首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Wool dyeing wastewater contains xenobiotic compounds that can be removed by biotechnological processes. Studies on various dyes showed that anaerobic processes are suitable to alter azo dyes as a first step of the biodegradation process. These compounds are reduced by anaerobic consortia to aromatic amines and its ultimate degradation can be achieved by a further aerobic treatment.

Studies on degradation rate of an wool acid dye were performed in batch systems inoculated with anaerobic biomass. A commercial diazo dye, Acid Red 73, was added to the synthetic medium in which glucose was used as sole carbon source.

Results indicated that the Acid Red 73 was partially degraded by a mixed culture of anaerobic bacteria and a decolorization of 90% was obtained. Kinetics studies on removal of the colour showed that the decolorization rate was several times faster than the degradation rate of glucose for a range of dye concentrations between 60 mg/L and 400 mg/L. A first order kinetic model was used for dye concentrations up to 200 mg/L. For higher concentrations a model similar to the Michaelis‐Menten equation was better fitted to the experimental data.  相似文献   

2.
黄孢原毛平革菌对固体介质中染料的降解反应   总被引:3,自引:0,他引:3  
用黄孢原毛平革菌(Phanerochaetechrysosporium)3品系在固体介质中建立染料的降解反应体系,分光光度法测定染料的脱色降解率。黄孢原毛平革菌在琼脂、沙子及土壤等固体介质中均能有效地降解偶氮染料、蒽醌染料及聚合染料;植物材料玉米芯和木屑可作为共代谢碳源被该菌利用;BKM F 1767菌种降解能力最强,对活性艳蓝KN R的进攻性优于对PolyR 478和比布列希猩红。  相似文献   

3.
Molasses spent wash from cane-molasses based distilleries contains a brown coloured recalcitrantpolymer melanoidin, which if disposed untreated poses a great threat to environment. Microbial decolorization and chemical oxygen demand (COD) reduction was found to be dependent on specific carbon and nitrogen source. Under optimal condition of pH, carbon and nitrogen concentration for each treatment, it was found that Bacillus sp isolated from soil was capable of removing COD (85. 35%) and colour (81.10%) from distillery waste to the maximum extent after 9 days atpH 7 in the medium containing 0.5% peptone, 2% glucose and 10% (v/v), followed by Phanerochaete chrysosporium and lowest reduction was obtained by using native microbial consortium.  相似文献   

4.
This study aims to investigate the anaerobic degradation kinetics of reactive dye, C.I. Reactive Red 141 (Evercion Red H-E7B) by partially granulated anaerobic mixed culture using three carbon sources, namely modified starch (MS), polyvinyl alcohol (PVA) and acrylic size (AS) during batch incubation. There is a first-order kinetics reaction in the decolorization processes using MS and PVA as carbon sources, while a zero-order kinetics relationship describes the decolorization process for the AS carbon source. The k values and color removal rate of decolorization with MS carbon source was higher than those of PVA and AS carbon sources. This is because the MS carbon source was well degraded in comparison to AS and PVA, respectively This study also found dye reduction could be enhanced through the addition of MS as a carbon source. The decolorization rates increased with decrease in dye concentrations of RR 141. In contrast, the decolorization rates increased with increase in COD concentration.  相似文献   

5.
The effect of pH, nutrient and aeration was studied on the removal of colour and reduction of BOD, COD and heavy metals with addition of readily available source of nitrogen and phosphorus in concentration of 1.0 g/L. Recalcitrant compound was effectively degraded by active microbial consortia. The isolated bacteria were identified as Pseudomonas putida (S1), Citrobacter sp. (S4) and Enterobacter sp. (S5). These organisms not only decolourised effluent upto 97% but reduced BOD, COD, phenolics and sulfide upto 96.63, 96.80, 96.92 and 96.67% respectively within 24 hrs of aeration and the heavy metals were removed upto 82-99.80%. The TSS and TDS were sharply reduced due to degradation. The absorption maxima was also decreased to 90%. However, in control without the microbial consortium no noticeable change was produced.  相似文献   

6.
蒽醌染料及其中间体絮凝菌的特性   总被引:14,自引:1,他引:13  
本文研究所分离到的真菌NX1对蒽醌染料KNR及其中间体溴氨酸的作用,并考察营养条件、体系PH等对NX1的生长及絮凝作用的影响,结果表明,NZ1及溴氨酸有很好的絮絮凝效果,对PH的适应范围广,最佳碳、氮源分别为蔗粮主尿素。  相似文献   

7.
Pollution from synthetic dyes has emerged to be a significant environmental issue over the past few decades. This has mainly been triggered by the increasing global dye production, possible toxic effects, undesirable colour and high persistence in the environment. Biosorption, which involves dye removal from aqueous solution by passive linkage in live and dead biomass, has shown great potential in removing dyes from aquatic environments. Among aquatic macrophytes, water hyacinth, Eichhornia crassipes, has shown great potential as a biosorbent. In this work, we investigated the removal of two basic dyes, methylene blue and crystal violet, using E. crassipes immobilized on alginate. Results showed that the Langmuir model better described the equilibrium sorption data when compared to the Freundlich model. Optimum amounts of methylene blue and crystal violet dyes were adsorbed in the alkaline pH range (8–10), 8 % biomass dose, and the amount of dye removed increased with increasing initial dye concentration. The equilibrium monocomponent adsorption capacities for the dyes were 111.1 and 43.5 mg/g, while the binary adsorption capacities were 26.1 and 11.6 mg/g for methylene blue and crystal violet, respectively. To conclude, we show for the first time that E. crassipes fixed on alginate beads can uptake and adsorb methylene blue and crystal violet dyes very effectively in batch systems and show great potential for dye removal from aquatic environments.  相似文献   

8.
Several synthetic dyes employed in textile and food industries are discharged into aquatic environment. These visible pollutants in water damage environment, as they are carcinogenic and toxic to humans. The use of cost effective and ecofriendly plant cellulose based adsorbents have been studied in batch experiments as an alternative and effective substitution of activated carbon for the removal of toxic dyes from waste water. Adsorbents prepared from sugarcane baggase, were successfully used to remove certain textile dye such as crystal violet from an aqueous solution. The present investigation potentiate the use of sugarcane baggase, pretreated with formaldehyde (referred as Raw Baggase) and sulphuric acid (referred as Chemically Activated Baggase), for the removal of crystal violet dye from simulated waste water. Experiments were carried out at neutral pH with various parameters like dye concentration, temperature, contact time and adsorbent dosage. Efficiency of raw baggase was found better than chemically activated baggase for adsorption of crystal violet dye. The data obtained perfectly fits in the Freundlich adsorption isotherm.  相似文献   

9.
Peroxidases from turnip roots (524?U?g?1 of vegetable) were highly effective in decolorizing acid dyes having wide spectrum chemical groups. Dye solutions, containing 40–170?mg?dye?L?1, were treated by turnip peroxidases (TP) (specific activity of 122.0?U?mg?1 proteins). These enzymes were able to decolorize most of the acid dyes in the presence of 2.0?mM 1-hydroxybenzotriazole (HOBT). Increasing concentration of enzyme and time in the absence of HOBT did not influence dye decolorization. The rate of decolorization was significantly enhanced when HOBT was added to the decolorizing solutions. The decolorization of all the used dyes was maximum at pH 5.0 and 40°C. Complex mixtures of dyes were significantly decolorized when treated with enzyme in the presence of HOBT (2.0?mM). Phytotoxicity test based on Allium cepa root growth inhibition has shown that majority of the TP-treated dye product were not more toxic than their parent dye. Kinetic parameters of the TP with various dyes showed that this enzyme has highest affinity for Acid Yellow 42. This study demonstrates that the peroxidase/mediator system was an effective biocatalyst for the treatment of industrial effluents from textile, dye manufacturing, dyeing and printing industries or complex mixtures of dyes.  相似文献   

10.
Increasing studies on extraction, purification and modification processes of natural dyes and antimicrobials, and their subsequent application on textiles demonstrate the revival of natural dyeing and finishing. Natural dyes have been widely used in textile coloration since ancient times. But, with advent of man-made synthetic dyes in the mid-nineteenth century, the dye market has been captured due to a variety of competitive properties of synthetic dyes against natural ones such as lower cost, higher fastness, color variety, ability to dye synthetic fibers and availability in large industrial scale. However, most of the synthetic dyes raise some serious problems in human health and cause environmental risks. Due to these drawbacks along with the growing awareness about cleaner surroundings and healthy lifestyle, there has been recently a worldwide interest in the production and application of dyes from two natural sources, plants and microorganisms. Most of these natural dyes have also inherently antimicrobial properties and could consequently possess high medicinal activity. They are extracted from different types of microorganisms as well as various parts of the plants that contain coloring materials such as tannin, flavonoids and quinonoids. Here we review the latest scientific researches on extraction and application of natural dyes/antimicrobials on textiles as effective coloring and antibacterial agents. First, different methods of extraction of natural dyes/antimicrobials will be discussed, and then, current methods of textile treatments and examples of early applications of these dyes on textile processing, properties achieved and the results obtained will be presented.  相似文献   

11.
采用15种不同的微生物菌剂,以葡萄糖配水、中药提取废水、啤酒废水、氨氮配水等为基质,分别测定了微生物菌剂的耗氧速率和厌氧比产甲烷速率,以单位菌剂对不同基质的耗氧速率和厌氧比产甲烷活性为指标,比较了各菌剂对废水的适配性.根据测定结果选择活性高的菌剂,在试验室进行了菌剂对废水的连续处理试验.结果表明,不同菌剂对同一种废水的好氧或厌氧活性不同,同种菌剂对不同废水的好氧和厌氧活性不同.废水的连续处理试验取得良好的处理效果.No.8菌剂处理葡萄糖配水,系统有机负荷最高可达(COD)10.8 g L-1d-1,COD去除率可达90%以上;采用No.10菌剂处理氨氮配水,好氧氨氮负荷可达(NH4-N )1.42 g L-1d-1,厌氧氨氮负荷可达(NH4-N )0.3 gL-1d-1,系统NH4-N 去除率可达90%以上.图2表3参8  相似文献   

12.
In this study, the removal of methylene blue (MB) by the coupling of black carbon (BC) and TiO2 was investigated. The effects of different parameters such as catalyst dose, sorbent, initial concentrations of dye, pH of the solutions, recycles on discoloration, and chemical oxidation demand (COD) reduction of MB were monitored to optimize the reaction conditions. The discoloration and COD conversation rate of MB obtained by the coupling process were 100% after 90?min irradiation. The synergistic effect of MB-adsorption on BC followed by degradation through TiO2 photocatalysis was proved by FT–IR spectrophotometer. The BC as by-product of natural materials is a promising adsorbent for waste water treatment.  相似文献   

13.
The process involving the combination of powdered activated carbon (PAC) and biomass in the aeration basin of conventional continuous‐flow activated sludge system, known as the PACT process, has proven to be effective for treating toxic pollutants present in industrial wastewaters. In view of the many advantages of sequencing batch reactors (SBR) operationally, the objective of this study is to evaluate the PACT process under SBR operation to treat wastewater containing Acid Blue 25 (AR) and Basic Yellow 2 dyes (BR). The SBR systems were operated with FILL, REACT, SETTLE and DRAW periods in the ratio of 0.25:3.75: 1.0:1.0 for a cycle time of 6 h. The average COD and AR removal efficiencies were 89% and 93%, respectively with PAC addition compared to 76% and 7%, respectively, without PAC addition. In the case of BR, the average removal efficiencies of COD and dye increased from 52% and 9% to 90% and 93%, respectively, with PAC addition. Kinetic study conducted for the REACT period showed that both dyes exhibited a very pronounced inhibitory effect on the activities of the microorganisms. The addition of PAC was capable of reducing the inhibitory effect of only BR but not AR on the microorganisms.  相似文献   

14.
● MnO x /Ti flow-through anode was coupled with the biofilm-attached cathode in ECBR. ● ECBR was able to enhance the azo dye removal and reduce the energy consumption. ● MnIV=O generated on the electrified MnO x /Ti anode catalyzed the azo dye oxidation. ● Aerobic heterotrophic bacteria on the cathode degraded azo dye intermediate products. ● Biodegradation of intermediate products was stimulated under the electric field. Dyeing wastewater treatment remains a challenge. Although effective, the in-series process using electrochemical oxidation as the pre- or post-treatment of biodegradation is long. This study proposes a compact dual-chamber electrocatalytic biofilm reactor (ECBR) to complete azo dye decolorization and mineralization in a single unit via anodic oxidation on a MnOx/Ti flow-through anode followed by cathodic biodegradation on carbon felts. Compared with the electrocatalytic reactor with a stainless-steel cathode (ECR-SS) and the biofilm reactor (BR), the ECBR increased the chemical oxygen demand (COD) removal efficiency by 24 % and 31 % (600 mg/L Acid Orange 7 as the feed, current of 6 mA), respectively. The COD removal efficiency of the ECBR was even higher than the sum of those of ECR-SS and BR. The ECBR also reduced the energy consumption (3.07 kWh/kg COD) by approximately half compared with ECR-SS. The advantages of the ECBR in azo dye removal were attributed to the synergistic effect of the MnOx/Ti flow-through anode and cathodic biofilms. Catalyzed by MnIV=O generated on the MnOx/Ti anode under a low applied current, azo dyes were oxidized and decolored. The intermediate products with improved biodegradability were further mineralized by the cathodic aerobic heterotrophic bacteria (non-electrochemically active) under the stimulation of the applied current. Taking advantage of the mutual interactions among the electricity, anode, and bacteria, this study provides a novel and compact process for the effective and energy-efficient treatment of azo dye wastewater.  相似文献   

15.
• Mutations in Lignin peroxidase Trp171 environment improved azo dyes degradation. • Expression on yeast cell surface and cell lysis allowed reusability of biocatalyst. • Aga2-LiP chimeric variants were characterized. The enzymatic degradation of azo dyes is a promising alternative to ineffective chemical and physical remediation methods. Lignin peroxidase (LiP) from Phanerochaete chrysosporium is a heme-containing lignin-degrading oxidoreductase that catalyzes the peroxide-dependent oxidation of diverse molecules, including industrial dyes. This enzyme is therefore ideal as a starting point for protein engineering. Accordingly, we subjected two positions (165 and 264) in the environment of the catalytic Trp171 residue to saturation mutagenesis, and the resulting library of 104 independent clones was expressed on the surface of yeast cells. This yeast display library was used for the selection of variants with the ability to break down structurally-distinct azo dyes more efficiently. We identified mutants with up to 10-fold greater affinity than wild-type LiP for three diverse azo dyes (Evans blue, amido black 10B and Guinea green) and up to 13-fold higher catalytic activity. Additionally, cell wall fragments displaying mutant LiP enzymes were prepared by toluene-induced cell lysis, achieving significant increases in both enzyme activity and stability compared to a whole-cell biocatalyst. LiP-coated cell wall fragments retained their initial dye degradation activity after 10 reaction cycles each lasting 8 h. The best-performing mutants removed up to 2.5-fold more of each dye than the wild-type LiP in multiple reaction cycles.  相似文献   

16.
为评价撕裂蜡孔菌P2处理橙黄G染料废水的应用潜力,采用批次实验在开敞系统中研究静置与摇动、染料初始浓度、pH、温度、盐度、碳源、氮源、金属离子等因子对该菌降解橙黄G染料废水的影响,同时利用植物萌发与微生物抑菌试验进行染料与脱色溶液的毒性测试.结果表明,与摇动培养相比,静置培养更适合于撕裂蜡孔菌的脱色,最适脱色pH与温度分别为9和25℃.盐度测试结果显示撕裂蜡孔菌能在浓度为128 g L-1的盐溶液中能进行高效脱色,可达70%以上.在上述参数体系的优化基础上,分别进行了碳源、氮源与金属离子的添加优化实验,结果显示碳源、氮源与金属离子的最适浓度分别为4 g L-1葡萄糖、0.15 g L-1硝酸铵和0.1 mmol L-1 Zn2+.菌丝吸附在整个脱色过程中作用较小,撕裂蜡孔菌对橙黄G的脱色过程以酶的降解为主,未发现该菌分泌漆酶,只分泌锰过氧化物酶与木质素过氧化物酶,其最高活性分别为230 U mL-1和158 U mL-1.植物与微生物毒性分析显示撕裂蜡孔菌脱色后的产物对植物与微生物的毒性大大降低.因此,撕裂蜡孔菌对于处理橙黄G染料废水具有良好的应用潜力.  相似文献   

17.
刘桂萍  王明杰  刘长风 《生态环境》2010,19(10):2479-2483
利用壳聚糖/钠基膨润土复合絮凝剂对活性艳红X3B等11种染料模拟废水及实际印染废水进行絮凝脱色处理。考察了复合絮凝剂投加量、pH值、搅拌速率、搅拌时间等因素对模拟染料废水絮凝脱色的影响。结果表明,在染料浓度为100 mg.L-1,pH为5的条件下,复合絮凝剂投加量为1.25 g.L-1时,3种质量比的复合絮凝剂对活性艳红X3B的脱色率分别达到75%、90%和97%以上;质量比为1∶10的壳聚糖/钠基膨润土复合絮凝剂,对其它活性、还原性、分散性、水溶性等8种印染厂常用染料也具有很好的絮凝脱色作用,脱色率均可达94%以上。对印染废水处理厂进水口废水和经过A/O处理后废水的色度去除率和COD去除率分别可以达到81.05%、83.74%和53.21%、41.22%,具有一定的应用前景。  相似文献   

18.
Adsorption potential of a commercial activated carbon (FS300) has been evaluated for the uptake of cationic dyes namely methylene blue (MB) and rhodamine B (RB). Though, there are numerous studies in literature which report the sorption of MB (more than 40 studies) and RB (more than 10), however none of these use a common parameter to report the capacity of the sorbent. A protocol, based on the equilibrium dye concentration has been proposed to measure the sorption potential of a sorbent. The Langmuir model can very well describe the experimental equilibrium data for both dyes (coefficient of correlation > 0.999). MB (Qm = 312.5 mg g(-1)) is more adsorbable than the RB (Qm = 144.9 mg g(-1)). Molecular weight and chemical structure of dye molecules seem to affect the dye uptake. The effect of pH on dye uptake has also been evaluated by varyingpH from 3 to 11. Uptake of MB increases with pH, wherein RB removal decreases with pH. Dyes could not be desorbed either by distilled water (0.06 and 0.11% for MB and RB respectively), or by 0.1 NHCl (0.136 and 3.0% for MB and RB respectively) indicating, chemical adsorption type of adsorbent-adsorbate interactions.  相似文献   

19.
Lasiodiplodia theobromae, a common tea (Camellia sinensis) pathogen, usually does not sporulate or sporulates poorly in common media, which makes spore production difficult. In this study the effects of culture media, carbon source, nitrogen source, temperature, pH and light on mycelial growth and sporulation were evaluated. Among several carbon sources tested, glucose and sucrose were found superior for growth. Potassium nitrate supplemented media showed maximum growth amongst the tested inorganic nitrogen sources while peptone produced maximum growth among the tested organic nitrogen sources. Tea root extract supplemented potato dextrose agar medium was found to be the most suitable for mycelial growth and sporulation of L. theobromae. The fungus grow at temperatures ranging from 40 to 36 degrees C, with optimum growth at 28 degrees C and no growth was noted at 40 degrees C. There was no significant effect of different light period on growth of L. theobromae, but light enhanced sporulation. The fungus grow at pH 3.0-8.0 and optimum growth was observed at pH 6.0. Tea root extract supplemented potato dextrose agar medium with pH 6.0 was the most suitable for production of conidia of L. theobromae at 28 degrees C. Hence this media may be recommended for inoculum production for further studies.  相似文献   

20.
This paper reports the application of Box-Behnken experimental design to illustrate the adsorption of direct dyes (Indosol Black NF and Indosol Orange RSN) using polyethyleneimine (PEI)-treated peanut husk biomass. The effect of three independent variables (initial dyes concentration, biosorbent dose and pH) was investigated during the study. Maximum biosorption capacity (141 and 98.2 mg/g) of PEI-pretreated biomass was achieved with 200 mg/L initial dye concentration and 0.05 g/50 mL biomass dose for Indosol Black NF and Indosol Orange RSN, respectively. Acidic pH was found to be favourable for maximum dyes removal. Characterisation of biosorbent was carried out through Fourier transform-infrared spectroscopy (FT-IR), scanning electron microscopy, thermogravimetric analysis (TGA) and point of zero charge determination. FT-IR analyses confirmed the involvement of carboxylic and carbonyl groups. The desorption study was also conducted to check out the possibility of regeneration of dyes and adsorbent and it was found that 51.58 and 76.6% of Indosol Black NF and Indosol Orange RSN, respectively, can be desorbed from the loaded biosorbent by using 1 M NaOH solution. The results indicated that PEI-treated peanut husk biomass can be used as an efficient biosorbent for the removal of Indosol Black NF and Indosol Orange RSN dyes from aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号