首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Turbidity currents traversing canyon-fan systems flow over bed slopes that decrease in the downstream direction. This slope decrease eventually causes turbidity currents to decelerate and enter a net-depositional mode. When the slope decrease is relatively rapid in the downstream direction, the turbidity current undergoes a concomitantly rapid and substantial transition. Similar conditions are found when turbidity currents debouch to fan systems with loss of lateral confinement. In this work a simplified approach to perform direct numerical simulation of continuous turbidity currents undergoing slope breaks and loss of lateral confinement is presented and applied to study turbulence modulation in the flow. The presence of settling sediment particles breaks the top–bottom symmetry of the flow, with a tendency to self-stratify. This self-stratification damps turbulence, particularly near the bottom wall, affecting substantially the flow’s ability to transport sediment in suspension. This work reports results on two different situations: turbidity currents driven by fine and coarser sediment flowing through a decreasing slope. In the case of fine sediment, after the reduction in the slope of the channel, the flow remains turbulent with only a modest influence on turbulence statistics. In the case of coarse sediments, after the change in slope, turbulence is totally suppressed.  相似文献   

2.
Buoyancy driven flows such as gravity currents, present in nature and human made applications, are conveyors of particles or dissolved substances for long distances with clear implications for the environment. This transport depends on the triggering conditions of the current. Gravity currents are experimentally simulated under varying initial conditions by combining three different initial buoyancies and five volumes of dense fluid released. The horizontal and vertical structures of the gravity currents are analysed and it is shown that the variation on the initial configuration is conditioning for these. Vertical transport through the gravity current is influenced at the bottom by the solid wall over which the current flows, and at the upper interface by the contact with the ambient water. The relative contribution of shear stress at the bottom and at the upper interfaces are estimated and analysed in terms of the initial triggering conditions of the current; these two compete with the buoyancy, the driver of the current, determining mixing and entrainment. By using a proper parametrization, which accounts for both initial volume of release and location of the observation position relative to the lock, a relation between the resistance at the bottom and at the upper interfaces with the initial conditions of release (i.e. the lock-length) has been found; this is found to be independent of the initial density in the lock. The present study shows that the variation of the initial conditions have consequences on (1) the configuration of the currents and on (2) the hydrodynamics of the currents, including mass and momentum exchanges, which are in addition mutually dependent.  相似文献   

3.
We discuss the results of direct numerical simulations of bi-disperse turbidity currents interacting with a flat bottom wall and a Gaussian bump, respectively, with a focus on the final deposit profiles of the coarse and fine particles. We identify regions of reduced and enhanced deposition, as a result of the presence of the bump. Coarse particles are predominantly deposited towards the sides of the bump, as a result of the bi-section and lateral deflection of the current by the bump. In contrast, for fine particles the influence of the bump is felt more in its far wake. We furthermore employ Lagrangian markers in order to track the coarse and fine particles in the current, and to investigate their deposit locations as function of their location of origin. By comparing the final deposit maps, we observe that the bump has the strongest influence on those particles originating in the central lock sections.  相似文献   

4.
The scaling problem associated with the modeling of turbidity currents has been recognized but is yet to be explored systematically. This paper presents an analysis of the dimensionless governing equations of turbidity currents to investigate the scale effect. Three types of flow conditions are considered: (i) conservative density current; (ii) purely depositional turbidity current; and (iii) mixed erosional/depositional turbidity current. Two controlling dimensionless numbers, the Froude number and the Reynolds number, appear in the non-dimensional governing equations. When densimetric Froude similarity is satisfied, the analysis shows that the results would be scale-invariant for conservative density current under the rough turbulent condition. In the case of purely depositional flows, truly scale-invariant results cannot be obtained, as the Reynolds-mediated scale effects appear in the bottom boundary conditions of the flow velocity and sediment fall velocity. However, the scale effect would be relatively modest. The Reynolds effect becomes more significant for erosional or mixed erosional/depositional turbidity currents as Reynolds-mediated scale effects also appear in the sediment entrainment relation. Numerical simulations have been conducted at three different scales by considering densimetric Froude scaling alone as well as combined densimetric Froude and Reynolds similarity. Simulation results confirm that although the scaling of densimetric Froude number alone can produce scale-invariable results for conservative density currents, variations occur in the case of turbidity currents. The results become scale invariant when densimetric Froude and Reynolds similarities are satisfied simultaneously.  相似文献   

5.
In order to maintain the water quality of moving streams, it is essential to know the process of pollutant mixing. The transverse mixing is very important which is needed to be modeled to understand mixing phenomenon. It was observed that transverse mixing is a strong function of secondary currents, thus, submerged vanes, which are aerofoil skewed at angle of 10°–40° with respect to flow, generate transverse circulations that can be utilized to induce secondary currents in the flow to enhance transverse mixing. Present study is an attempt to utilize submerged vanes as an instrument to enhance the transverse mixing by incorporating various vane configurations. In order to study the effect of vane generated circulations on transverse mixing, experimentations were conducted on three vane sizes and for various row arrangements of vanes attached to bed. An attempt is made to investigate the effect of submerged vane size and rows on transverse velocity, concentration profile and transverse mixing coefficient. It was observed by measurement of concentration profile that transverse mixing was more enhanced for submerged vanes of higher height. It was also observed that as the number of rows is proportional to the transverse mixing. By measuring the transverse velocity profile, it was observed that more and more fluid was advected in transverse direction for higher rows of vanes. By utilizing the observed transverse mixing coefficients, number of vane rows and relative height of vane, a predictor was derived to predict transverse mixing coefficient in the presence of submerged vane rows. It was observed that the derived predictor shows a fair amount of agreement in the result predicted.  相似文献   

6.
In this work we address the role of turbulence on mixing of clear layer of fluid with sediment-laden layer of fluid at a sediment concentration interface. This process can be conceived as the entrainment of sediment-free fluid into the sediment-laden layer, or alternatively, as the transport of sediment into the top sediment-free flow. This process is governed by four parameters—Reynolds number of the flow \(Re_\tau\), non-dimensional settling velocity of the sediment (proxy for sediment size) \(\tilde{V}\), Richardson number \(Ri_\tau\) and Schmidt number Sc. For this work we have performed direct numerical simulations for fixed Reynolds and Schmidt numbers while varying the values of Richardson number and particle settling velocity. In the simple model considered here, the flow’s momentum and turbulence pre-exists over the entire layer of fluid, while the sediment is initially confined to a layer close to the bed. Mixing of sediment-free fluid with the sediment-laden layer is associated primarily with upward transport of sediment and buoyancy. There is no simultaneous upward transport of fluid momentum and turbulence into the sediment-free fluid layer, which is already in motion and turbulent. The analysis performed shows that the ability of the flow to transport a given sediment size decreases with the distance from the bottom, and thus only fine enough sediment particles are transported across the sediment concentration interface. For these cases, the concentration profiles evolve to a final steady state in good agreement with the well-known Rouse profile. The approach towards the Rouse profile happens through a transient self-similar state. This behavior of the flow is not seen for larger particles. Detailed analysis of the three dimensional structure of the sediment concentration interface shows the mechanisms by which sediment particles are lifted up by tongues of sediment-laden fluid with positive correlation between vertical velocity and sediment concentration. Finally, the mixing ability of the flow is addressed by monitoring the time evolution of the center of mass of the sediment-laden layer and the vertical location of the sediment-free/sediment-laden interface.  相似文献   

7.
During floods, the density of river water usually increases due to a subsequent increase in the concentration of the suspended sediment that the river carries, causing the river to plunge underneath the free surface of a receiving water basin and form a turbidity current that continues to flow along the bottom. The study and understanding of such complex phenomena is of great importance, as they constitute one of the major mechanisms for suspended sediment transport from rivers into oceans, lakes or reservoirs. Unlike most of the previous numerical investigations on turbidity currents, in this paper, a 3D numerical model that simulates the dynamics and flow structure of turbidity currents, through a multiphase flow approach is proposed, using the commercial CFD code FLUENT. A series of numerical simulations that reproduce particular published laboratory flows are presented. The detailed qualitative and quantitative comparison of numerical with laboratory results indicates that apart from the global flow structure, the proposed numerical approach efficiently predicts various important aspects of turbidity current flows, such as the effect of suspended sediment mixture composition in the temporal and spatial evolution of the simulated currents, the interaction of turbidity currents with loose sediment bottom layers and the formation of internal hydraulic jumps. Furthermore, various extreme cases among the numerical runs considered are further analyzed, in order to identify the importance of various controlling flow parameters.  相似文献   

8.
The present work experimentally investigates the dynamics of unsteady gravity currents produced by lock-release of a saline mixture into a fresh water tank. Seven different experimental runs were performed by varying the density of the saline mixture in the lock and the bed roughness. Experiments were conducted in a Perspex flume, of horizontal bed and rectangular cross section, and recorded with a CCD camera. An image analysis technique was applied to visualize and characterize the current allowing thus the understanding of its general dynamics and, more specifically, of the current head dynamics. The temporal evolution of both head length and mass shows repeated stretching and breaking cycles: during the stretching phase, the head length and mass grow until reaching a limit, then the head becomes unstable and breaks. In the instants of break, the head aspect ratio shows a limit of 0.2 and the mass of the head is of the order of the initial mass in the lock. The average period of the herein called breaking events is seen to increase with bed roughness and the spatial periodicity of these events is seen to be approximately constant between runs. The rate of growth of the mass at the head is taken as a measure to assess entrainment and it is observed to occur at all stages of the current development. Entrainment rate at the head decreases in time suggesting this as a phenomenon ruled by local buoyancy and the similarity between runs shows independence from the initial reduced gravity and bed roughness.  相似文献   

9.
In discussions concerning the possible construction of a Panamá sea-level canal it has been assumed that Gatún Lake, part of the present canal, acts as a fresh-water barrier to the migration of marine animals from either end of the Canal to the other. Methodical documentary salinity determinations have not been made previously, and only a few surface salinity observations have been recorded. Determinations of salinity-temperature profiles made in spring and fall, 1972, show essentially freshwater to be present from Miraflores Lake, through the Pedro Miguel Locks, through Gatún Lake, to, and including, the upper chambers of the Gatún Locks. With the exception of those of the lower chamber of the Miraflores Locks, the profiles indicate homogeneity and thorough vertical mixing of all water masses in the lock systems and lakes of the canal. Homogeneity of the water in the lock chambers is thought to be due to turbulence during filling of the chambers, to the piston-effect of large ships moving into the chambers, to the action of ships' propellers, and to density currents established as the lock gates are opened. Water in the approach channel at the Pacific end appears to be more homogeneous than that at the Atlantic end. The Panama Canal does, in fact, constitute a fresh-water barrier to the migration of the stenohaline marine biota of the Pacific and Atlantic Oceans.  相似文献   

10.
The paper reports results of large eddy simulations of lock exchange compositional gravity currents with a low volume of release advancing in a horizontal, long channel. The channel contains an array of spanwise-oriented square cylinders. The cylinders are uniformly distributed within the whole channel. The flow past the individual cylinders is resolved by the numerical simulation. The paper discusses how the structure and evolution of the current change with the main geometrical parameters of the flow (e.g., solid volume fraction, ratio between the initial height of the region containing lock fluid and the channel depth, ratio between the initial length and height of the region containing lock fluid) and the Reynolds number. Though in all cases with a sufficiently large solid volume fraction the current transitions to a drag-dominated regime, the value of the power law coefficient, α, describing the front position’s variation with time (x f  ~ t α , where t is the time measured from the removal of the lock gate) is different between full depth cases and partial depth cases. The paper also discusses how large eddy simulation (LES) results compare with findings based on shallow-water equations. In particular, LES results show that the values of α are not always equal to values predicted by shallow water theory for the limiting cases where the current height is comparable, or much smaller, than the channel depth.  相似文献   

11.
Quantitative data on the water currents produced by the ciliary tracts of the gill filaments are needed to understand the fluid mechanics of suspension feeding in bivalves, as well as in other ciliary suspension feeders. This paper investigates the water currents produced by the bands of lateral cilia, as studied on isolated gill filaments, gill fragments, and intact gills of the mussel Mytilus edulis L with severed adductor muscles. The metachronally beating cilia produce oscillatory currents near the oscillating enveloping surface of the ciliary bands and rectilinear currents, the interfilamentary through-currents, farther from the surface. It is suggested that the oscillatory currents play an important role in the fluid mechanical capture of suspended particles. In the intact gill the interfilamentary currents pass the bands of lateral cilia at velocities that are two or more times higher than those generated by the bands of isolated filaments. The mussel gill is compared with an optimized peristaltic pump.  相似文献   

12.
A series of laboratory experiments was undertaken in a stratified two-layer fluid to investigate the energetics of the interaction between an internal solitary wave (ISW) and triangular obstacles, as well as to determine the partitioning of ISW energy and its subsequent dynamics. The ISW energy was dissipated as a result of internal breaking and turbulent mixing induced by wave instability. Tests involving different combinations of triangular obstacles in various heights and intervals and ISW of different amplitudes were performed. The wave features resulting from the interaction of an ISW and double obstacles were found to differ from those of single obstacle. The incident energy of an ISW was either reflecting back from the obstacles, dissipated through turbulent mixing, or transmitted over the double obstacles. Reduction in wave energy increased as the intervals between obstacles reduced. For two obstacles in different heights, energy dissipation was greater in the case with a higher obstacle ahead of a lower one. However, the overall performance was dependent on the relative height of the obstacles, relative water depth of the upper and bottom layer, in addition to the intervals between the obstacles.  相似文献   

13.
Driven by a growing importance to engineered structures, investigating the flow characteristics of turbidity currents interacting with a basal obstruction has become popular over the last three decades. However, research has focused on confined studies or numerical simulations, whereas in situ turbidity currents are typically unconfined. The present study investigates experimentally the velocity and turbulence structure of an unconfined turbidity current, in the immediate regions surrounding a rectangular obstacle. Initial density of the current, and substrate condition is varied. Through a novel technique of installing ultrasonic probes within the obstacle, the presence of a velocity recirculation region immediately upstream and downstream of the obstacle is revealed and confirmed with high-resolution imagery. This was found to be comparable to previous confined studies, suggesting that stream-wise velocity profile structure is somewhat independent of confinement. The obstacle was found to reduce velocity and turbulence intensity maxima downstream of the obstacle when compared with unobstructed tests.  相似文献   

14.
壳聚糖负载膨润土处理高浊度废水的效果   总被引:1,自引:0,他引:1  
以天然膨润土为原料,壳聚糖为改性剂,采用微波改性技术制备了壳聚糖负载膨润土,应用于高浊度废水的处理.通过正交试验确定了废水处理工艺各种影响因素的最佳条件.比较了负载土、原土、壳聚糖的处理效果,结果表明:负载土对高浊度废水的去浊效果明显好于原土、壳聚糖;对于浊度为9250~9480 NTU的废水,经30 min自由沉降后,在投土量为4.0 g·L~(-1)、投土粒度为0.150 mm、搅拌速度为100 r·min~(-1)、搅拌时间为10 min的条件下,废水剩余浊度为6.0~7.0 NTU,浊度去除率高达99.9%.出水水质满足<再生水作循环冷却水水质>的水质要求.  相似文献   

15.
Sewage sludge from four publicly-owned treatment works was sampled and characterized in terms of parameters affecting transport at the 106-mile deep ocean disposal site as part of the US Environmental Protection Agency's site monitoring programme. Samples from treatment plants in Passaic Valley, Rahway, and Elizabeth, New Jersey and New York City were characterized in terms of dynamic size distribution, suspended solids and density. the transport characteristics of sludge particles were measured using a 2 metre computer-interfaced laboratory settling column. Experiments were conducted at constant salinity (35 ppt) while varying hydrodynamic mixing, sludge type and concentration using a modified factorial experimental design. Hydrodynamic power dissipation was varied so that the vertical dispersion and rms fluid shear rate ranged between 0-6 cm2S-1 and 0-30s-1 respectively. Results indicate that at least 80% of suspended sludge particles will eventually settle under mixed conditions. the average settling velocities ranged between 0.05-4.05 × 10-3 cm s-1. Shear rates above 15 s-1 inhibited sludge settling due to aggregate breakup and boundary effects, but at a lower shear rate, differential settling and fluid shear were the dominant transport mechanisms. Sludge dilution (1/500-1/5000) had a limited effect on the settling rate. Results from this study can be used to calibrate particle transport models to determine the fate of sludge disposed at an ocean disposal site.  相似文献   

16.
Sediment-laden turbulent flows are commonly encountered in natural and engineered environments. It is well known that turbulence generates fluctuations to the particle motion, resulting in modulation of the particle settling velocity. A novel stochastic particle tracking model is developed to predict the particle settling out and deposition from a sediment-laden jet. Particle velocity fluctuations in the jet flow are modelled from a Lagrangian velocity autocorrelation function that incorporates the physical mechanism leading to a reduction of settling velocity. The model is first applied to study the settling velocity modulation in a homogeneous turbulence field. Consistent with basic experiments using grid-generated turbulence and computational fluid dynamics (CFD) calculations, the model predicts that the apparent settling velocity can be reduced by as much as 30 % of the stillwater settling velocity. Using analytical solution for the jet mean flow and semi-empirical RMS turbulent velocity fluctuation and dissipation rate profiles derived from CFD predictions, model predictions of the sediment deposition and cross-sectional concentration profiles of horizontal sediment-laden jets are in excellent agreement with data. Unlike CFD calculations of sediment fall out and deposition from a jet flow, the present method does not require any a priori adjustment of particle settling velocity.  相似文献   

17.
Abstract

Sewage sludge from four publicly-owned treatment works was sampled and characterized in terms of parameters affecting transport at the 106-mile deep ocean disposal site as part of the US Environmental Protection Agency's site monitoring programme. Samples from treatment plants in Passaic Valley, Rahway, and Elizabeth, New Jersey and New York City were characterized in terms of dynamic size distribution, suspended solids and density. the transport characteristics of sludge particles were measured using a 2 metre computer-interfaced laboratory settling column. Experiments were conducted at constant salinity (35 ppt) while varying hydrodynamic mixing, sludge type and concentration using a modified factorial experimental design. Hydrodynamic power dissipation was varied so that the vertical dispersion and rms fluid shear rate ranged between 0-6 cm2S?1 and 0-30s?1 respectively. Results indicate that at least 80% of suspended sludge particles will eventually settle under mixed conditions. the average settling velocities ranged between 0.05-4.05 × 10-3 cm s-1. Shear rates above 15 s?1 inhibited sludge settling due to aggregate breakup and boundary effects, but at a lower shear rate, differential settling and fluid shear were the dominant transport mechanisms. Sludge dilution (1/500-1/5000) had a limited effect on the settling rate. Results from this study can be used to calibrate particle transport models to determine the fate of sludge disposed at an ocean disposal site.  相似文献   

18.
Particle-driven gravity currents frequently occur in nature, for instance as turbidity currents in reservoirs. They are produced by the buoyant forces between fluids of different density and can introduce sediments and pollutants into water bodies. In this study, the propagation dynamics of gravity currents is investigated using the FLOW-3D computational fluid dynamics code. The performance of the numerical model using two different turbulence closure schemes namely the renormalization group (RNG) ${k-\epsilon}$ scheme in a Reynold-averaged Navier-Stokes framework (RANS) and the large-eddy simulation (LES) technique using the Smagorinsky scheme, were compared with laboratory experiments. The numerical simulations focus on two different types of density flows from laboratory experiments namely: Intrusive Gravity Currents (IGC) and Particle-Driven Gravity Currents (PDGC). The simulated evolution profiles and propagation speeds are compared with laboratory experiments and analytical solutions. The numerical model shows good quantitative agreement for predicting the temporal and spatial evolution of intrusive gravity currents. In particular, the simulated propagation speeds are in excellent agreement with experimental results. The simulation results do not show any considerable discrepancies between RNG ${k-\epsilon}$ and LES closure schemes. The FLOW-3D model coupled with a particle dynamics algorithm successfully captured the decreasing propagation speeds of PDGC due to settling of sediment particles. The simulation results show that the ratio of transported to initial concentration C o /C i by the gravity current varies as a function of the particle diameter d s . We classify the transport pattern by PDGC into three regimes: (1) a suspended regime (d s is less than about 16 μm) where the effect of particle deposition rate on the propagation dynamics of gravity currents is negligible i.e. such flows behave like homogeneous fluids (IGC); (2) a mixed regime (16 μm < d s <40 μm) where deposition rates significantly change the flow dynamics; and (3) a deposition regime (d s ?> 40 μm) where the PDGC rapidly loses its forward momentum due to fast deposition. The present work highlights the potential of the RANS simulation technique using the RNG ${k-\epsilon}$ turbulence closure scheme for field scale investigation of particle-driven gravity currents.  相似文献   

19.
Gravity currents in two-layer stratified media   总被引:1,自引:1,他引:0  
An analytical, experimental and numerical study of boundary gravity currents propagating through a two-layer stratified ambient of finite vertical extent is presented. Gravity currents are supposed to originate from a lock-release apparatus; the (heavy) gravity current fluid is assumed to span the entire channel depth, H, at the initial instant. Our theoretical discussion considers slumping, supercritical gravity currents, i.e. those that generate an interfacial disturbance whose speed of propagation matches the front speed, and follows from the classical analysis of Benjamin (J Fluid Mech 31:209?C248, 1968). In contrast to previous investigations, we argue that the interfacial disturbance must be parameterized so that its amplitude can be straightforwardly determined from the ambient layer depths. Our parameterization is based on sensible physical arguments; its accuracy is confirmed by comparison against experimental and numerical data. More generally, measured front speeds show positive agreement with analogue model predictions, which remain strictly single-valued. From experimental and numerical observations of supercritical gravity currents, it is noted that this front speed is essentially independent of the interfacial thickness, ??, even in the limiting case where ?? = H so that the environment is comprised of a uniformly stratified ambient with no readily discernible upper or lower ambient layer. Conversely, when the gravity current is subcritical, there is a mild increase of front speed with ??. Our experiments also consider the horizontal distance, X, at which the front begins to decelerate. The variation of X with the interface thickness and the depths and densities of the ambient layers is discussed. For subcritical gravity currents, X may be as small as three lock lengths whereas with supercritical gravity currents, the gravity current may travel long distances at constant speed, particularly as the lower layer depth diminishes.  相似文献   

20.
The quantitative extent to which the large-scale organized water motion in the surface waters of lakes and reservoirs, known as Langmuir circulation, affects the distribution and settling of algae and other suspended particles is not known and has thus been ignored in conventionally used water-quality models. Since the distribution and settling of these particles is important in determining water quality, this study set out to investigate these effects. Current literature which discusses this problem is reviewed and a mathematical model is developed based on the two-dimensional advection-diffusion mass transport describing the temporal and spatial distribution of suspended particles in a typical Langmuir cell; the Langmuir circulation flow field and turbulent diffusion coefficients are empirically modelled by relating them to environmental parameters.The results show that Langmuir circulation does affect particle distribution and settling. For particles with small sinking speeds, such as the lighter algae, the circulation causes intense mixing, resulting in essentially uniform distribution of particles over the cell (as assumed in the ‘well-mixed compartment model’). For particles with high sinking velocities, however, aggregation can occur, giving rise to significant reduction in sinking loss when compared with that predicted by conventional models. For diatoms, reductions of 6% and higher can occur depending on which conventionally used model is being considered, while for silt and sand particles in a cell of large width-to-depth ratio a reduction of more than 60% is possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号