首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用2016—2020年上海市PM_(10)、PM_(2.5)、SO_2、NO_2、O_3的质量浓度和温度、相对湿度、平均风速、水平能见度气象条件,分析了上海市PM_(10)、PM_(2.5)、SO_2、NO_2、O_3污染物的时间变化趋势。同时,利用多元线性回归模型及BP神经网络建立污染物与气象因素之间的相关关系,对其质量浓度进行预测,分析对比不同模型的预测结果。研究表明:2016—2020年上海市大气污染物质量浓度随时间变化整体呈现下降趋势;污染物质量浓度季节性差异显著,PM_(2.5)及PM_(10)质量浓度呈现"冬高夏低",而O_3质量浓度呈现"冬低夏高";可吸入颗粒物质量浓度(PM_(2.5)、PM_(10))与SO_2、NO_2质量浓度,O_3质量浓度与NO_2的质量浓度之间存在显著相关性;多元线性回归分析表明相对湿度、平均风速及水平能见度3个气象因素对上海市PM_(2.5)、PM_(10)质量浓度产生显著影响;温度、相对湿度、平均风速及水平能见度4个气象因素对上海市O_3质量浓度产生显著影响;多元线性回归分析表明上海市PM_(10)质量浓度与温度之间显著性水平为0.303,意味着温度对上海市大气PM_(10)质量浓度并没有产生显著影响;PM_(10)质量浓度随相对湿度的增加、平均气压及水平能见度的增大而减小;O_3质量浓度则与温度和平均风速呈正相关,与相对湿度和水平能见度呈负相关。相比多元线性回归,BP神经网络在预测上海市气象污染物质量浓度表现出强大的泛化能力,PM_(2.5)、PM_(10)、NO_2与O_3的真实值与预测值相关系数(r~2)分别为98.6%,97.4%,97.6%和98.3%。  相似文献   

2.
为了研究合肥市能见度影响规律,为改善城市大气能见度提供科学依据,利用合肥市2013年1月—2015年12月的气象观测数据和颗粒物质量浓度数据,采用统计分析方法研究了合肥市大气能见度与相对湿度和PM_(2.5)质量浓度的定量关系,以及不同等级能见度下相对湿度和PM_(2.5)浓度的统计特征。结果表明,PM_(2.5)质量浓度与相对湿度共同影响合肥市大气能见度变化,较低相对湿度下(RH60%),能见度降低主要受PM_(2.5)质量浓度升高的影响;较高湿度条件下(RH≥60%),能见度降低主要是由于相对湿度增加造成的大气粒子吸湿增长导致消光性能增大,且这种作用在污染程度较轻时更加突出。RH≥60%时,相对湿度每增加1%,平均能见度降低0.172 km;当RH≥90%时,平均能见度基本在5 km以下。PM_(2.5)质量浓度与能见度呈幂函数关系,40%≤RH60%时,PM_(2.5)的影响作用最显著;PM_(2.5)质量浓度对能见度的影响阈值随相对湿度增加而减小,当PM_(2.5)质量浓度低于46μg?m~(-3)时,能见度随着PM_(2.5)质量浓度降低而迅速增大。随着相对湿度增加,或者PM_(2.5)质量浓度增加,低能见度出现频率呈上升趋势;高湿度、高细颗粒物浓度均可导致低能见度的出现。当前一日能见度低于7km,当日相对湿度大于75%,且PM_(2.5)质量浓度大于65μg?m~(-3),当日能见度超过75%的比例在5 km以下。当前一日PM_(2.5)质量浓度达到中度及以上污染,当日能见度随着相对湿度增加逐渐减小,RH≥80%时,能见度低于5 km的比例达到70%。  相似文献   

3.
利用2018年1—12月西安市13个环境空气质量监测点的六项大气污染常规分析指标(PM_(10)、PM_(2.5)、O_3、SO_2、NO_2和CO)逐小时监测数据,结合气象条件(温度、相对湿度、风向、风速、大气压、光照、紫外辐射、混合层高度及大气能见度)和颗粒物样品采集,对西安市近地面大气污染物浓度特征进行分析,结果表明,西安市近地面大气污染物浓度呈现明显的季节变化特征,冬季空气污染物主要为颗粒物(PM_(10)、PM_(2.5))对应质量浓度分别为:(154.04±92.88)、(101.84±60.11)μg·m~(-3),PM_(2.5)/PM_(10)的值为0.66,夏季空气污染物主要为O_3,质量浓度为(89.07±20.62)μg·m~(-3);西安市冬季PM_(2.5)数浓度、表面积浓度、质量浓度分别为(51 890±14 619)cm~(-3)、(2 882.21±939.83)μm~2·cm~(-3)、(0.32±0.13)mg·m~(-3),PM_(10)数浓度、质量浓度、表面积浓度分别为(51 897±14 618)cm~(-3)、(3 410.50±1 060.31)μm~2·cm~(-3)、(0.86±0.29)mg·m~(-3),数浓度粒径分布集中在0.010≤d_p≤0.484μm,占总数浓度的99.13%,表面积浓度粒径分布集中在0.072≤d_p≤8.136μm,占总表面积浓度的98.32%,质量浓度粒径分布集中在0.316≤dp≤8.136μm,占总质量浓度的98.75%。颗粒物数浓度对大气能见度影响最大的3个粒径段分别为d_p=0.762μm、d_p=1.956μm、d_p=1.232μm,3个粒径段与能见度的R~2(拟合优度)分别为:0.840、0.789、0.775;西安市夏季,在近地面环境温度大于30.23℃,相对湿度小于58.09%,光照强度大于107.83 W·m~(-2),紫外辐射强度大于324.10μW·cm~(-2)时,有利于近地大气层中高质量浓度O_3((112.16±53.01)μg·m~(-3))的生成与累积。研究结果可为西安市及汾渭平原其他城市大气污染物减排、大气污染防治策略的制定提供数据支持。  相似文献   

4.
冬季广州大气能见度影响因子分析   总被引:5,自引:0,他引:5  
于2005年12月至2006年2月收集了华南所大气观测站大气能见度等7个气象因子及PM2.5浓度观测数据,分析了冬季广州大气能见度变化趋势及灰霾天气主要影响因子,并对能见度与主要影响因子进行相关性分析。结果发现:人为因素和气象条件对大气能见度的影响比较明显,当大气层结受到北方冷空气扰动后,能见度得到明显改善;1月份灰霾天气出现频率高达60.9%,灰霾天气下大气能见度与PM2.5浓度密切相关;大气能见度与PM2.5浓度、温度、相对湿度呈负相关性,与大气压呈正相关性;灰霾天气下大气能见度还与细颗粒物的粒径分布密切相关。  相似文献   

5.
大气灰霾污染已经成为了大气环境领域的研究热点之一,但是目前国内针对背景地区站点的大气污染形成机制和输送规律的研究仍然有限。利用PM_(2.5)、PM_(10)、CO、SO_2、O_3、NO_2等6种大气成分质量浓度数据、常规气象要素观测资料、结合HYSPLIT后向轨迹模式,对2015年1月15—28日发生在江苏省苏州市东山镇的一次持续十余天的空气污染过程进行了分析。结果表明,此次污染过程东山镇经历了一次完整的灰霾生成-积聚-消散的演变过程,其中包括两个主要污染时段,1月15—19日轻污染时段和1月22—26日重污染时段。ρ(PM_(2.5))/ρ(PM_(10))平均值达到62.8%(30.0%~93.4%),表明PM_(2.5)对东山大气颗粒物污染贡献显著。6种大气污染物相关性分析发现CO和NO_2与PM_(2.5)和PM_(10)相关性最好,人为燃烧源和交通源对灰霾形成贡献显著。高空较稳定的环流形势和地面弱气压场的配合以及低压高温高湿的不利气象条件,阻碍了污染物的垂直和水平扩散,是此次持续性灰霾天气形成的客观原因。通过风向、风速统计和后向轨迹分析发现,此次污染过程,在大风下颗粒物以远程输送为主,微风下颗粒物以局地排放为主。外来源的输送和本地源排放的叠加造成了灰霾的形成和积聚。轻污染时段,高浓度污染气团主要来自西北方向的远距离输送,来自山东、河北等工业发达地区的排放源对东山地区灰霾的形成影响显著。重污染时段,污染气团主要来自偏南方向的局地输送,此外来自湖南、江西一带的大规模生物质燃烧生成的高浓度污染气团输送也是污染加重的重要原因。来自东北方向的气流对此次区域灰霾污染起到了清洁作用。  相似文献   

6.
为了探讨景观生态林对大气颗粒物的调控作用,以北京大兴区景观生态林为例(主要树种为旱柳Salix matsudana),研究不同季节、不同天气条件下景观生态林内大气颗粒物质量浓度差异以及林内和林外质量浓度对比。于2013年7月至2014年5月,分四季选择不同天气类型,采用水平同步监测法对林内和林外两个监测点3种粒径大气颗粒物(TSP、PM10和PM2.5)质量浓度和气象因子进行每日10 h的连续监测(8:00─18:00)。结果表明,(1)晴朗天气景观生态林内ρ(TSP)、ρ(PM10)和ρ(PM2.5)均处于较低水平,分别为(61.53±21.73)~(174.32±36.01)μg·m-3、(28.91±10.34)~(94.87±20.45)μg·m-3和(6.29±3.86)~(23.91±12.29)μg·m-3;多云、扬尘、雾霾和雾霭天气颗粒物质量浓度较高,污染明显加重,雾霾天气下ρ(PM2.5)的增加效果更为明显,而扬尘天气下ρ(TSP)显著增加。(2)雾滴对于PM2.5与PM10具有一定的湿清除作用,也可以与霾粒子共同作用形成相对稳定的雾霭天气,其颗粒物污染程度高于其他天气状况,此时以粒径为2.5~10μm的颗粒物污染为主。(3)夏、秋和春季晴朗微风天气(风速≤3 m·s-1)和扬尘天气林内ρ(TSP)和ρ(PM10)显著低于林外,多云、轻微至轻度雾霾天气,林内ρ(TSP)、ρ(PM10)和ρ(PM2.5)均显著低于林外,晴朗大风(风速5 m·s-1)和雾霭天气林内ρ(TSP)和ρ(PM10)不显著高于林外,雾霭天气林内ρ(PM2.5)显著高于林外;冬季不同天气下ρ(TSP)、ρ(PM10)和ρ(PM2.5)林内和林外对比没有明显规律。(4)空气相对湿度、风速和风向是观测时段内影响颗粒物质量浓度的主要因子。ρ(PM2.5)与相对湿度呈线性正相关,而与风速呈非线性负相关,偏南风对颗粒物主要起输送和积累作用,偏北风对颗粒物起到稀释和扩散作用。相对于TSP和PM10,PM2.5更易受近地面气象条件的影响而堆积或扩散。  相似文献   

7.
为了研究林地和湿地以及气象因素等对于大气颗粒物浓度的影响,于2016年5—12月在北京市奥林匹克森林公园内林地、湿地内对PM10和PM_(2.5)质量浓度以及气象数据(温度和相对湿度)进行采集。使用定量分析的方法,运用阻滞-吸附效率公式对林地和湿地阻滞率进行了比较;分析了大气不同污染背景下林地和湿地对大气颗粒物阻滞率的差异以及气象因子对大气颗粒物质量浓度的影响。研究结果表明,林地内颗粒物日变化呈现先下降后上升的趋势,13:00左右为一天之中质量浓度最低(34.6μg?m~(-3))之时,而湿地周围颗粒物日变化则在采样期间呈现下降趋势,至18:00左右质量浓度为最低(35.8μg?m~(-3))。不同空气质量等级下,林地和湿地对颗粒物的阻滞率效果不同,林地在空气质量为优时对PM_(10)和PM_(2.5)的阻滞率均最高,分别为522.7%和289.7%;湿地在空气质量等级为良时对PM_(10)的阻滞率最高(56.56%),在空气质量为重度污染时对PM_(2.5)的阻滞率为最高(74.35%)。在相同空气质量等级下,林地与湿地之间的阻滞率也存在差异:除严重污染时没有显著差异外,其余空气质量等级下林地的阻滞率显著高于湿地对大气颗粒物的阻滞率(P0.05)。此外,大气颗粒物质量浓度与气象因子之间存在显著相关性,其质量浓度与温度呈负相关,与相对湿度呈正相关。然而,阻滞率与气象因子之间没有显著相关性。研究林地与湿地的阻滞率有利于更好地配置城市中林地和湿地比率,以更加有效地改善大气环境。  相似文献   

8.
广州市大气能见度的特征及其影响因子分析   总被引:17,自引:4,他引:17  
沈家芬  冯建军  谢利  林燕  莫测辉 《生态环境》2007,16(4):1199-1204
广州市大气能见度逐年下降,灰霾现象严重,收集广州市2001—2003年大气能见度及同期地面气象要素(风速、温度、气压和相对湿度)观测资料和空气污染物(PM10、SO2、NO2和CO)监测数据,探讨广州市大气能见度的特征及大气能见度与气象要素和空气污染之间的关系。统计分析结果表明,广州市大气能见度的年、季、日变化特征明显,呈明显的逐年下降趋势。一年之中,春季能见度最低,夏季能见度最高。一日之中,早晨08时能见度最差,午后14时最好。能见度与气象要素及空气污染物的相关和偏相关分析结果表明能见度与平均风速呈显著正相关,与相对湿度呈显著负相关;能见度与4种污染物在简单相关分析中均呈显著的较强负相关关系,而在偏相关分析中的相关性极弱,说明空气污染物对能见度的影响是综合作用的。最后用多元线性回归法建立了大气能见度与相对湿度和PM10、SO2、NO2、CO等污染物浓度间的回归方程。  相似文献   

9.
为分析菏泽市大气颗粒物及其水溶性离子组分特征,本研究于2015年8月期间在菏泽市6个监测点位采集环境受体PM_(10)和PM_(2.5)样品共120个,利用离子色谱法测定颗粒物中水溶性无机离子(SO■、NO~-_3、NH~+_4、Cl~-、Ca~(2+)、K~+、Na~+、Mg~(2+)、F~-),并同步收集气象参数及气态污染物质量浓度等资料.结果表明,菏泽市夏季环境受体中颗粒物质量浓度ρ(PM_(10))和ρ(PM_(2.5))分别为94.5μg·m~(-3)、55.2μg·m~(-3),稍低于国内其他城市,这与各城市经济发展、产业能源结构、气象条件等因素有关.PM_(2.5)/PM_(10)值在0.5—0.8之间,表明菏泽市夏季细颗粒物(PM_(2.5))污染较为严重.但PM_(10)和PM_(2.5)中水溶性离子质量总浓度ρ(WSIs)分别为30.5μg·m~(-3)、17.0μg·m~(-3);质量分数w(WSIs)分别为32.4%、29.6%.其中SO■、NO~-_3、NH~+_4为PM_(10)和PM_(2.5)中主要水溶性离子,3种离子浓度和分别占PM_(10)和PM_(2.5)中总离子浓度的84.3%、88.3%.SO■、NO~-_3、NH~+_4、K~+主要集中在细颗粒物(PM_(2.5))中,Ca~(2+)、Mg~(2+)则广泛存在于粗颗粒物(PM_(10))中.各采样点的PM_(10)和PM_(2.5)中,SO■、NO~-_3、NH~+_4、Ca~(2+)和Mg~(2+)浓度分布具有空间差异.离子相关性表明,NH~+_4与SO■、NO~-_3相关性均较强,3种离子主要以NH_4HSO_4、NH_4NO_3形式存在.PM_(10)和PM_(2.5)中NO~-_3/SO■值分别在0.41—0.49和0.36—0.47之间,平均值分别为0.46、0.42,表明固定源是菏泽市夏季颗粒物污染的主要污染贡献源.  相似文献   

10.
研究太原市城区大气颗粒物质量浓度时空变化规律,可以为实施更有效的大气污染综合治理手段提供科学依据。以太原市9个国家空气质量自动监测站的数据为基础,运用统计分析和Kriging插值法,对太原市城区2019年大气颗粒物的时空分布进行了分析。结果表明,2019年太原市城区PM_(2.5)和PM_(10)年均质量浓度分别为56μg·m~(-3)和107μg·m~(-3),是国家二级标准限值的1.60、1.53倍,以PM_(2.5)和PM_(10)为首要污染物占总超标天数的44.03%和12.58%;PM_(2.5)/PM_(10)年均值为0.52,PM_(2.5)对PM_(10)贡献较大;PM_(2.5)季平均质量浓度为冬季(87μg·m~(-3))秋季(50μg·m~(-3))春季(49μg·m~(-3))夏季(34μg·m~(-3)),PM_(10)为冬季(123μg·m~(-3))春季(120μg·m~(-3))秋季(98μg·m~(-3))夏季(64μg·m~(-3));PM_(2.5)和PM_(10)质量浓度月变化呈U型,二者平均质量浓度1月最高,8月最低;PM_(2.5)和PM_(10)24h质量浓度变化呈"单峰单谷"型,峰值在10:00,谷值在17:00;取暖期PM_(2.5)与CO、SO2和NO_2相关性高于其他时段;太原市城区PM_(2.5)和PM_(10)质量浓度空间分布总体上呈北低南高之势,PM_(2.5)春夏秋季的空间分布格局与太原市城区生产、生活、交通干道分布格局比较吻合。以上结果提示秋冬季是太原市城区颗粒物治理的关键时期,位于南部的小店和晋源区为重点防控治理区域。  相似文献   

11.
基于春节前后(2018年1月1日—2018年3月31日)宝鸡市高新区宝鸡文理学院站点的黑碳气溶胶(BC)、浊度仪、颗粒态污染物(PM_(10)、PM_(2.5)和PM_(1.0))、气态污染物(CO、NO_2、SO_2和O_3)的逐时数据及常规气象数据,对宝鸡市高新区BC气溶胶的时间变化特征、来源及影响因素进行分析.结果表明,观测期间BC质量浓度的变化范围为0.01—5.62μg·m~(-3),平均浓度为0.63μg·m~(-3).BC与风速和能见度均呈负相关.观测期间BC浓度日变化呈"双峰双谷"型,峰值出现在09:00和19:00,谷值出现在05:00和16:00;寒假前BC浓度昼夜变化整体高于寒假期间和春季开学,可能与寒假前频繁的人为活动,不易扩散的气象条件有关.BC占PM_(2.5)的0.84%,其吸收作用占大气消光的2.14%.除O_3外,BC日平均浓度与PM_(2.5)、CO和NO_2呈显著相关,相关系数分别为0.626、0.623和0.473,说明BC气溶胶与之均有部分共同源.  相似文献   

12.
北京市2012-2013年秋冬季大气颗粒物污染特征分析   总被引:5,自引:0,他引:5  
大气颗粒物一直是影响我国城市空气质量的重要污染物,2013年1月北京市的严重灰霾污染更是带来了重大的健康危害和经济损失。为了摸清北京市颗粒物污染的特征,本文利用北京市实时发布的颗粒物污染监测数据,选取污染最为严重的2012-2013年秋冬季时段,对颗粒物的达标情况、变化趋势及其与气象因子相关性等方面进行研究。研究结果表明:1)2012年,北京市年均ρ(PM10)为109.0μg.m-3,超过了新国标二级标准限值,日均ρ(PM10)的超标天数为84天,全年超标天数比例为23.0%。2)2012年10月至2013年2月,ρ(PM10)达标天数比例为77.9%,ρ(PM2.5)的达标天数比例为51.9%。各月ρ(PM2.5)的达标天数比例均低于ρ(PM10),某些月份二者达标天数比例差异很大。3)ρ(PM2.5)与ρ(PM10)的逐小时连续变化趋势基本相同,变化特征为"快速积累,迅速消散,持续时间不定"。ρ(PM2.5)与ρ(PM10)平均值24 h的变化呈双峰双谷曲线,颗粒物质量浓度夜间高于白天。4)研究期日均ρ(PM10)和ρ(PM2.5)与日均相对湿度呈显著正相关关系,与平均风速和最大风速呈显著负相关关系,ρ(PM2.5)比ρ(PM10)更易受气象条件变化影响。5)ρ(PM10)和ρ(PM2.5)日均值有着非常显著的线性相关关系。本研究得出的ρ(PM2.5)/ρ(PM10)的均值高于之前北京市及我国其他城市研究得出的数值,严重污染现象是由特殊的气象背景条件与污染物高排放共同导致的。  相似文献   

13.
近年来和田经济迅速发展及城市人口快速增长,汽车尾气、工业废气等各类污染物的城区排放量也在不断增加,加重了和田市大气污染。为评估和田市城区风速、沙尘天气对大气PM_(2.5)毒性的影响,于2014年1月、4月、7月、10—11月采集大气PM_(2.5)样品,应用质粒DNA评价法研究其PM_(2.5)的氧化性损伤能力。结果表明,采样期间,和田市城区大气PM_(2.5)质量浓度的变化范围为70~2489μg·m~(-3),PM_(2.5)质量浓度有随风速增大而增大的趋势。应用TD30(造成30%DNA损伤率所需的颗粒物剂量,μg·mL~(-1))值指示颗粒物氧化性损伤能力,结果表明,TD30越高,颗粒物氧化性损伤能力越弱,全样和水溶部分TD30值的变化范围分别为444~27480μg·mL~(-1)和481~20434μg·m L~(-1);不论是全样还是水溶部分,其对质粒DNA的氧化性损伤均表现出随风速减小而增大的变化趋势;沙尘和非沙尘期间全样TD30的平均值分别为9464μg·mL~(-1)和8008μg·mL~(-1),而水溶部分分别为5494μg·mL~(-1)和7822μg·mL~(-1),即沙尘期间采集的颗粒物对体外DNA的氧化性损伤小于非沙尘期间采集的样品,且非沙尘期间采集的样品的全样损伤大于相应的水溶部分样,而沙尘状况下体外DNA的氧化性损伤可能主要来源于水溶成分。全样和水溶部分的TD30平均值与PM_(2.5)平均质量浓度之间存在明显的正相关趋势,说明颗粒物的质量浓度对DNA氧化损伤起着一定的作用。  相似文献   

14.
通过研究遂宁市环境空气质量变化趋势、城区空气颗粒物组成及浓度变化,系统分析了遂宁市雾霾天气的污染状况及成因,并横向比较了四川省内各城市的空气质量.研究结果表明,细颗粒物(PM2.5)是遂宁市环境空气中的主要污染物.2012年遂宁市大气中PM2.5浓度值为35—119μg·m-3,平均值为68μg·m-3.2013年1—4月,PM2.5浓度值为21—120μg·m-3,达标率不到50%.尤其在2013年3月,PM2.5/PM10由62.0%—87.2%降低为45.3%.由此判断遂宁市环境空气质量主要受细颗粒物类型、气象条件以及大气污染物长距离迁移等因素影响,其中细颗粒物的最主要来源为机动车尾气排放,并提出了细颗粒物污染防治的对策措施.  相似文献   

15.
大气细颗粒物PM_(2.5)是危害人体健康和环境最主要的空气污染物之一,对其水溶性离子的研究是一项非常必要而迫切的工作。文章对乌鲁木齐市中心区域树木年轮实验室和黑山头2013年1月-2014年2月期间采集的大气细颗粒物样品,利用离子色谱仪分析了其中的水溶性离子分布特征,采用硫转化率(SOR)、离子相关性分析等分析其可能来源,结果表明:年轮室和黑山头PM_(2.5)中总离子浓度平均值分别为88.03和65.11μg·m~(-3),分别占PM_(2.5)质量浓度的51.21%和33.8%。年轮室各种离子的季节变化明显:SO_4~(2-)、NO_3~-、Cl~-和NH_4~+表现为冬季秋季春季夏季,Na~+表现为冬季秋季夏季春季,Ca~(2+)表现为秋季夏季春季冬季。SO_4~(2-)、NO_3~-和NH_4~+是PM_(2.5)中主要的离子,(NH_4)_2SO_4、NH_4HSO_4和NH_4NO_3是乌鲁木齐PM_(2.5)中水溶性组分的可能结合方式。Cl~-和K~+主要来源于化石燃料和生物质的燃烧排放,Ca~(2+)和Mg~(2+)主要来自土壤、二次扬尘和燃煤。乌鲁木齐大气PM_(2.5)中ρ(NO_3~-)/ρ(SO_4~(2-))为0.40,说明目前固定排放源仍然是乌鲁木齐大气污染物的主要来源。本研究为更深入了解乌鲁木齐市颗粒物污染现状提供参考,同时为确定乌鲁木齐市大气污染治理重点、制定大气污染防治规划提供依据。  相似文献   

16.
为研究广州地区典型光化学污染过程形成的高浓度臭氧事件的变化特征及成因,2011年5月17—20日利用广州番禺大气成分站(GPACS)对污染气体(O_3、VOCs、NO_2、NO)、颗粒物(PM_1、PM_(2.5)、PM_(10))、能见度以及气象要素进行了监测.结果表明,光化学污染过程期间,臭氧总体浓度比较高,最大臭氧1 h浓度分别为103.8×10~(-9)、169.9×10~(-9)、146.1×10~(-9)以及115.5×10~(-9),远超国家二级标准93×10~(-9)(200μg·m~(-3)).但颗粒物浓度保持较低水平,颗粒物日均值远低于国家二级标准(PM_(10)为150μg·m~(-3),PM_(2.5)为75μg·m~(-3)),能见度整体较高.芳香烃和烯烃是臭氧生成潜势最大的两个成分,其中异戊二烯、间二甲苯、对二甲苯、甲苯等物种对臭氧生成贡献大.均压场-冷锋前天气形势带来的不利于污染物扩散的气象条件、强烈的辐射以及高浓度VOCs共同导致了这次高浓度臭氧污染事件的发生.  相似文献   

17.
利用河北邯郸气象和环境监测资料,分析了邯郸采暖期空气质量和环境气象条件特征;同时利用线性回归和BP神经网络统计方法对采暖期空气质量进行了预报研究。结果表明,PM_(10)、PM_(2.5)、SO_2、NO_2、CO(95)(CO日均值的第95百分位数)的空气质量指数(AQI)在冬季最高,夏季最低,O_3-8(90)(O_3日最大8 h值的第90百分位数)的AQI则相反。邯郸采暖期首要污染物以PM_(2.5)和PM_(10)为主,除O_3-8(90)外,其他5种污染物采暖期AQI均高于其年均值;同时采暖期降水少,温度低,小风出现频率明显高于非采暖期,而且局地逆温强,静稳天气指数高,是全年环境气象条件最差的时期。邯郸采暖期的环境气象条件1月最差,且夜晚差于白天,尤其是局地5—7时。邯郸采暖期首要污染物浓度与前一日污染物浓度、静稳指数、逆温、相对湿度和露点温度等呈正相关,与气温、风速、能见度和混合层高度等呈负相关。BP神经网络模型对污染物浓度的预报效果优于线性回归模型,可尝试应用于邯郸空气质量预报工作。  相似文献   

18.
于2015年1月至11月在广州利用大流量大气颗粒物采样器采集细颗粒物(PM_(2.5))样品,并利用热光反射法(TOR)测定大气颗粒物中有机碳(OC)和元素碳(EC)浓度。结果表明,广州ρ(PM_(2.5))年均值为(69.5±35.6)μg·m~(-3),是GB 3095—2012《环境空气质量标准》中PM_(2.5)年均质量浓度二级标准限值(35μg·m~(-3))的2.0倍,表明广州大气细颗粒物污染严重。OC、EC和总碳气溶胶(TCA)的年均质量浓度分别为(8.31±4.53)、(3.56±2.72)和(16.85±9.60)μg·m~(-3),分别占PM_(2.5)质量浓度的13.2%、5.9%和27.0%,表明含碳组分是PM_(2.5)的重要组成部分。OC和EC浓度季节变化规律存在差异性,OC浓度在冬季最高,而EC浓度在秋季最高。OC和EC的相关性弱和比值高的特征结果表明冬季二次有机碳(SOC)污染最严重,其平均质量浓度为6.9μg·m~(-3),占OC质量浓度的62.4%。主成分分析结果表明,冬季和春季广州PM_(2.5)中碳组分来源较复杂,主要包括机动车尾气、燃煤和生物质燃烧,夏季碳组分的主导污染来源是燃煤和机动车尾气,而秋季碳组分主要来源于机动车尾气。  相似文献   

19.
大气细颗粒物(PM_(2.5))与雾霾天气密切相关,PM_(2.5)吸附的有毒有害物质,可能给人体健康带来危害。二次水溶性无机离子(SNA,包括SO_4~(2-)、NO_3~-和NH_4~+)是PM_(2.5)的重要组分,研究PM_(2.5)中SNA污染特征及形成和演化的影响因素,对认识雾霾污染的生消机制,提升人们的生活质量具有重要意义。利用在线气体及气溶胶成分监测系统(MARGA)观测了宁波市滨海地区春季、夏季和秋季大气PM_(2.5)中的SNA和气态污染物的变化趋势,并利用后向轨迹分析研究了不同气团影响下污染物的日变化规律。结果表明,观测期间,SNA在PM_(2.5)中的平均占比约为70.7%,NO_3~-是导致PM_(2.5)污染加重的主导离子。NO_3~-和SO_4~(2-)受气团传输影响较大,来自陆地气团的质量浓度普遍高于海洋气团,来自西北内陆方向的污染物输送是导致宁波空气质量下降的主要原因。宁波大气中的硫氧化率(SOR)较高,SO_4~(2-)主要由SO_2发生二次氧化反应生成;SO_4~(2-)的形成与相对湿度(RH)密切相关,SOR随着RH的增加而显著增大,当RH85%时,大气中的硫氧化物绝大部分以SO_4~(2-)形式存在,SOR接近1;而温度变化对SOR无明显影响;来自西南与东部受海洋显著影响的气团SOR高于来自陆地气团的相应值。夏季RH普遍较高,西南方向气团影响下高浓度的气态污染物(NO_2、O_3、NH_3)可明显促进SO_4~(2-)的生成,一定程度上控制人为气态污染物的排放能有效减少SO_4~(2-)生成。与SOR比较而言,氮氧化率(NOR)和NO_3~-与温度、RH、气态污染物浓度等环境因素的关系比较复杂,暗示多种反应机理共同作用影响氮氧化物的转化。  相似文献   

20.
建立了大气颗粒物(PM_(2.5)、PM_(10))中左旋葡聚糖、甘露聚糖、半乳聚糖的高效阴离子交换色谱(HPAEC)与脉冲安培检测器(PAD)联用(HPAEC-PAD)技术的快速检测法.样品采用超纯水30 min振荡提取,经浓度250 mmol·L~(-1),流速0.45 m L·min~(-1)的氢氧化钠淋洗液洗脱,45 min完成检测,该方法线性良好,相关系数达0.9999,实际样品测试加标回收率在89%—104%,精密度在1.2%—7.1%.对北京市2016年1月采暖季的大气颗粒物样品(PM_(2.5)、PM_(10))进行了检测,其中左旋葡聚糖浓度较高分别为113±100 ng·m~(-3),118±124 ng·m~(-3),计算左旋葡聚糖与甘露聚糖浓度比例关系可知,北京冬季大气颗粒物中生物质燃烧来源主要为硬木燃烧.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号