和区域面临的最突出的大气污染问题,然而PM2.5及其关键组分污染的来源不清,严重制约了人们对PM2.5 的科学认知和污染防控的步伐.本研究以2013年1月中国东部地区一次典型重污染过程为研究案例,利用CAMx三维模型中耦合了物种示踪机制的颗粒物来源追踪方法,探讨和揭示了中国东部地区代表性城市上海及周边地区共4个源区(上海、苏南、浙北、大区域)、8类污染源(包括燃烧源、生产工艺过程、流动源、生活面源、挥发源、扬尘源、农业源、天然源)对上海城区大气中PM2.5及其关键组分包括水溶性无机离子(SO2-4、NO-3、NH+4)、元素碳(EC)和有机碳(OC)的污染贡献.研究结果表明,2013年1月份中国东部出现严重灰霾污染期间,上海城区PM2.5的主要区域贡献为上海本地污染源排放累积(PM2.5浓度贡献平均为55.4%±22.3%)和长距离输送(38.4%±20.0%).上海地区8类主要排放源中,扬尘源贡献均值最大,达到30.7%±31.8%,其次为燃烧源18.2%±15.6%、流动源18.6%±17.5%、挥发类源16.9%±18.0%.对上海市PM2.5组分的源解析研究发现,燃烧源对细颗粒物中硫酸盐和硝酸盐的浓度贡献最大,其浓度贡献分别达到56.2%和55.9%.铵盐中72.4%来源于挥发类源贡献,元素碳约78.3%来自于交通源贡献.挥发类源排放和流动源是主要的有机气溶胶贡献源,浓度贡献分别为36.2%和32.5%.  相似文献   

16.
四川省人为源大气污染物排放清单及特征   总被引:16,自引:14,他引:2  
在收集四川省各城市人为污染源活动水平数据基础上,基于自下而上和自上而下结合的清单构建方法,选取排放因子并结合GIS技术,建立了该地区2015年1 km×1 km人为源大气污染物排放清单.结果表明,2015年四川省人为源SO_2、NO_x、CO、PM_(10)、PM_(2.5)、BC、OC、VOCs和NH_3排放量分别为444.9×10~3、820.0×10~3、3 773.1×10~3、1 371.6×10~3、537.5×10~3、28.7×10~3、53.1×10~3、923.6×10~3和988.0×10~3t.电厂和工业锅炉等燃煤排放贡献了95%以上的SO_2,移动源、化石燃料燃烧源和工艺过程源分别贡献了54%、23%和20%的NO_x,以钢铁和建材制造为主的工艺过程源分别贡献了20%的PM_(10)和34%的PM_(2.5),以道路扬尘为主的扬尘源分别贡献了60%的PM_(10)和35%的PM_(2.5),生物质燃烧分别贡献了33%的BC和51%的OC,以机械加工、建筑装饰、电子设备制造、印刷和家具等行业为主的溶剂使用源贡献了46%的VOCs,NH_3主要来自畜禽养殖和氮肥施用等农业部门排放,分别占总排放量的70%和25%.污染物空间分布结果显示,四川省各项大气污染物主要集中分布于人口最为密集,农业和工业均较为发达的四川盆地和攀枝花部分区域,其中,以成都、德阳和绵阳为代表的成都平原城市群为四川盆地内的主要排放高值区域.所建立的排放清单存在一定不确定性,后续研究中应针对活动水平数据获取的不足开展数据收集工作,加强排放贡献较大典型污染源的排放因子本地化研究工作,逐步完善四川省大气污染物排放清单,为四川省复合型大气污染研究和防治提供科学支撑.  相似文献   

17.
基于积尘负荷的西安市铺装道路扬尘排放研究   总被引:1,自引:0,他引:1  
近年来城市颗粒物污染问题日渐突出,严重影响着人们的环境幸福指数和对美好环境的期待.道路扬尘作为城市扬尘的重要组成部分,对颗粒物污染的贡献不容小觑.在此背景下,采用积尘负荷法采集西安市快速路、主干道、次干道、支路等4种类型25条道路的道路扬尘样品,并分析采样速率、采样次数等因素对采样效率的影响.在此基础上,计算得到西安市各类型道路的平均积尘负荷,结合车流量、车重、道路长度,通过《扬尘源颗粒物排放清单技术指南》中的公式计算得到各种类型道路TSP、PM10、PM2.5的排放系数及排放量.结果显示:采样速率为1.0 m2·min-1,采样次数为两次可满足采样要求.不同类型道路积尘顺序为:支路(4.18 g·m-2)>次干道(2.80 g·m-2)>快速路(1.49 g·m-2)>主干路(1.34 g·m-2);道路积尘TSP、PM10、PM2.5的平均排放系数分别为6.066、1.542和0.447 g·km-1.快速路和主干路的扬尘排放系数较小,支路的扬尘排放系数次之,次干路的扬尘排放系数较大.采用Monte Carlo方法对TSP、PM10和PM2.5的排放量进行不确定性分析,在95%的概率分布范围下,三者定量不确定性均为-16.88%~17.96%.  相似文献   

18.
为研究云南城市道路扬尘PM2.5中重金属含量、来源和其健康风险,分别在昆明、保山、文山、昭通和玉溪这5个典型城市区域采集道路扬尘样品,使用颗粒物再悬浮技术将尘样悬浮并采集PM2.5,利用ICP-MS检测PM2.5中铬(Cr)、锰(Mn)、镍(Ni)、铜(Cu)、锌(Zn)、砷(As)、镉(Cd)和铅(Pb)等8种重金属.结果表明,5城市道路扬尘Cr、 Ni、 Cu、 Zn和Pb含量均严重超过云南土壤背景值;富集因子表明,云南5城市道路扬尘PM2.5中重金属多数表现为中度富集和强烈富集,受人为活动影响较大.相关性分析和主成分分析结果表明,云南省不同类型城市道路扬尘PM2.5中重金属均受土壤源和交通源影响;其余来源差异性较大:昆明受钢铁冶炼源影响、保山和玉溪受有色金属冶炼源影响、昭通受燃煤源影响.健康风险分析表明:昆明、玉溪和昭通的道路扬尘PM2.5中Cr、 Pb和As存在儿童非致癌风险,昆明市的Cr还存在终身致癌风险.  相似文献   

19.
承德市大气污染源排放清单及典型行业对PM2.5的影响   总被引:3,自引:1,他引:2  
陈国磊  周颖  程水源  杨孝文  王晓琦 《环境科学》2016,37(11):4069-4079
以承德市为研究对象,基于拉网式实地调查,获得了该地区2013年各类典型行业污染源详细的活动水平数据,以大气污染物排放清单编制指南为参考,辅以排放因子研究的系统梳理,建立了2013年承德市各行业区县分辨率大气污染源排放清单,并结合人口、路网、土地利用等数据进行了1 km×1 km网格分配.在此基础上建立气象-空气质量模型系统(WRFCAMx),应用颗粒物来源识别技术(PSAT),选取2013年典型季节代表月1、4、7、10月,针对承德市电力、建材、冶金等典型行业对PM_(2.5)的影响进行了定量评估.结果表明,2013年承德市SO_2、NO_x、TSP、PM_(10)、PM_(2.5)、CO、VOCs、NH_3的总排放量分别为81 134、72 556、368 750、119 974、51 152、1 281 371、170 642、81 742 t.工业源是SO_2、NO_x、CO、VOCs的主要排放源,分别占总排放量的89.5%、51.9%、82.5%和45.6%,NO_x的主要排放源还包括道路移动源和非道路移动源,分别占总排放量的26.7%和10.8%;TSP、PM_(10)、PM_(2.5)的主要排放源是无组织扬尘,分别占总排放量的76.7%、65.6%、46.5%;畜禽养殖、化肥施用是NH_3的主要排放源,分别占总排放量的67.1%、15.8%.数值模拟结果表明,无组织扬尘、其他行业、冶金、锅炉行业对环境PM_(2.5)影响较大,浓度贡献分别为23.1%、20.6%、13.3%和11.2%,制定具体控制措施时应得到重点关注.  相似文献   

20.
北京铺装道路交通扬尘排放规律研究   总被引:25,自引:7,他引:18  
樊守彬  田刚  李钢  邵霞 《环境科学》2007,28(10):2396-2399
根据对北京82条城区道路和56条郊区铺装道路路面尘负荷的监测,依据AP-42交通扬尘排放因子模型,针对道路类型、车流量、道路位置等研究了北京交通扬尘的排放规律,分析了2种确定路面尘负荷的方法.结果表明,北京城区快速路、主干道、次干道和支路路面尘负荷分别为:0.17、0.34、1.48和2.60 g/m2,北京郊区国道、省道、县道、乡级路和县城内城市道路路面尘负荷分别为:0.18、0.56、1.58、3.10和1.58 g/m2;根据路面尘负荷与车流量及道路类型的相关性分析,在城区利用尘负荷与车流量的关系式对尘负荷进行赋值相关性较好,在郊区利用不同类型道路尘负荷平均值对道路尘负荷进行赋值相关性较好;路面尘负荷及排放因子随着车流量的增大而降低,而交通扬尘PM10排放强度随车流量的增大而增强;城区主干道交通扬尘排放PM10强度最大为130.2 kg/(km·d),郊区国道交通扬尘PM10排放强度最大为43.8 kg/(km·d).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号