首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
通过收集1995~2015年中国大陆31个省级行政区风速、降水量和气温地面站数据,结合各省、市自治区的土地利用分布及每种土地利用类型对应的土质类型,基于环保部推荐的起尘模型建立了1995~2015年中国风蚀扬尘颗粒物(TSP、PM10和PM2.5)排放清单.研究表明,在本研究的时间序列中,中国土壤风蚀扬尘颗粒物排放量呈现波动的趋势,2015年全国风蚀扬尘颗粒物TSP、PM10和PM2.5的年排放量分别约为2.27×107、6.77×106和1.17×106t.排放量的空间分布总体上呈现"北强南弱",并且以"黑河-腾冲"一线为界呈现"西强东弱"的排放格局,排放强度最大的地区出现在内蒙古西部和新疆大部.基于IPCC对于未来气候变化的预测情景,估计了未来风蚀扬尘颗粒物的排放变化趋势,在降水和气温共同作用下,不考虑风速变化,2100年的排放量相对2005年的变化幅度在-8.5%~7.7%之间,降水量增多会抑制风蚀扬尘颗粒物排放,温度升高则会使得地表更容易产生风蚀扬尘颗粒物.  相似文献   

2.
道路扬尘是城市大气颗粒的主要来源之一,扬尘中含有的重金属、碳质组分和水溶性离子会危害人体健康 . 为研究西安市道路扬尘的排放量及颗粒物的化学组分,在西安市环路、主干路、次干路和支路设监测点,采集了 141个道路积尘样品,估算了不同类型道路的积尘负荷 . 采用 AP-42 模型估算了不同类型道路的扬尘排放因子,建立了 2018 年西安市道路扬尘 PM2.5和 PM10的排放清单,分析了道路扬尘颗粒物的化学组分 . 基于西安市路网分布、GIS信息和车流量对道路扬尘 PM2.5和 PM10的排放量进行了空间分配 . 结果表明,西安市机动车道、非机动车道和人行道的积尘负荷分别为(0.88±0.83)、(2.62±2.23)和(1.41±1.42)g·m-2. 按道路长度加权平均的扬尘中 PM2.5和 PM10的排放因子分别为 0.22和0.93 g·km-1·veh-1. 2018 年西安市道路扬尘...  相似文献   

3.
料堆风蚀扬尘排放量的一个估算方法   总被引:7,自引:0,他引:7       下载免费PDF全文
以美国环境保护局(EPA)推荐的计算料堆风蚀扬尘排放因子的方法为基础,探讨料堆风蚀扬尘排放量的估算,包括计算所需参数及其估算方法和计算过程.并估算了北京市石景山地区圆锥或椭圆形煤堆和平坦形煤灰料堆的扬尘排放量。结果表明,北京石景山地区1999年12月,1个高度7.8m、底面直径21.3m的圆锥形煤堆可排放817g PM10,1个平坦的直径15.6m的圆形煤灰料堆可排放1612g PM10.  相似文献   

4.
以北京市餐饮企业分布密度最大的西城区为案例区,通过对研究区域内餐饮企业进行实地污染物检测及排放活动水平调查,计算得到基于就餐人数、就餐时间、烹饪油用量和灶头数4种核算基准的餐饮业VOCs和PM2.5排放因子,并利用排放因子法分别估算该区域在餐饮废气净化设备升级改造前后餐饮企业VOCs和PM2.5年排放量.结果表明:本研究区域餐饮业废气净化设备升级改造前VOCs排放量范围为319.03~506.38t/a,改造后为92.14~109.89t/a;改造前PM2.5排放量范围为166.55~211.09t/a,改造后为30.22~36.05t/a,排放量明显减少.餐饮业废气净化设备改造后VOCs和PM2.5减排率分别为71%~82%和80%~86%,餐饮业废气净化设备升级改造减排效果良好.计算得到以街道为单元的餐饮源VOCs和PM2.5排放强度范围分别为1.45~4.32t/km2和0.47~1.42t/km2.通过PM2.5实测浓度(小时值)数据分析,餐饮业废气净化设备升级改造前、后PM2.5浓度平均减少了28.9%,最接近于用油量为核算基准的排放因子降低比例.  相似文献   

5.
北京市交通扬尘PM2.5排放清单及空间分布特征   总被引:1,自引:0,他引:1       下载免费PDF全文
为建立一种自下而上的交通扬尘PM2.5排放清单方法,对北京市不同区域、不同类型道路的路面积尘负荷进行了采样和实验室分析,对各类路网的道路车流量和车辆类型进行了调查和统计,建立了北京市道路交通扬尘PM2.5排放清单,并对其空间分布进行了分析. 结果表明:北京市城区快速路、主干道、次干道、支路和胡同的交通扬尘PM2.5排放因子分别为(0.05±0.03)(0.09±0.05)(0.11±0.05)(0.16±0.14)和(0.27±0.20)g/(km·辆),相应各类型道路的交通扬尘PM2.5排放强度分别为(7.21±4.66)(5.27±3.03)(3.34±1.49)(2.84±2.49)和(0.54±0.40)kg/(km·d);郊区高速路、国道、省道、县道、乡道和城市道路的交通扬尘PM2.5排放因子分别为(0.10±0.03)(0.50±0.33)(0.39±0.37)(0.41±0.41)和(0.65±0.31)(0.19±0.08)g/(km·辆),各类型道路交通扬尘的PM2.5排放强度分别为(3.82±1.31)(10.00±6.58)(3.93±3.74)(1.64±1.63)(0.65±0.31)和(0.74±0.32)kg/(km·d). 北京市道路交通扬尘PM2.5的年排放量为13 565 t,从空间分布上看,郊区交通扬尘PM2.5年排放量、单位道路长度排放量以及排放因子均高于市区,而城区单位行政区面积的交通扬尘PM2.5排放量高于远郊区县. 从交通扬尘PM2.5排放的空间分布特征看,在继续加强城区交通扬尘控制的同时,应采取措施控制远郊区县公路的扬尘排放. 自下而上的交通扬尘PM2.5排放清单提高了排放的时空分辨率,能够识别路网中高排放的区域和路段,为交通扬尘总量管理和减排目标考核提供了一种技术手段.   相似文献   

6.
为探究长时间跨度的道路积尘变化特征,于2019~2020年对北京市大兴区内主要道路进行尘负荷检测,并于2020年四季收集道路PM10和PM2.5积尘样品,分析化学组分,建立成分谱.结果表明,2019年和2020年大兴区道路尘负荷年均值分别为1.05g/m2和0.74g/m2,2020年大兴区道路尘负荷较2019年下降29.5%.2019年道路尘负荷热点聚集区分散,大兴区内道路尘负荷高值区较多,2020年热点区集中出现在西北部,冷点区集中在东部区域.2020年大兴区道路扬尘排放因子低于2019年,大部分乡镇/街道中,2020年的扬尘排放因子和排放量低于2019年,呈现出东南部 > 中部 > 西北部的趋势.2020年大兴区道路扬尘排放量低于2019年,大兴区南部和西北部乡镇/街道内的扬尘排放量大于中部.受建筑施工活动影响.2020年大兴区道路PM10和PM2.5积尘化学组分中以土壤风沙和建筑施工活动相关的元素为主,Ca、Mg、Si、Al元素分别共占比39.39%和41.71%.对大兴区道路尘负荷进行针对性管控,首先需要对运输车辆进行及时冲洗,降低轮胎的尘土夹带量.其次应加强工地出口至附近1km的道路清扫保洁频次,将工地出口处道路尘负荷对周边道路的辐射影响降低.  相似文献   

7.
东北地区农业源一次颗粒物排放清单研究   总被引:3,自引:0,他引:3  
采用自下而上的清单编制方法,搜集各农业环节(秸秆燃烧、整地、收割、谷物处理、化肥施用、农机排放、风蚀)排放因子、作物面积和耕作方式等信息,编制了2010年东北地区县级尺度的农业一次颗粒物(PM10和PM2.5)排放清单,并分析了农业源颗粒物排放的时空分布特征.结果表明:1)2010年东北地区农业源一次颗粒物PM10总排放量54.6万t,PM2.5总排放量35.6万t;2)东北地区农业源一次颗粒物PM10排放量最大的农业活动环节是秸秆燃烧,占农业源总排放量的比例为60%,秸秆燃烧排放PM2.5占PM2.5农业源排放量的87%,整地环节是一次颗粒物排放的第2大农业排放源,对农业源排放PM10和PM2.5总量的贡献率分别是27%和6%; 3)PM10和PM2.5的排放强度空间分布表明,东北地区农业源颗粒物排放区域集中在黑龙江省东北部和中部地区,吉林省中部和辽宁省中部地区; 4)PM10和PM2.5排放的时间变化特征显示,PM10农业源排放年变化曲线中,5月份和9、10月份是农业源排放一次颗粒物PM10较多的月份,PM2.5排放集中在9、10月份;5)本研究估算的污染物排放清单的不确定性为184.3%.未来的工作将侧重于典型农业区本土排放因子测定,从而有效减小排放清单的不确定性.  相似文献   

8.
为验证城市空气污染物排放及协同控制后的周期性规律,利用小波变换对武汉市2013~2020年共计2421d的逐日PM2.5、PM10及臭氧浓度数据进行分析.结果表明:可吸入颗粒物污染情况逐年改善,PM2.5浓度年均值由80.5μg/m3降至45.3μg/m3,超标比例由44%降至11%;PM10浓度年均值由113.6μg/m3降至72.6μg/m3,超标比例由22%降至2%.臭氧污染未有明显改善,浓度年均值在90~100μg/m3间波动.PM2.5、PM10与臭氧浓度均表现出明显的周期性,PM2.5浓度主周期300d、次周期140d左右;PM10浓度主周期300d、次周期125d左右;臭氧浓度主周期300d、次周期143d左右.PM2.5与PM10的周期与位相均相...  相似文献   

9.
交通来源颗粒物排放因子的研究   总被引:11,自引:1,他引:10  
用谭裕沟隧道TSP,PM10和PM2.5的质量浓度和主要成分的分析结果,得到一定机动车流量和速度下交通来源不同粒径颗粒物质量浓度和主要成分的平均排放因子,可以基本代表北京市机动车行驶的综合排放因子,具有应用价值.还估算了北京市交通来源不同粒径颗粒物及其主要化学成分的排放量.   相似文献   

10.
邯郸市大气污染源排放清单建立及总量校验   总被引:1,自引:0,他引:1       下载免费PDF全文
邯郸作为"2+26"城市主要的重工业城市之一,位于京津冀南北传输通道的核心位置,在京津冀地区大气污染协同调控中处于重要地位.为改善当地空气质量,以邯郸市为研究对象,基于拉网式调查获取详细活动水平数据,结合相关排放因子,得到2016年邯郸市大气污染源排放清单;采用WRF-CMAQ(气象-空气质量)数值模型,模拟了2016年典型季节代表月(1月、4月、7月、10月)的空气质量,验证了数值模型的准确性;最后基于总量校验方法,反向估算了邯郸市典型污染物的排放总量,对初始大气污染源排放清单进行校验.结果表明:①2016年邯郸市SO2、NOx、TSP、PM10、PM2.5、CO、VOCs、NH3的总排放量分别为78 533、183 126、497 466、258 940、124 637、3 735 355、200 309、187 299 t.②工业源是SO2、NOx、PM2.5、CO和VOCs的主要排放源,分别占总排放量的74.5%、54.5%、30.6%、76.7%和28.1%;无组织扬尘源对TSP、PM10、PM2.5的贡献较大,分别占总排放量的58.5%、43.6%、30.3%;NH3的主要排放源为农畜氨及人体和其他氨,二者排放的NH3占总排放量的96.9%.③总量模型估算得到邯郸市PM2.5、SO2、NO2年排放量分别为152 739、79 405、206 549 t;对比分析校验前、后典型污染物排放发现,校验前的大气污染源排放清单可能低估了PM2.5和NOx的排放量.研究显示,邯郸市污染物排放量较大,工业源为主要排放源,建议相关部门加强对工业源的管控力度.   相似文献   

11.
刘爽  张笑  赵文吉  李珊珊  江磊 《中国环境科学》2019,39(10):4270-4278
选择山地面积占98.5%的北京市门头沟区作为研究区,利用资源三号(ZY-3)三线阵前、后视影像构建立体模型,提取数字高程模型(Digital Elevation Model,DEM).由高分二号影像,基于CART(Classification and Regression Tree)决策树的面向对象方法对居住房屋进行提取,获取空间分布与面积,并结合采暖面积、采暖季燃煤量等抽样调研数据确定的深、浅山区(海拔>300m为深山区,海拔<300m为浅山区)燃煤系数,建立燃煤量估算模型.进一步,基于文献调研法获取型煤排放因子,测算燃煤产生的PM10、PM2.5、NOx、SO2、CO的排放量.结果表明:借助遥感技术,基于DEM可对山区燃煤污染物排放量进行快速有效测算.地形对冬季燃煤量有显著影响,深山区燃煤系数分别为12.5kg/m2,浅山区为9.375kg/m2.2017年门头沟使用型煤取暖的房屋面积为5.68km2,冬季燃煤总量为6.52万t,山区各镇大气污染物排放量差别较大.  相似文献   

12.
运用课题组自主开发的空气颗粒物风蚀源排放清单构建模型软件(PMEI-WES),估算2016年天津市郊区土壤风蚀源颗粒物排放清单.采用蒙特卡罗模拟,分析了主要气象参数和土壤参数输入不确定性对排放量的影响,量化排放清单的不确定性.结果表明:2016年天津市郊区土壤风蚀源PM10排放总量为22025.1731t.风速是影响排放量的最主要参数,排放量随风速增加呈指数增长,土壤碳酸钙与排放量呈正相关关系,土壤有机质与排放量呈负相关关系.排放总量95%概率范围为(15237.7581t,37434.8873t),不确定度为(-37.48%,53.60%);90%概率范围排放量为(16111.8606t,36104.7554t),不确定度为(-33.89%,48.14%).各区排放量不确定度大小与风速误差大小最显著.土壤参数对不确定度极值的影响较大.  相似文献   

13.
土壤扬尘是我国北方地区广泛存在的颗粒物污染来源,由于其分布广、数量大,活动水平获取困难,难以系统构建区域层面的高时空分辨率排放清单,不利于土壤扬尘源的影响评估与管控策略的制定.以2017年为基准年,通过对Landsat 8卫星的30 m分辨率遥感影像解译获取高空间分辨率的土壤扬尘源活动水平,结合空间差异化的土壤质地与气象资料,构建了京津冀地区2017年各季节高空间分辨率土壤扬尘排放清单,结合气象参数,将各季节清单结果合理分配至逐月,并与环境受体观测数据印证了结果的可靠性.结果表明:①京津冀地区土壤扬尘排放源面积比例呈冬季>春季>秋季>夏季的特征,分别为65%、59%、57%与33%.就全年平均而言,张家口市和承德市较高,分别为64%与58%;北京市和天津市较低,分别为42%与43%;其余城市差异不显著.②京津冀地区2017年土壤扬尘排放PM2.5、PM10和TSP分别为6.5×104、31.0×104和103.4×104 t.③季节尺度上,土壤扬尘排放量呈春季>冬季>秋季>夏季的特征;城市尺度上,邢台市、邯郸市、张家口市及承德市的全年排放较高,廊坊市和秦皇岛市全年排放较低.全年单位面积排放较高值出现在张家口市以及邯郸市和邢台市的西部地区.研究显示,京津冀土壤扬尘排放具有较大时空分布差异,逐月分配清单可为扬尘重点管控月份提供数据支撑,土壤扬尘清单较高的空间分辨率也为城市重点区域差异化管理提供基础.   相似文献   

14.
北京市2018年春季一次沙尘回流过程的污染特征   总被引:1,自引:0,他引:1  
通过监测数据分析,结合轨迹模拟和特征雷达图的分析结果,对2018年4月14~19日北京出现的一次沙尘天气过程进行分析.结果显示:依据ρ(PM2.5)和ρ(PM10)及其比值PM2.5/PM10[ρ(PM2.5)/ρ(PM10),下同]的变化情况,此次沙尘过程可分为沙尘期、中间期、回流期和回流后期4个典型时期.沙尘期ρ(PM10)平均值达到(278.5±83.7)μg/m3,明显高于回流期和回流后期,回流后期ρ(PM2.5)平均值达到(135.5±16.9)μg/m3,明显高于回流期和沙尘期.沙尘期逐小时PM2.5/PM10<0.2,回流期和回流后期PM2.5/PM10比值分别介于0.3~0.6和0.5~0.8范围内.SO42-、NO3-和NH4+等(SNA)水溶性离子沙尘期浓度占比仅为7.3%±2.5%,沙尘回流期和回流后期SNA占比分别增长至47.0%±6.3%和51.3%±5.7%.研究表明,受天气系统影响,回流沙尘可裹挟南部的细颗粒和气态污染物输送到北京后发生累积和二次转化,从而推高PM2.5浓度,因此发生沙尘回流时,区域内应加强一次污染物排放的管控力度,同时北京市需进一步加强机动车氮氧化物的排放监管.  相似文献   

15.
本文分析了2014~2015年兰州市春季沙尘天气期间颗粒污染物PM10、PM2.5及气态污染物SO2、NO2、CO和O3质量浓度的演变规律.结果表明,沙尘天气造成PM10和PM2.5浓度上升,而SO2、NO2和CO浓度表现为降低(置换型)或升高(叠加型),O3浓度受沙尘天气影响不明显.置换型的PM10和PM2.5平均质量浓度分别为1086.9和286μg/m3,SO2、NO2和CO平均质量浓度分别为16.7、41.0和1.02×103μg/m3.叠加型的PM10和PM2.5平均质量浓度分别为383.2和116.2μg/m3,SO2、NO2和CO平均质量浓度分别为24.5、49.1和1.19×103μg/m3.置换型的PM10和PM2.5平均质量浓度分别为叠加型的2.8和2.4倍,叠加型的SO2、NO2和CO平均质量浓度分别为置换型的1.47、1.2和1.17倍.置换型对应的气象条件为近地面东北方向大风、显著降温和高压,即强冷空气活动时,PM10和PM2.5浓度上升,而SO2、NO2和CO浓度显著减小,沙尘源地主要为塔克拉玛干沙漠和青藏高原北部地区,影响气流多为1500~6000m高空西北气流.叠加型则为近地面东北风向弱风,气温和气压无明显波动,即弱冷空气活动时,初期PM10和PM2.5浓度上升,同时SO2、NO2和CO浓度略下降,而后PM10和PM2.5维持高值时SO2、NO2和CO浓度亦上升,沙尘源地主要为巴丹吉林沙漠,影响气流多为1500m以下低空西北气流.  相似文献   

16.
为分析深圳市大气细颗粒物(PM2.5)浓度长期持续下降的原因,进而明确PM2.5下一步减排潜力和精细化管理方向,本研究基于2019年在深圳市西乡点位采集的PM2.5样品,分析了西乡PM2.5的化学组成及季节分布特征.结果表明,2019年西乡点位PM2.5年均浓度为29.4μg/m3,总体上呈现夏低冬高的季节特征,有机物(OM)和硫酸根(SO42-)仍是主要的组分,分别占总质量的42.3%和17.6%.对2009、2014、2019年典型月份PM2.5的组分进行对比,PM2.5全年质量浓度从42.3μg/m3(2009年)下降至24.6μg/m3.(2019年),OM、SO42-、硝酸根(NO3-)、铵根(NH4+)和元素碳(EC)等都有明显的下降趋势.矿物质元素(Al、Ca)是地面扬尘和建筑尘的标识组分,近年来Al、Ca浓度的增加趋势表明宝安区西乡扬尘的影响在逐渐扩大.2009、2014、2019年OC/EC的值逐渐扩大,说明了一次燃烧源排放的影响逐渐减小,但二次有机物(SOC)的贡献逐渐凸显.通过分析2004、2009、2014、2019年夏、冬季PM2.5中6种主要组分变化趋势,表明6种主要组分夏冬两季皆有下降趋势,但由于气象因素导致冬季污染物受到区域传输的影响较大,夏季各组分浓度的下降幅度普遍高于冬季.总体来说深圳市PM2.5浓度持续下降的原因是深圳市对机动车、工业VOC (挥发性有机物)、远洋船舶以及一次燃烧源的管控和减排.  相似文献   

17.
西藏高原生态系统服务时空格局及其变化特征   总被引:4,自引:1,他引:3  
西藏高原是我国国家生态安全格局中至关重要的区域,维护提升其生态屏障功能是该区生态保护的核心目标。论文分析了1990—2010年西藏高原生态系统类型及其服务能力的时空变化格局,开展近20 a生态屏障功能的综合评估。结果表明:1)近20 a,西藏高原生态系统宏观格局稳定少动,森林、水体与湿地面积略有增加,草地、荒漠面积减少;2)森林、草地、湿地生态系统水源涵养量为895.19×108 m3,平均单位面积水源涵养量为744.48 m3/hm2,近20 a水源涵养服务在波动中有所提升;3)水蚀区土壤水蚀模数为3 876 t/km2,土壤水蚀量为10.31×108 t,生态系统土壤保持服务保有率为66.3%,近20 a土壤侵蚀量下降,而土壤保持服务保有率呈持续上升趋势;4)土壤风蚀模数为1 581.2 t/km2,土壤风蚀量为18.99×108 t,防风固沙服务保有率为66.5%,近20 a由于风场强度减弱与植被覆盖度增加,土壤风蚀量下降,而生态系统防风固沙服务保有率持续提升;5)森林、草地、湿地碳固定服务量为1.95 Pg C,从前10 a略有下降态势转变为后10 a轻微上升趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号