首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Turbidity currents traversing canyon-fan systems flow over bed slopes that decrease in the downstream direction. This slope decrease eventually causes turbidity currents to decelerate and enter a net-depositional mode. When the slope decrease is relatively rapid in the downstream direction, the turbidity current undergoes a concomitantly rapid and substantial transition. Similar conditions are found when turbidity currents debouch to fan systems with loss of lateral confinement. In this work a simplified approach to perform direct numerical simulation of continuous turbidity currents undergoing slope breaks and loss of lateral confinement is presented and applied to study turbulence modulation in the flow. The presence of settling sediment particles breaks the top–bottom symmetry of the flow, with a tendency to self-stratify. This self-stratification damps turbulence, particularly near the bottom wall, affecting substantially the flow’s ability to transport sediment in suspension. This work reports results on two different situations: turbidity currents driven by fine and coarser sediment flowing through a decreasing slope. In the case of fine sediment, after the reduction in the slope of the channel, the flow remains turbulent with only a modest influence on turbulence statistics. In the case of coarse sediments, after the change in slope, turbulence is totally suppressed.  相似文献   

2.
The curvature-driven secondary flow in sinuous submarine channels has been a subject of considerable interest and controversy. Here, results from numerical model studies involving saline flow in laboratory-scale channels are presented. A 3D finite volume model of density and turbidity currents is used and simulations are run with different inflow discharges and channel-axis slopes. The simulation results show strong influence of bend wave length, channel gradient, confinement and cross sectional shape on the structure of secondary flow in submarine channels. Major findings are: (i) reversal of secondary flow in submarine channels is strongly associated with a tight bend characterized by a smaller wave length to width ratio or larger wave number, (ii) for the same inflow condition and planform characteristics, a trapezoidal channel cross section is more favorable to secondary flow reversal than a rectangular cross section, (iii) lateral convection resulting from the interaction between in-channel and overbank flows leads to the reversal of secondary flow in an unconfined channel at a lower channel slope than in a confined channel with the same dimensions, (iv) flow discharge has only nominal effect on the secondary flow in submarine channels.  相似文献   

3.
The scaling problem associated with the modeling of turbidity currents has been recognized but is yet to be explored systematically. This paper presents an analysis of the dimensionless governing equations of turbidity currents to investigate the scale effect. Three types of flow conditions are considered: (i) conservative density current; (ii) purely depositional turbidity current; and (iii) mixed erosional/depositional turbidity current. Two controlling dimensionless numbers, the Froude number and the Reynolds number, appear in the non-dimensional governing equations. When densimetric Froude similarity is satisfied, the analysis shows that the results would be scale-invariant for conservative density current under the rough turbulent condition. In the case of purely depositional flows, truly scale-invariant results cannot be obtained, as the Reynolds-mediated scale effects appear in the bottom boundary conditions of the flow velocity and sediment fall velocity. However, the scale effect would be relatively modest. The Reynolds effect becomes more significant for erosional or mixed erosional/depositional turbidity currents as Reynolds-mediated scale effects also appear in the sediment entrainment relation. Numerical simulations have been conducted at three different scales by considering densimetric Froude scaling alone as well as combined densimetric Froude and Reynolds similarity. Simulation results confirm that although the scaling of densimetric Froude number alone can produce scale-invariable results for conservative density currents, variations occur in the case of turbidity currents. The results become scale invariant when densimetric Froude and Reynolds similarities are satisfied simultaneously.  相似文献   

4.
Direct Numerical Simulations are employed to investigate the mixing dynamics of turbidity currents interacting with seamounts of various heights. The mixing properties are found to be governed by the competing effects of turbulence amplification and enhanced dissipation due to the three-dimensional topography. In addition, particle settling is seen to play an important role as well, as it affects the local density stratification, and hence the stability, of the current. The interplay of these different mechanisms results in the non-monotonic dependence of the mixing behavior on the height of the seamount. Regions of dilute lock fluid concentration generally mix more intensely as a result of the seafloor topography, while concentrated lock fluid remains relatively unaffected. For long times, the strongest mixing occurs for intermediate bump heights. Particle settling is seen to cause turbidity currents to mix more intensely with the ambient than gravity currents.  相似文献   

5.
6.
Laboratory experiments are conducted to quantify the mean flow structure and turbulence properties downstream of a spanwise suspended linear array in a uniform ambient water flow using Particle Tracking Velocimetry. Eighteen experimental scenarios, with four depth ratios (array depth to water column depth) of 0.35, 0.52, 0.78, and 0.95 and bulk Reynolds number (length scale is the array depth) from 11,600 to 68,170, are investigated. Three sub-layers form downstream of the array: (1) an internal wake zone, where the time-averaged velocity decreases with increasing distance downstream, (2) a shear layer which increases in vertical extent with increasing distance downstream of the array, and the rate of the increase is independent of the bulk Reynolds number or the depth ratio, and (3) an external wake layer with enhanced velocity under the array. The location of the shear layer is dependent on the depth ratio. The spatially averaged and normalized TKE of the wake has a short production region, followed by a decay region which is comparable to grid turbulence decay and is dependent on the depth ratio. The results suggest that the shear layer increases the transfer of horizontal momentum into the internal wake zone from the fluid outside of the array and that the turbulence in the internal wake zone can be modeled similarly to that of grid turbulence.  相似文献   

7.
The vertical diffusional mass (solute) transfer through a suspended sediment layer, e.g. at the bottom of a lake, reservoir or estuary, by the propagation of velocity fluctuations from above was investigated. The attenuation of the velocity fluctuations in the suspension layer and the associated effect on solute transfer through the suspension layer was simulated. To represent large eddies traveling downstream in water over a high-concentration suspended sediment layer, a streamwise velocity fluctuation moving in downstream direction was imposed along the upper boundary of the suspension layer. Velocity fluctuations and downstream velocity were normalized by the shearvelocity (U*) at the top of the suspension layer. Streamwise and vertical velocity components inside the suspension layer, were obtained from the 2-D continuity and the Navier–Stokes equations. The persistence of turbulence with depth—as it penetrates from the overlying water into the suspension layer—was found to depend on its amplitude, its period, and on the apparent viscosity of the suspension. The turbulence was found to propagate efficiently into the suspension layer when its frequency is low, and the apparent viscosity of the suspension is high. Effects on vertical mass transfer were parameterized by penetration depth and effective diffusion coefficient, and related to apparent viscosity of the suspension, Schmidt number and shear velocity on top of the suspension layer. The enhancement of turbulence penetration by viscosity is similar to the flow near an oscillating flat plate (Stokes’ second problem), but is opposite to turbulence penetration into a stationary porous and permeable sediment bed. The information is applicable to water quality modeling mear the sediment/water interface of lakes, river impoundments and estuaries.  相似文献   

8.
During floods, the density of river water usually increases due to a subsequent increase in the concentration of the suspended sediment that the river carries, causing the river to plunge underneath the free surface of a receiving water basin and form a turbidity current that continues to flow along the bottom. The study and understanding of such complex phenomena is of great importance, as they constitute one of the major mechanisms for suspended sediment transport from rivers into oceans, lakes or reservoirs. Unlike most of the previous numerical investigations on turbidity currents, in this paper, a 3D numerical model that simulates the dynamics and flow structure of turbidity currents, through a multiphase flow approach is proposed, using the commercial CFD code FLUENT. A series of numerical simulations that reproduce particular published laboratory flows are presented. The detailed qualitative and quantitative comparison of numerical with laboratory results indicates that apart from the global flow structure, the proposed numerical approach efficiently predicts various important aspects of turbidity current flows, such as the effect of suspended sediment mixture composition in the temporal and spatial evolution of the simulated currents, the interaction of turbidity currents with loose sediment bottom layers and the formation of internal hydraulic jumps. Furthermore, various extreme cases among the numerical runs considered are further analyzed, in order to identify the importance of various controlling flow parameters.  相似文献   

9.
In this study, the flow dynamics of intrusive gravity currents past a bottom-mounted obstacle were investigated using highly resolved numerical simulations. The propagation dynamics of a classic intrusive gravity current was first simulated in order to validate the numerical model with previous laboratory experiments. A bottom-mounted obstacle with a varying non-dimensional height of \(\tilde{D}=D/H\), where D is the obstacle height and H is the total flow depth, was then added to the problem in order to study the downstream flow pattern of the intrusive gravity current. For short obstacles, the intrusion re-established itself downstream without much distortion. However, for tall obstacles, the downstream flow was found to be a joint effect of horizontal advection, overshoot-springback phenomenon, and associated Kelvin-Helmholtz instabilities. Analysis of the numerical results show that the relationship between the downstream propagation speed and the obstacle height can be subdivided into three regimes: (1) a retarding regime (\(\tilde{D}\) \(\approx \) 0–0.3) where a 30 % increase in obstacle height leads to a 20 % reduction in propagation speed, simply due to the obstacle’s retarding effect; (2) an impounding regime (\(\tilde{D}\) \(\approx \) 0.3–0.6) where the additional 30 % increase in obstacle height only leads to a further (negligible) 5 % reduction in propagation speed, due to the accelerating effect of upstream impoundment and downstream enhanced mixing; and (3) a choking regime (\(\tilde{D}\) \(\approx \) 0.6–1.0) where the propagation speed is dramatically reduced due to the dominance of the obstacle’s blocking effect. The obstacle thickness was found to be irrelevant in determining the downstream propagation speed at least for the parameter range explored in this study. The present work highlights the significance of topographic effects in stratified flows with horizontal pressure forcing.  相似文献   

10.
It is generally thought that the laterofrontal cirri of the bivalve gill act as filters that retain suspended particles in the through current and transfer the particles onto the frontal surface of the gill filaments. In Mytilus edulis calculations indicated that if water passed between the branching cilia of the cirri that are assumed to constitute the filter the pressure drop needed would amount to about 10 times the actual pressure drop across the whole gill. Thus, instead of acting as filters the laterofrontal cirri seem to move water. Presumably, the cirri together with the frontal cilia produce the water currents along the frontal surface of the gill filaments. Particle retention in the bivalve gill implies the transfer of suspended particles from the current of water about to enter an interfilamentar space into a neighbouring frontal surface current. The complex three-dimensional pattern of flow that arises where the 2 systems of current meet is characterized by steep velocity gradients. Particles that enter such steep, steady velocity gradients become exposed to transverse forces that cause the particles to migrate perpendicularly to the direction of flow. Whether particles enter the surface current, i.e. are retained, or they stay within the through current andescape, depends primarily upon particle size, and upon the steepness and height of the gradients within the boundary zone between the surface current and through current. Further studies are needed to evaluate the capacities and relative importance of this hydromechanical particle-trapping mechanism in suspension feeding bivalves. It is suggested that in downstream particle-retaining systems, e.g. on the tentacles of polychaetes and entoprocts, velocity gradients between through currents and surface currents also act as the particle-collecting mechanism.  相似文献   

11.
The entrainment of ambient water into non-Newtonian fluid mud gravity currents was investigated in this study. Constant volume release gravity currents were generated in a lock-exchange tank for a wide range of experimental conditions. A technique similar to the so-called light attenuation technique was used to find the boundary of the current, allowing for the calculation of both temporal and bulk entrainment parameters (in terms of the temporal and bulk entrainment velocities, respectively). It was found that the temporal entrainment velocity is dependent on different parameters in the different propagation phases. The slumping phase begins with an adjustment zone (henceforth, non-established zone) in which the temporal entrainment velocity is not a function of the current front velocity, followed by the established zone in which the temporal entrainment velocity is a function of the current front velocity. This dependence of the temporal entrainment velocity on the current front velocity carries through to the inertia-buoyancy phase. As expected, temporal entrainment velocity in the viscous-buoyancy phase was negligible in comparison to average entrainment velocity in the other phases. It is observed that the temporal entrainment characteristics in the non-established zone is governed by the competition between the entrainment-inhibiting density stratification effects and the entrainment-favouring effects of the Kelvin–Helmholtz billows that are quantified by the Richardson number and the Reynolds number of the gravity current, respectively. In the established zone, Reynolds number effects were observed to dominate over Richardson number effects in dictating temporal entrainment characteristics. A parameterization for the temporal entrainment velocity for non-Newtonian fluid mud gravity currents is developed based upon the experimental observations. This study also found that the bulk entrainment characteristics for the non-Newtonian fluid mud gravity currents can be parameterized by the Newtonian bulk entrainment parameterizations that rely solely on a bulk Richardson number. Interestingly, it was found that the non-Newtonian characteristics of the gravity current have little to no effect on the entrainment of the Newtonian ambient fluid.  相似文献   

12.
The hydrodynamics of flows through a finite length semi-rigid vegetation patch (VP) were investigated experimentally and numerically. Detailed measurements have been carried out to determine the spatial variation of velocity and turbulence profiles within the VP. The measurement results show that an intrusion region exists in which the peak Reynolds stress remains near the bed. The velocity profile is invariant within the downstream part of the VP while the Reynolds stress profile requires a longer distance to attain the spatially invariant state. Higher vegetation density leads to a shorter adjustment length of the transition region, and a higher turbulence level within the VP. The vegetation density used in the present study permits the passing through of water and causes the peak Reynolds stress and turbulence kinetic energy each the maximum at the downstream end of the patch. A 3D Reynolds-averaged Navier–Stokes model incorporating the Spalart–Allmaras turbulence closure was employed subsequently to replicate the flow development within the VP. The model reproduced transitional flow characteristics well and the results are in good agreement with the experimental data. Additional numerical experiments show that the adjustment length can be scaled by the water depth, mean velocity and maximum shear stress. Empirical equations of the adjustment lengths for mean velocity and Reynolds stress were derived with coefficients quantified from the numerical simulation results.  相似文献   

13.
Nine tower datasets over grassland, brush rangeland, snow covered plain, the ocean, three different pine forests, an aspen forest and an urban site, are used to document the scale-dependence of the cross-wind velocity variance in the stable boundary layer. The turbulence velocity variance scales with the surface momentum flux, as reported in previous studies. Such scaling removes the stability dependence of the variance at a given site, and also removes most of the differences between sites. The scaling is more effective with use of a record-dependent averaging time for defining the turbulent fluctuations. The variable averaging time is the timescale associated with the gap region in the heat flux multiresolution cospectra. On scales larger than turbulence and less than a few hours (mesoscale), variations in the cross-wind velocity variance at a given site are not related to local variables such as the friction velocity. Possible exceptions include suppression of turbulence and mesoscale motions in well-defined drainage flows and enhancement of turbulence and mesoscale motions in stronger winds downstream of a ridge. Larger mesoscale variance is associated with complex terrain and forested sites compared to the more homogeneous sites in flat terrain with short or no vegetation. These differences between sites are related to the absence of a gap region in the velocity spectra at the complex terrain and forested sites. The observed probability distribution functions of the total variance and the mesoscale variance are documented for different averaging times, stability classes and site characteristics.  相似文献   

14.
Laboratory experiments have been carried out to investigate the effects of a sloping wall headland on the flow characteristics and the associated concentration distributions from a point source around the headland. A semi-conical headland with a slope of 1:2 was set up in a flow basin, 4.8 m long and 3.8 m wide. In this paper, the experimental results of a steady shallow-water current are reported. Three dimensional flow velocities in the basin were measured using Sontek-ADV instrument. The dye concentration levels in the basin were measured by two fluorometers. The experimental results showed a large-scale re-circulation region behind the semi-conical headland. The peak turbulence energy, at about 53% of the local kinetic flow energy, coincides with the region of high velocity gradient. Significant vertical flows were observed around the area near the downhill slope of the headland, with a maximum ratio of vertical to horizontal velocities being about 22%. Such relatively significant vertical scouring velocities, coupled with strong turbulence energy and high horizontal velocity gradients in the same region, could cause severe bed erosion. The experimental results have also been compared with the predicted results of a depth-averaged numerical model. The predicted eddy structure and the concentration distribution in the re-circulation area were found to compare favourably with the experimental results. However, the discrepancies in the flow velocities and the concentration levels near the headland were apparent. It was observed that the dye concentration continued to spread in the cross-stream direction after passing the headland, whereas only a limited extent of the lateral spreading was predicted by the numerical model further downstream of the headland.  相似文献   

15.
The horizontal movement patterns of eleven yellow-bellied sea snakes [Pelamis platurus (Linnaeus)] were determined incidentally to acoustic tracking studies of their diving behavior in the Gulf of Panamá during 1983–1985. The average speed of the snakes was 1.9 km h-1 (range 0.3 to 7.1 km). Movement direction is influenced by phasic northsouth tidal currents and secondarily affected by combinations of factors that affect local current velocity. The velocity of diving snakes did not always agree with that observed for the surface current. Drift rate was not correlated with average or maximum dive depth, however, snakes that surfaced to breathe one or more times during a period had greater average drift rates than those that did not surface. The role of such factors as feeding, predator avoidance, thermoregulation, orientation, and the avoidance of surface turbulence are considered in a discussion of the adaptive significance of diving for P. platurus. Diving in this species may enable it to avoid surface disturbance, facilitate relative position changes within the surface drift, and contribute to various aspects of its feeding behavior.  相似文献   

16.
The results are presented from an experimental study to investigate three-dimensional turbulence structure profiles, including turbulence intensity and Reynolds stress, of different non-uniform open channel flows over smooth bed in subcritical flow regime. In the analysis, the uniform flow profiles have been used to compare with those of the non-uniform flows to investigate their time-averaged spatial flow turbulence structure characteristics. The measured non-uniform velocity profiles are used to verify the von Karman constant κ and to estimate sets of log-law integration constant Br and wake parameter П, where their findings are also compared with values from previous studies. From κ, Br and П findings, it has been found that the log-wake law can sufficiently represent the non-uniform flow in its non-modified form, and all κ, Br and П follow universal rules for different bed roughness conditions. The non-uniform flow experiments also show that both the turbulence intensity and Reynolds stress are governed well by exponential pressure gradient parameter β equations. Their exponential constants are described by quadratic functions in the investigated β range. Through this experimental study, it has been observed that the decelerating flow shows higher empirical constants, in both the turbulence intensity and Reynolds stress compared to the accelerating flow. The decelerating flow also has stronger dominance to determine the flow non-uniformity, because it presents higher Reynolds stress profile than uniform flow, whereas the accelerating flow does not.  相似文献   

17.
水动力条件对藻类影响的研究进展   总被引:8,自引:0,他引:8  
吴晓辉  李其军 《生态环境》2010,19(7):1732-1738
水动力过程是影响水体富营养化状态和水华爆发的重要因素,水动力因素对藻类影响的研究对于富营养化水体藻类控制具有重要意义。归纳分析近年来关于流速、流态对藻类生长和种类变化的研究报道;就水动力条件对藻类的影响及其作用机理等详细地进行了文献综述。水动力条件对藻类生长的影响分为流速和流态两个方面,不论是单一藻种还是混合藻类,低流速、小扰动有利于藻类的生长和聚集,流速增大则导致Chla浓度先递增后递减,不同藻类的临界流速并不相同;藻类生长随着湍流程度的增加而逐渐受到抑制,抑制作用与水流流态(层流、过渡流、湍流)无明显相关关系,水体流态的变化造成水流剪应力的变化,藻类种类的差异导致其对水流剪应力的响应变化。水动力条件变化引起的藻类种群结构变化,主要表现为水体混合加剧导致优势种群的转换。水动力条件对藻类影响的作用原理主要是引起了光强的改变、细胞长度的变化、营养盐运送及捕食行为变化等。综观当前的研究成果,水动力能否真正阻止藻类细胞的生长或聚集,影响藻类生长或种类变化的扰动的最低水平以及水动力对藻类影响的作用机理是这一领域未来研究的重点所在。  相似文献   

18.
Turbulence measurements were performed in Antarctica, on the Nansen Ice Sheet, dominated by westerly katabatic winds. The measurements were taken at two sites aligned with the katabatic wind fall-line. The measuring stations were located in the middle of a wide, flat iced area at a distance of 14 km from the base of a sloping surface and at the top of a steep ridge (Inexpressible Island). The aim was to investigate the perturbation of turbulence close to the ground generated by the interaction of the flow with the ridge. We present an analysis comparing the data measured at the upstream unperturbed station with those at the top of the obstacle. Moments and spectra of velocity components have been calculated for almost steady periods. The topography and roughness change produce a combined effect on the flow acceleration (of the opposite sign) and on the turbulent stresses (of the same sign). Spectra of velocity components measured at the top of the ridge and scaled by unperturbed quantities evidence an increment of energy in the high frequency subrange with respect to the up-stream flow. Moreover, the horizontal velocity components display a shift in turbulence maximum towards higher frequencies. The vertical velocity spectrum exhibits an energy increment at low frequencies with respect to the upstream spectrum.  相似文献   

19.
Converging flows at stream confluences often produce highly turbulent conditions. The shear layer/mixing interface that develops within the confluence hydrodynamic zone (CHZ) is characterized by complex patterns of three-dimensional flow that vary both spatially and temporally. Previous research has examined in detail characteristics of mean flow and turbulence along mixing interfaces at small stream confluences and laboratory junctions; however few, if any, studies have examined these characteristics within mixing interfaces at large river confluences. This study investigates the structure of mean velocity profiles as well as spatial and temporal variations in velocity, backscatter intensity, and temperature within the mixing interfaces of two large river confluences. Velocity, temperature, and backscatter intensity data were obtained at stationary locations within the mixing interfaces and at several cross sections within the CHZ using acoustic Doppler current profilers. Results show that mean flow within the mixing interfaces accelerates over distance from the junction apex. Turbulent kinetic energy initially increases rapidly over distance, but the rate of increase diminishes downstream. Hilbert–Huang transform analysis of time series data at the stationary locations shows that multiple dominant modes of fluctuations exist within the original signals of velocity, backscatter intensity, and temperature. Frequencies of the largest dominant modes correspond well with predicted frequencies for shallow wake flows, suggesting that mixing-interface dynamics include wake vortex shedding—a finding consistent with spatial patterns of depth-averaged velocities at measured cross sections. Spatial patterns of temperature and backscatter intensity show that the converging flows at both confluences do not mix substantially, indicating that turbulent structures within the mixing interfaces are relatively ineffective at producing mixing of the flows in the CHZ.  相似文献   

20.
Due to the lack of data on hydraulic-jump dynamics in very large channels, the present paper describes the main characteristics of the velocity field and turbulence in a large rectangular channel with a width of 4 m. Although a hydraulic jump is always treated as a wave that is transversal to the channel wall, in the case of this study it has a trapezoidal front shape, first starting from a point at the sidewalls and then developing downstream in an oblique manner, finally giving rise to a trapezoidal shape. The oblique wave front may be regarded as a lateral shockwave that arises from a perturbation at a certain point of the lateral wall and travels obliquely toward the centreline of the channel. The experimental work was carried out at the Coastal Engineering Laboratory of the Water Engineering and Chemistry Department of the Technical University of Bari (Italy). In addition to the hydraulic jump formation, a large recirculating flow zone starts to develop from the separating point of the lateral shock wave and a separate boundary layer occurs. Intensive measurements of the streamwise and spanwise flow velocity components along one-half width of the channel were taken using a bidimensional Acoustic Doppler Velocimeter (ADV). The water surface elevation was obtained by means of an ultrasonic profiler. Velocity vectors, transversal velocity profiles, turbulence intensities and Reynolds shear stresses were all investigated. The experimental results of the separated boundary layer were compared with numerical predictions and related work presented in literature and showed good agreement. The transversal velocity profiles indicated the presence of adverse pressure gradient zones and the law of the wall appears to govern the region around the separated boundary layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号