首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The machair sand dune systems of the Outer Hebrides of Scotland are a unique habitat, which is rare within both a global and European context. Unusually, the machair habitat also represents an agricultural resource that is very important to the Hebridean people, having been subject to both grazing and cultivation throughout the historical period. Following designation as an Environmentally Sensitive Area (ESA) in 1988, the machairs of South Uist have been studied with the aim of understanding the links between agricultural practice and their plant community and ecosystem dynamics. This research focused primarily on the effects of cultivation practices and their role in maintaining plant species richness and community and ecosystem stability. Within two carefully selected areas, the successional plant communities of machair at different stages of recovery following ploughing and cultivation of cereals and potato patches or ‘lazy beds’ were identified at both a macro- and micro-level. Investigations of the vegetation recovery processes on turves taken from newly ploughed land indicated that the initial stages of recolonization are characterized primarily by rapid vegetative reproduction and growth, although re-vegetation by seeds is also an important factor. The implications of these findings for the long-term management of machair plant communities are discussed and in particular the need to maintain old cultivation practices such as shallow ploughing. The need for more detailed research into both seed banks and seed rain and into processes of vegetative reproduction is stressed.  相似文献   

2.
Machair is a highly specialised and complex sand dune habitat confined globally to the west coasts of Ireland and Scotland. Irish machair is designated as a priority habitat under the EU Habitats Directive, with the habitat coverage restricted to the machair grassland. The main goals of the study were to describe the Acari fauna inhabiting the Irish machair and to determine the uniqueness of its mite communities in the context of habitat protection. Ten Irish machair sites were selected and samples were taken from the machair grassland and from two types of dunes within the wider machair system: shifting dunes (foredunes) occurring at the beach and stable (fixed) dunes located in the transition zone to the inland grassland flat areas. One hundred and eleven mite taxa were recovered. The most widespread was Scutovertex cf arenocolus Pfingstl et al. 2009, a halophilous species that has been found in the epilittoral zone of Baltic and European Atlantic coasts. The genus Autogneta Hull 1916 (Oribatida: Oppiidae) and the oribatid species Hermaniella granulata (Nicolet 1855) were recorded for the first time for Ireland. Peloptulus cf gibbus Mihelčič 1957, may also be a new record. Multivariate analysis showed that community composition varied between the areas sampled in the machair systems and that in the machair grassland, an Annex I priority habitat in Ireland, was especially different from both dune types sampled. The assemblages also varied significantly between the different sites sampled in the study.  相似文献   

3.
Abstract:  Introducing rare plants to new sites for conservation to offset effects of habitat destruction requires detailed knowledge of habitat requirements, plant demography, and management needs. We conducted a factorial experiment replicated at three coastal prairie sites to test the effects of clipping frequency and litter accumulation on seed germination, seedling survival, reproduction, and seedling recruitment of introduced populations of the endangered, tall-stature, annual forb, Holocarpha macradenia (DC.) E. Greene. Clipping favored H. macradenia , primarily by enhancing seed germination and flower production. Litter accumulation had no effect on seed germination, even after 5 years of treatments. Seedling recruitment was highly site specific with large numbers of recruits recorded at only one of three sites. Although recruitment of seedlings was higher in clipped plots for 2–3 years, by 4–5 years after introduction very few seedlings survived to reproduction in any treatment. We attribute this result to a combination of poor habitat quality, small population size, and lack of a seed bank. We were unsuccessful in introducing this relatively well-studied species of concern to apparently suitable habitat at multiple sites in multiple years, which suggests that translocating rare plant populations to mitigate for habitat destruction is an expensive and highly uncertain endeavor.  相似文献   

4.
The negative consequences of habitat fragmentation for plant communities have been documented in many regions of the world. In some fragmented habitats, livestock grazing has been proposed to be a dispersal mechanism reducing isolation between fragments. In others, grazing acts together with fragmentation in a way that increases habitat degradation. Iberian gypsum plant communities have been grazed and fragmented by agricultural practices for centuries. Although their conservation is considered a priority by the European Community, the effects of fragmentation on gypsum plant communities and the possible role of livestock grazing remain unknown. In addition, a substantial proportion of plant species growing in gypsum environments are gypsum specialists. They could be particularly affected by fragmentation, as was found for other habitat specialists (i.e., serpentine and calcareous specialists). In this study (1) we investigated the effect of fragmentation and grazing on gypsum plant community composition (species and life-forms), and (2) we tested to see if gypsum specialists were differently affected by fragmentation and grazing than habitat generalists. A vegetation survey was conducted in the largest gypsum outcrop of Europe (Middle Ebro Valley, northeast Spain). Fragmented and continuous sites in grazed and ungrazed areas were compared. Measurements related to species and composition of life-forms were contrasted first for the whole gypsum plant community and then specifically for the gypsum specialists. In the whole community, our results showed lower plant species diversity in fragmented sites, mainly due to the larger dominance of species more tolerant to fragmented habitat conditions. With livestock grazing, the plant species richness and the similarity in plant species composition between remnants was larger, suggesting that animals were acting as dispersal agents between fragments. As expected, gypsum specialists were less abundant in fragmented areas, and grazing led to the disappearance of the rare gypsum specialist Campanula fastigiata. According to our results, conservation strategies for gypsum plant communities in human-dominated landscapes should consider that fragmentation and grazing modify plant community composition affecting gypsum specialists in particular.  相似文献   

5.
Many services generated by forest ecosystems provide essential support for human well-being. However, the vulnerability of these services to environmental change such as forest fragmentation are still poorly understood. We present spatial modeling of the generation of ecosystem services in a human-dominated landscape where forest habitat patches, protected by local taboos, are located in a matrix of cultivated land in southern Madagascar. Two ecosystem services dependent on the forest habitats were addressed: (1) crop pollination services by wild and semidomesticated bees (Apoidea), essential for local crop production of, for example, beans, and (2) seed dispersal services based on the presence of ring-tailed lemurs (Lemur catta). We studied the vulnerability of these ecosystem services to a plausible scenario of successive destruction of the smallest habitat patches. Our results indicate that, in spite of the fragmented nature of the landscape, the fraction of the landscape presently covered by both crop pollination and seed dispersal services is surprisingly high. It seems that the taboo system, though indirectly and unintentionally, contributes to upholding the generation of these services by protecting the forest patches. Both services are, however, predicted to be very vulnerable to the successive removal of small patches. For crop pollination, the rate of decrease in cover was significant even when only the smallest habitat patches were removed. The capacity for seed dispersal across the landscape displayed several thresholds with habitat patch removal. Our results suggest that, in order to maintain capacity for seed dispersal across the landscape and crop pollination cover in southern Androy, the geographical location of the remaining forest patches is more crucial than their size. We argue that in heavily fragmented production landscapes, small forest patches should increasingly be viewed as essential for maintaining ecosystem services, such as agricultural production, and also should be considered in the ongoing process of tripling the area of protected habitats in Madagascar.  相似文献   

6.
Ramirez KS  Lauber CL  Knight R  Bradford MA  Fierer N 《Ecology》2010,91(12):3463-70; discussion 3503-14
Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) through anthropogenic activities. Although the effects of increased N inputs on plant communities have been reasonably well studied, few comparable studies have examined impacts on whole soil bacterial communities, though they play critical roles in ecosystem functioning. We sampled soils from two long-term ecological research (LTER) experimental N gradients, both of which have been amended with NH4NO3; a grassland at Cedar Creek (27 years of N additions) and an agricultural field at Kellogg Biological Station (8 years of N additions). By examining shifts in bacterial communities across these contrasting ecosystem types, we could test competing hypotheses about the direct and indirect factors that might drive bacterial responses to elevated N inputs. Bacterial community structure was highly responsive to N additions. We observed predictable and consistent changes in the structure of the bacterial communities across both ecosystem types. Our results suggest that bacterial communities across these gradients are more structured by N and/or soil carbon availability than by shifts in the plant community or soil pH associated with the elevated nitrogen inputs. In contrast to the pronounced shifts in bacterial community composition and in direct contrast to the patterns often observed in plant communities, increases in N availability did not have consistent effects on the richness and diversity of soil bacterial communities.  相似文献   

7.
Abstract: The landscape of the intermountain west has changed dramatically in the last 150 years, particularly in the state of Washington, where over half the native shrubsteppe ecosystem has been converted to agricultural lands, resulting in a fragmented landscape with few extensive tracts of shrubsteppe. We examined the historical and current distribution of shrubsteppe on different soil types in eastern Washington, and we censused bird communities at 78 sites in shrubsteppe from 1991 to 1993. We compared abundance of species among soil types and range conditions and developed models of species occurrence using site-specific vegetation and landscape variables. The pattern of shrubsteppe conversion has resulted in a disproportionate loss of deep soil communities. Eight bird species showed strong relationships with soil type and three with range condition. These associations likely resulted from the influence of soil type and range history on the vegetation of these communities. Brewer's Sparrows (  Spizella breweri ) and Sage Sparrows ( Amphispiza belli ) reached their highest abundances in deep, loamy soils, whereas Loggerhead Shrikes (   Lanius ludovicianus ) were most abundant in deep, sandy soils. Sage Sparrows occurred more frequently in landscapes dominated by shrubsteppe, indicating a negative relationship with fragmentation. Our results suggest that fragmentation of shrubsteppe and the pattern of agricultural conversion among soil types have had detrimental effects on numerous shrubsteppe species. The landscape for species with an affinity for deep, loamy soil communities has changed considerably more than the overall loss of shrubsteppe would indicate. Conservation practices that emphasize retention of shrubsteppe communities on deep soils and that reduce further fragmentation will be critical to the maintenance of avian biological diversity in this system.  相似文献   

8.
Spatial and Seasonal Patterns of Bird Communities in Italian Agroecosystems   总被引:2,自引:0,他引:2  
Abstract:  Despite agricultural landscapes covering almost 60% of the total land area of Italy, knowledge of the effects of agriculture and its intensification on bird communities is still scarce. I analyzed the effects of land uses on bird diversity and community structure in different farmland habitats of lowland northwestern Italy. I surveyed breeding and overwintering birds with a hierarchically nested sampling design and used generalized linear and mixed models to investigate the relationships between the diversity and abundance of birds and habitat or landscapes attributes. The effects of agriculture on α avian diversity varied with season and spatial scale, whereas nonagricultural habitats (long-term fallows or woodlands) had a generally positive effect that was constant throughout time and space. As the amount of woodland habitat increased, spatial turnover (β diversity) of breeding birds decreased. Arable landscapes supported low levels of avian diversity throughout the year but were favored by emblematic farmland birds that have declined severely in Europe and in the study area. Farmland birds (40% of which are experiencing population declines) were more abundant or foraged more frequently in the less-disturbed habitat types such as fallows, grasslands, and winter stubbles and tended to avoid the prevailing cultivations (maize, vineyard, and wheat). Landscape simplification, the expansion of maize cultivation, winter plowing practices, and the conversion of highly diverse grasslands to tilled lands are likely to be responsible for the local decline of most farmland species (Skylark [Alauda arvensis ], Starling [Sturnus vulgaris ], buntings [Emberiza spp.], and wagtails [Motacilla spp.]) and for the increase of birds that are turning into agricultural pests (Hooded Crow [Corvus corone cornix ]).  相似文献   

9.
The coastal ecosystem of the Pearl River Estuary (PRE) has been overfished and received a high level of combined pollution since the 1980s. Ecopath with Ecosim was used to construct two ecosystem models (for 1981 and 1998) to characterize the food web structure and functioning of the ecosystem. Pedigree work and simple sensitivity analysis were carried out to evaluate the quality of data and the uncertainty of the models. The two models seem reliable with regards to input data of good quality. Comparing the variations of outputs of these two models aimed to facilitate assessment of changes of the ecosystem during the past two decades.The trophic structure of the ecosystem has changed with an increase in the biomass proportion of lower trophic level (TL) organisms and a decrease in top predator biomass proportion. All the indices of ecosystem maturity examined show that the system was in a more mature condition in 1981 than in 1998, although the system has been in a condition of stress due to anthropogenic disturbances, such as environmental pollution and habitat destruction since 1981. The ecosystem was aggregated into six and seven integral TLs in 1981 and 1998, respectively, using the trophic aggregation routine of Ecopath. Most of the total system biomass and catch took place at TL II and III in both years. But the distribution of the total system biomass and catch at different TLs changed with decreasing proportions in higher TLs in 1998. The mean transfer efficiency was 9.1% and 10.2% in 1981 and 1998, respectively.Comparative network analysis allowed quantification of the importance of direct and indirect trophic interactions among functional groups. Moreover, a method derived from the mixed trophic impact (MTI) analysis allowed estimating importance of groups in terms of “keystoneness” and identifying the keystone species in the two models over the past two decades. The results indicate that there were no clear keystone species in 1998 but two keystone species at medium trophic levels were identified in 1981. Moreover, organisms located at low trophic levels such as phytoplankton, zooplankton and benthic invertebrates were identified to have relatively high keystoneness in the ecosystem.  相似文献   

10.
Genetic diversity is a key factor for population survival and evolution. However, anthropogenic habitat disturbance can erode it, making populations more prone to extinction. Aiming to assess the global effects of habitat disturbance on plant genetic variation, we conducted a meta-analysis based on 92 case studies obtained from published literature. We compared the effects of habitat fragmentation and degradation on plant allelic richness and gene diversity (equivalent to expected heterozygosity) and tested whether such changes are sensitive to different life-forms, life spans, mating systems, and commonness. Anthropogenic disturbance had a negative effect on allelic richness, but not on gene diversity. Habitat fragmentation had a negative effect on genetic variation, whereas habitat degradation had no effect. When we examined the individual effects in fragmented habitats, allelic richness and gene diversity decreased, but this decrease was strongly dependent on certain plant traits. Specifically, common long-lived trees and self-incompatible species were more susceptible to allelic richness loss. Conversely, gene diversity decreased in common short-lived species (herbs) with self-compatible reproduction. In a wider geographical context, tropical plant communities were more sensitive to allelic richness loss, whereas temperate plant communities were more sensitive to gene diversity loss. Our synthesis showed complex responses to habitat disturbance among plant species. In many cases, the absence of effects could be the result of the time elapsed since the disturbance event or reproductive systems favoring self-pollination, but attention must be paid to those plant species that are more susceptible to losing genetic diversity, and appropriate conservation should be actions taken.  相似文献   

11.
Pakeman RJ 《Ecology》2011,92(6):1353-1365
Plant functional traits have been proposed as a linkage between the environmental control of vegetation and ecosystem function. Identification of traits that mediate the response of plant species to the environment is well established, but the identification of effect traits and the linkage between the two sets is less developed. This was attempted for a study of eight contrasting land uses in a marginal agricultural landscape where data on vegetation, management controls of the disturbance regime, and soil characteristics, including nitrogen release, were measured simultaneously with measures of ecosystem function such as litter decomposition rates and primary productivity on 30 sites. Trait data were assembled from databases, and an iterative multivariate approach using the three table (species, trait, environment) method RLQ was employed to identify a parsimonious set of traits that predict plant species responses to the environment and a parsimonious set of traits that link vegetation to ecosystem function. The lists of response and effect traits were similar, and where differences were observed, traits were usually highly correlated with at least one trait in the other list. This approach identified a small number of traits (canopy height, leaf dry matter content, leaf size, and specific leaf area) that provide a means of linking vegetation responses to environmental change with changes in ecosystem function. Other response traits included vegetative spread strategy, start of flowering, and seed terminal velocity, but within the system studied these traits were all significantly correlated to the traits shared between the response and effect lists.  相似文献   

12.
Abstract: Researchers and conservation managers largely agree on the relevance of traditional ecological knowledge for natural resource management in indigenous communities, but its prevalence and role as societies modernize are contested. We analyzed the transmission of traditional knowledge among rural local people in communities linked to protected areas in Doñana, southwestern Spain. We studied changes in knowledge related to local practices in agriculture and livestock farming among 198 informants from three generations that cover the period in which the area transited from an economy strongly dependent on local ecosystem services to a market economy with intensified production systems. Our results suggest an abrupt loss of traditional agricultural knowledge related to rapid transformations and intensification of agricultural systems, but maintenance of knowledge of traditional livestock farming, an activity allowed in the protected areas that maintains strong links with local cultural identity. Our results demonstrate the potential of protected areas in protecting remaining bodies of traditional ecological knowledge in developed country settings. Nevertheless, we note that strict protection in cultural‐landscape‐dominated areas can disrupt transmission of traditional knowledge if local resource users and related practices are excluded from ecosystem management.  相似文献   

13.
The generation of ecosystem services depends on both social and ecological features. Here we focus on management, its ecological consequences, and social drivers. Our approach combined (1) quantitative surveys of local species diversity and abundance of three functional groups of ecosystem service providers (pollinators, seed dispersers, and insectivores) with (2) qualitative studies of local management practices connected to these services and their underlying social mechanisms, i.e., institutions, local ecological knowledge, and a sense of place. It focused on the ecology of three types of green areas (allotment gardens, cemeteries, and city parks) in the city of Stockholm, Sweden. These are superficially similar but differ considerably in their management. Effects of the different practices could be seen in the three functional groups, primarily as a higher abundance of pollinators in the informally managed allotment gardens and as differences in the composition of seed dispersers and insectivores. Thus, informal management, which is normally disregarded by planning authorities, is important for ecosystem services in the urban landscape. Furthermore, we suggest that informal management has an important secondary function: It may be crucial during periods of instability and change as it is argued to promote qualities with potential for adaptation. Allotment gardeners seem to be the most motivated managers, something that is reflected in their deeper knowledge and can be explained by a sense of place and management institutions. We propose that co-management would be one possible way to infuse the same positive qualities into all management and that improved information exchange between managers would be one further step toward ecologically functional urban landscapes.  相似文献   

14.
Abstract: The agricultural development of southern Australia over the past 200 years has resulted in extensively fragmented systems, often with only small, isolated remnants of native vegetation remaining. Grazing by sheep and cattle has affected both the remaining fragments and the surrounding matrix, and non-native plant and animal species have had dramatic effects on the native biota. Invasive plant species have the potential to significantly alter ecosystem composition and functioning, and invasive animals, particularly rabbits ( Oryctolagus cuniculatus ), foxes (    Vulpes vulpes ) and cats (    Felis catus ) effectively alter habitat and drive native fauna to local extinction. These different influences often interact. For instance, smaller fragments are often more prone to plant invasion and are more likely to have been grazed in the past. Invasion of plant species is often linked with livestock grazing or rabbit invasion, and other higher-order interactions are also apparent. Classical fragmentation studies that concentrate on parameters such as habitat area and isolation but ignore changes in habitat condition brought about by livestock and invasive species are unlikely to yield meaningful results. Similarly, management of fragmented ecosystems must account for not only the spatial characteristics of the remaining habitat but also the importance of other influences, particularly those that impinge on fragments from the surrounding matrix.  相似文献   

15.
Abstract:  The reed Phragmites australis Cav. is aggressively invading salt marshes along the Atlantic Coast of North America. We examined the interactive role of habitat alteration (i.e., shoreline development) in driving this invasion and its consequences for plant richness in New England salt marshes. We surveyed 22 salt marshes in Narragansett Bay, Rhode Island, and quantified shoreline development, Phragmites cover, soil salinity, and nitrogen availability. Shoreline development, operationally defined as removal of the woody vegetation bordering marshes, explained >90% of intermarsh variation in Phragmites cover. Shoreline development was also significantly correlated with reduced soil salinities and increased nitrogen availability, suggesting that removing woody vegetation bordering marshes increases nitrogen availability and decreases soil salinities, thus facilitating Phragmites invasion. Soil salinity (64%) and nitrogen availability (56%) alone explained a large proportion of variation in Phragmites cover, but together they explained 80% of the variation in Phragmites invasion success. Both univariate and aggregate (multidimensional scaling) analyses of plant community composition revealed that Phragmites dominance in developed salt marshes resulted in an almost three-fold decrease in plant species richness. Our findings illustrate the importance of maintaining integrity of habitat borders in conserving natural communities and provide an example of the critical role that local conservation can play in preserving these systems. In addition, our findings provide ecologists and natural resource managers with a mechanistic understanding of how human habitat alteration in one vegetation community can interact with species introductions in adjacent communities (i.e., flow-on or adjacency effects) to hasten ecosystem degradation.  相似文献   

16.
This study examines the value of fallow ecosystem services in shifting cultivation, including hydrological externalities that may affect other farms. Using farm-level survey data from the Brazilian Amazon, I estimate a production function to assess the value of forest fallow and test whether it provides local externalities to agricultural production. Soil quality controls, instrumental variables, and spatial econometric approaches help address endogeneity issues. I use GIS data on external forest cover at the farm level and model the hydrological externality as an upstream-to-downstream process. The estimated parameters indicate that fallow contributes significantly to productivity both on farm and downstream. In addition, most farms allocate sufficient land to fallow, accounting for both the value of hydrological spillovers and the opportunity cost of land left out of cultivation. These results suggest that farming communities may have some self-interest in preserving forest cover locally—a finding that may bolster policy efforts aimed at conserving tropical forests for their global public goods.  相似文献   

17.
Models of ecosystem change that incorporate nonlinear dynamics and thresholds, such as state-and-transition models (STMs), are increasingly popular tools for land management decision-making. However, few models are based on systematic collection and documentation of ecological data, and of these, most rely solely on structural indicators (species composition) to identify states and transitions. As STMs are adopted as an assessment framework throughout the United States, finding effective and efficient ways to create data-driven models that integrate ecosystem function and structure is vital. This study aims to (1) evaluate the utility of functional indicators (indicators of rangeland health, IRH) as proxies for more difficult ecosystem function measurements and (2) create a data-driven STM for the sagebrush steppe of Colorado, USA, that incorporates both ecosystem structure and function. We sampled soils, plant communities, and IRH at 41 plots with similar clayey soils but different site histories to identify potential states and infer the effects of management practices and disturbances on transitions. We found that many IRH were correlated with quantitative measures of functional indicators, suggesting that the IRH can be used to approximate ecosystem function. In addition to a reference state that functions as expected for this soil type, we identified four biotically and functionally distinct potential states, consistent with the theoretical concept of alternate states. Three potential states were related to management practices (chemical and mechanical shrub treatments and seeding history) while one was related only to ecosystem processes (erosion). IRH and potential states were also related to environmental variation (slope, soil texture), suggesting that there are environmental factors within areas with similar soils that affect ecosystem dynamics and should be noted within STMs. Our approach generated an objective, data-driven model of ecosystem dynamics for rangeland management. Our findings suggest that the IRH approximate ecosystem processes and can distinguish between alternate states and communities and identify transitions when building data-driven STMs. Functional indicators are a simple, efficient way to create data-driven models that are consistent with alternate state theory. Managers can use them to improve current model-building methods and thus apply state-and-transition models more broadly for land management decision-making.  相似文献   

18.
Abstract: Seed dispersal by animals is considered a pivotal ecosystem function that drives plant‐community dynamics in natural habitats and vegetation recovery in human‐altered landscapes. Nevertheless, there is a lack of suitable ecological knowledge to develop basic conservation and management guidelines for this ecosystem service. Essential questions, such as how well the abundance of frugivorous animals predicts seeding function in different ecosystems and how anthropogenic landscape heterogeneity conditions the role of dispersers, remain poorly answered. In three temperate ecosystems, we studied seed dispersal by frugivorous birds in landscape mosaics shaped by human disturbance. By applying a standardized design across systems, we related the frequency of occurrence of bird‐dispersed seeds throughout the landscape to the abundance of birds, the habitat features, and the abundance of fleshy fruits. Abundance of frugivorous birds in itself predicted the occurrence of dispersed seeds throughout the landscape in all ecosystems studied. Even those landscape patches impoverished due to anthropogenic disturbance received some dispersed seeds when visited intensively by birds. Nonetheless, human‐caused landscape degradation largely affected seed‐deposition patterns by decreasing cover of woody vegetation or availability of fruit resources that attracted birds and promoted seed dispersal. The relative role of woody cover and fruit availability in seed dispersal by birds differed among ecosystems. Our results suggest that to manage seed dispersal for temperate ecosystem preservation or restoration one should consider abundance of frugivorous birds as a surrogate of landscape‐scale seed dispersal and an indicator of patch quality for the dispersal function; woody cover and fruit resource availability as key landscape features that drive seedfall patterns; and birds as mobile links that connect landscape patches of different degrees of degradation and habitat quality via seed deposition.  相似文献   

19.
Crain CM  Albertson LK  Bertness MD 《Ecology》2008,89(10):2889-2899
Secondary succession plays a critical role in driving community structure in natural communities, yet how succession dynamics vary with environmental context is generally unknown. We examined the importance of seedling and vegetative recruitment in the secondary succession of coastal marsh vegetation across a landscape-scale environmental stress gradient. Replicate bare patches were initiated in salt, brackish, and oligohaline marshes in Narragansett Bay, Rhode Island, USA, and allowed to recover unmanipulated or with colonizing seedlings or vegetative runners removed for three years. Seed dispersal and seed bank studies were conducted at the same sites. We found that rates of recovery were 3-10 times faster in brackish and oligohaline marshes than in salt marshes. The fast pace of recovery in oligohaline marshes was driven by seedling colonization, while recovery was dominated by vegetative runners in brackish marshes and by both seedlings and runners in salt marshes. Seed and seedling availability was much greater in oligohaline marshes with up to 24 times the seed bank density compared with salt marshes. In contrast to the facilitated succession generally found in salt marshes, oligohaline marshes follow the tolerance model of succession where numerous species colonize from seed and are slowly displaced by clonal grasses whose recovery is slowed by preemptive competition from seedlings, contributing to the higher species diversity of oligohaline marshes. These findings reveal fundamental differences in the dynamics and assembly of marsh plant communities along estuarine salinity gradients that are important for conceptually understanding wetlands and for guiding the management and restoration of various types of coastal marshes.  相似文献   

20.
Abstract: We examined the effects of habitat area and patch isolation on reproductive success in serpentine morning glory ( Calystegia collina [Convolvulaceae]), a primarily self-incompatible clonal plant endemic to serpentine outcrops in northern California's coast ranges. Within a 4000-km 2 region, we compared the reproductive success of C. collina on 16 small (<5 ha) and 7 large ( >300 ha) outcrops. Flower and fruit production were significantly higher on large serpentine outcrops than on small outcrops. Fruit production also was positively correlated with the soil's ratio of calcium to magnesium. Successful pollination was positively affected by flower density and the number of other flowering patches within 100 m of a C. collina patch. The number of nearby flowering patches was considerably higher on large than on small outcrops. Flowers on large outcrops did not receive significantly more bee visitors than flowers on small outcrops, suggesting that pollination success is related to the quality rather than the quantity of pollen deposited. Fruit production by plants on both small and large outcrops was enhanced by the experimental addition of pollen from other patches, but not by the addition of pollen from the same patch. These findings demonstrate that the size of habitat may have strong effects on the reproductive success of locally endemic plants by enhancing opportunities for successful sexual reproduction. They also warn against the presumption that naturally patchy plant species are invulnerable to the effects of habitat fragmentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号