首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 314 毫秒
1.
HPLC-MS/MS测定3类污水处理厂污泥及污水中的8种药物   总被引:2,自引:0,他引:2  
药物及个人护理品(pharmaceuticals and personal care products,PPCPs)是一类典型的新型痕量有机污染物,会对人类健康及生态系统带来风险.本文发展优化了以超声提取、固相萃取净化并结合高效液相色谱-串联质谱对污泥及污水中的8种药物,包括罗红霉素、美托洛尔、普萘洛尔、磺胺噻唑、磺胺甲恶唑、磺胺嘧啶、咖啡因、对乙酰氨基酚的分析检测方法.结果表明,在优化条件下,该方法对污泥回收率可达74.80%—127.96%,水样回收率除低浓度加标情况下对乙酰氨基酚回收率较低为39.45%外,其余物质回收率可达81.36%—120.18%,污水方法的检出限为0.020—5.155 ng·L~(-1),污泥方法检出限为0.004—1.031 ng·kg~(-1).应用所建立的方法,对天津市三个不同类型污水处理厂(医院、养猪场及城市污水处理厂)的脱水污泥及进出水进行检测分析.结果表明,污水中目标物浓度范围为(0.14—2157.03 ng·L~(-1)),污泥中目标物浓度范围为(0.12—9.84 ng·kg~(-1)).大多目标物在医院分布浓度较高,养猪场次之,城市污水厂相对较低.其中,美托洛尔、咖啡因、对乙酰氨基酚等3个物质的浓度较高,进出水浓度可达16.69—2157.03 ng·L~(-1),而其余5种物质浓度相对较低.  相似文献   

2.
采用超声提取、固相萃取和气相色谱质谱联用(GC-MS)分析技术,测定了12个上海市政污水处理厂外排污泥中的8种常见有机磷酸酯(OPs)的浓度水平与分布特征.所有污泥样品中检出多种OPs分布,OPs总含量范围为138—778 ng·g~(-1).主要污染物为三(1-氯-2-丙基)磷酸酯、三苯基磷酸酯、三-(2-氯乙基)磷酸酯(TCEP),浓度范围分别为LOD—206 ng·g~(-1)、8.82—52.9 ng·g~(-1)和7.12—65.7 ng·g~(-1).研究结果表明,生活污水和工业废水是OPs重要释放来源.因其显著毒性效应和持久性,TCEP被欧美等国禁用,但本研究污泥中广泛检出且含量水平较高(7.12—65.7 ng·g~(-1)),结果折射其高历史残留或持续使用.  相似文献   

3.
吕凯  刘晓薇  邓呈逊  郑坤  李兰兰  史江红  郭伟 《环境化学》2019,38(11):2415-2424
针对磺胺类、喹诺酮类、四环素类、大环内酯类共14种典型抗生素,建立了水和沉积物中固相萃取-高分离快速液相色谱-串联质谱(SPE-RRLC-MS/MS)前处理方法和仪器检测方法.14种抗生素在5—100μg·L~(-1)范围内线性良好,相关系数r≥0.990.优化后的前处理方法采用乙腈/0.1 mol·L~(-1) EDTA-Mcllvaine(1∶1,V/V)作为沉积物样品中目标抗生素的提取剂,甲醇/丙酮(85∶15,V/V)作为固相萃取柱的洗脱液.表层水中14种抗生素的加标回收率为56%—117%,相对标准偏差(n=3)为0.10%—12%;沉积物中14种抗生素的加标回收率为57%—127%,相对标准偏差(n=3)为0.10%—25%.表层水和沉积物中抗生素的方法检出限分别为0.18—5.88 ng·L~(-1)和0.25—2.94 ng·g~(-1).该方法用于检测合肥市南淝河表层水和沉积物中的抗生素,5种抗生素被检出,浓度范围分别为32—308 ng·L~(-1)和2.70—329 ng·g~(-1).  相似文献   

4.
利用液液萃取(LLE)与固相萃取法(SPE)提取和净化人体指甲中的多溴联苯醚(PBDEs)和多氯联苯(PCBs),经浓硫酸除脂后,利用气相色谱-质谱联用仪(GC-MS)测定PBDEs和PCBs.对提取溶剂比例、净化柱类型(复合硅胶柱与固相萃取柱)、固相萃取条件(洗脱溶剂及体积)以及脂肪的去除方法进行了优化,加标回收率较前人基础上均有明显提高.加标回收试验结果显示,PBDEs和PCBs平均基质加标回收率分别为90%—110%和71%—102%,空白加标回收率分别为70%—110%和60%—100%之间,仪器检出限(IDL)分别为0.034—0.120μg·L~(-1)和0.032—0.392μg·L~(-1).本方法快速、简单、高效,能够满足指甲中PBDEs和PCBs的分析.同时本研究利用该方法对电子垃圾拆解地区居民的指甲样品进行测定,PBDEs和PCBs平均浓度分别为623 ng·g~(-1)和148 ng·g~(-1),BDE(-154、-153、-183、-209)和PCB(-8、-28、-52、-66、-101、-77、-118、-153、-187)在所有样品中均检出,女性指甲中PBDEs与PCBs的浓度普遍高于男性.  相似文献   

5.
采用溶剂挥发诱导自组装结合提拉法在不锈钢丝表面制备了以有序介孔碳(Ordered mesoporous carbon,OMC)为涂层的固相微萃取(Solid phrase microextraction,SPME)纤维,考察了该纤维的萃取效果和在高温下的稳定性,建立了水中多环芳烃(Polycyclic aromatic hydrocarbons,PAHs)污染物的固相微萃取测定分析方法.扫描电镜(Scanning electron microscopy,SEM)结果表明,制备的OMC涂层连续完整且与不锈钢基体紧密结合,厚度约为11μm.氮吸附脱附结果证明,涂层材料具有规整的二维六方特征,孔径集中分布在3.8 nm,比表面积和孔容分别为522 m~2·g~(-1)和0.36 cm3·g~(-1).以水中多环芳烃类污染物作为分析对象,采用固相微萃取与气相色谱联用法探讨了OMC涂层对多环芳烃类污染物的萃取效果,对萃取方式、萃取时间、萃取温度、搅拌速度等条件进行了优化,并与商品化涂层进行了对比.结果表明,采用直接固相微萃取方式,萃取时间30 min,萃取温度50℃,搅拌速率800 r·min-1萃取效率最高;在最佳萃取条件下,OMC涂层分析5种PAHs的检测限范围是0.004—0.012μg·L~(-1),定量限范围0.010—0.025μg·L~(-1);萘和苊在0.1—250μg·L~(-1)范围内,芴、荧蒽和芘在0.25—100μg·L~(-1)范围内线性关系良好;单根纤维相对标准偏差(RSD)为3.9%—7.4%,多根纤维相对标准偏差为6.7%—9.8%.自制OMC纤维在350℃高温热解析80次后萃取效率不变,且对PAHs的萃取效率优于商用聚二甲基硅氧烷/二乙烯基苯(Polydimethylsiloxane/divinylbenzene,PDMS/DVB)涂层.将自制纤维应用于两种实际水样的固相微萃取分析中,分别添加0.25μg·L~(-1)和100μg·L~(-1)的样品回收率分别为81.3%—92.8%和89.3%—108.8%.  相似文献   

6.
应用固相萃取(SPE)及超高效液相色谱-串联质谱(UPLC-MS/MS)技术,建立了快速提取测定水环境中4种四环素类抗生素(四环素、土霉素、强力霉素、金霉素)和6种磺胺类抗生素(磺胺嘧啶、磺胺甲基嘧啶、磺胺二甲基嘧啶、磺胺二甲氧嘧啶、磺胺甲唑和磺胺噻唑)的方法.水样经过HLB小柱浓缩萃取之后以C18柱为分析柱,乙腈和0.1%甲酸水溶液为流动相,采用UPLC-MS/MS多反应监测(MRM)离子模式进行分析.纯水和城市生活污水中抗生素物质检出限分别为0.015—0.12 ng·L-1、0.03—0.09 ng·L-1,平均回收率分别为88.7%—113.5%、73.7%—94.5%,相对标准偏差均在2.6%—10.6%之间(n=8).方法操作简单、定性定量准确,检出限低,能够满足测定各类水环境中四环素类和磺胺类抗生素痕量残留的分析要求.  相似文献   

7.
使用安捷伦7000B三重四极杆气相质谱和安捷伦7890A气相色谱联用,并配置PAL自动样品进样器,开发了一种自动固相微萃取和分析方法,用于对土臭素和2-甲基异莰醇(2-MIB)进行简便、高灵敏度的检测.2-MIB和土臭素的方法检出限(MDL)分别可达0.1343 ng·L~(-1)和0.0937 ng·L~(-1),方法定量限(MQL)分别为0.4029 ng·L~(-1)和0.2811 ng·L~(-1).  相似文献   

8.
水和土壤中磺胺和激素类药物的同时分析方法   总被引:2,自引:0,他引:2  
建立了一种水和土壤中磺胺嘧啶、磺胺甲嘧啶、磺胺噻唑、磺胺二甲嘧啶、磺胺二甲氧嘧啶、磺胺甲(噁)唑6种磺胺类药物和17α-雌二醇、17β-雌二醇、雌酮、雌三醇、炔雌醇、乙烷雌酚6种激素类药物同时分析的方法.具体步骤:水样过滤后使用Oasis HLB固相萃取小柱进行净化富集;土壤样品经加速溶剂提取(ASE)之后过Oasis HLB小柱净化富集;采用超高效液相色谱-串联质谱(UPLC-MS/MS)进行检测,分别以乙腈和1mL·L-1甲酸溶液、乙腈和1 mL· L-1氨水溶液作为流动相.磺胺在水和土壤中的回收率分别为87.4%~ 103.6%和58.2%~80.0%,激素在水和土壤中的回收率分别为84.8%~ 101.8%和62.8%~79.3%,相对标准偏差均小于10.3%.水和土壤中磺胺的检测限分别为0.11~0.24ng·L-1和0.01~0.02ng·g-1,激素的检测限分别为0.31 ~2.14 ng·L-1和0.03~0.21ng·g-1.用上述方法检测宿迁某典型养殖场周边的地表水和土壤,结果表明采用该方法检测环境样品中的磺胺和激素类药物是可行的.  相似文献   

9.
建立了同时检测水中13种典型药品及个人护理品(pharmaceuticals and personal care products,PPCPs)的固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS)的分析方法.通过将HLB和WAX萃取柱串联,实现对水中污染物的固相萃取及富集净化,使用0.1%的甲酸水溶液与乙腈进行梯度洗脱,正离子多反应监测的质谱扫描模式(MRM)分析测定.13种PPCPs的检出限(LOD)为0.007—1.1 ng·L~(-1),定量限(LOQ)为0.02—3.8 ng·L~(-1),回收率为54%—97%.应用此方法调查了北京市不同类型水中PPCPs的分布情况,结果表明,该方法选择性强、操作简单、灵敏度高,可用于水样中PPCPs的可靠检测.  相似文献   

10.
嘉兴市饮用水源为太湖流域来水,经石臼漾湿地系统净化后供居民使用.为了解水源及河网中抗生素分布特征,于2015年4月采集嘉兴市水源来水及城市河网表层水样,用固相萃取-高效液相串联质谱法分析了20种抗生素含量水平.结果表明,抗生素污染水平在330—660 ng·L~(-1),氟喹诺酮类抗生素为主要的抗生素污染物,浓度范围在160—400 ng·L~(-1)之间.氟苯尼考是占比例最大的单体抗生素(24%—54%),浓度范围在121—259 ng·L~(-1).湿地系统可有效的去除磺胺嘧啶、磺胺甲唑、诺氟沙星、环丙沙星及恩诺沙星.  相似文献   

11.
使用安捷伦Bond Elut SAX固相萃取吸附剂提取和浓缩水样中卤乙酸(HAAs)后,使用双色谱柱GC/μECD方法对其进行分析.安捷伦JW DB-35ms超高惰性色谱柱和DB-XLB色谱柱,提供对衍生的HAAs进行一致和灵敏的分析.结果表明,对大多数的HAAs的检测限是0.05—5 ng·m L~(-1).在3个强化水平(0.2—2、1—10、4—40 ng·m L~(-1))的回收率为82.5%到116.5%,相对标准偏差(RSDs)小于3.5%.  相似文献   

12.
采用固相萃取/超高效液相色谱-串联质谱法,建立了水样中磺胺类、四环素类、氟喹诺酮类、大环内酯类和氯霉素类15种抗生素的同时测定方法.水样经HLB固相萃取柱富集,ACQUITY UPLC BEH C_(18)色谱柱分离,以乙腈和5 mmol·L~(-1)乙酸铵溶液(含0.1%甲酸)为流动相梯度洗脱,电喷雾离子源-串联质谱多反应监测模式检测.结果表明,同时测定15种抗生素的线性范围为5—100μg·L~(-1)(相关系数均大于0.997),检出限为2.1—22.0 ng·L~(-1),定量限为6.9—71.8 ng·L~(-1);空白水样在加标水平为5、10、20μg·L~(-1)时,抗生素的回收率为50.1%—109.0%,相对标准偏差为0.4%—8.5%(n=7).用本文建立的方法检测某农业小流域环境水样,发现5类抗生素可被不同程度检出,浓度范围为0.1—106.2 ng·L~(-1).  相似文献   

13.
建立了韭菜和土壤中氟虫腈及其代谢物的多残留分析方法.样品经乙腈提取,分散固相萃取剂净化土壤,固相萃取柱净化韭菜,超高效液相色谱-三重四极杆串联质谱在多反应离子监测模式下检测,基质匹配外标法定量.在0.001—0.2 mg·kg~(-1)添加浓度范围内,4个化合物的平均回收率为71.8%—107.9%,相对标准偏差为1.5%—15.4%,最小检出量(LOD)在0.0001—0.012 ng范围内,土壤中最低检测浓度(LOQ)为0.001 mg·kg~(-1),韭菜中最低检测浓度(LOQ)为0.002 mg·kg~(-1).该方法满足农药残留检测的要求,适合韭菜和土壤样品中氟虫腈及其代谢物的残留检测.  相似文献   

14.
采用固相萃取-高效液相色谱法检测9种磺胺类和6种β-内酰胺类抗生素,并考察了其在两家不同处理工艺的城市污水处理厂的存在水平及迁移转化特征.结果表明,两类抗生素在污水厂进出水中浓度水平均为μg·L~(-1),磺胺类抗生素平均去除率达60%以上,β-内酰胺类平均去除率仅为40%左右;脱水污泥中均存在目标抗生素残留,两类抗生素含量范围分别为磺胺类ND—4.67μg·g~(-1)和β-内酰胺类0.15—6.68μg·g~(-1).对目标抗生素进行质量平衡分析发现,磺胺类抗生素主要通过污泥吸附去除,吸附率占总去除率的74%左右;β-内酰胺类主要通过生物降解去除,两厂中吸附率仅占33.3%和17.9%.  相似文献   

15.
建立了四乙基硼化钠衍生、50μm/30μm DVB/CAR/PDMS纤维头顶空固相微萃取、气相色谱质谱仪检测水中三甲基铅和三乙基铅的方法,用于地表水、生活污水和工业废水中三甲基铅和三乙基铅的检测分析.实验优化了顶空固相微萃取条件,研究了萃取纤维、衍生试剂的用量、萃取时间、萃取温度和解析时间对萃取效果的影响.优化条件下,三甲基铅和三乙基铅的检出限分别为0.3μg·L~(-1)和0.2μg·L~(-1),在3个加标水平(5、100、180μg·L~(-1))下,地表水、生活污水和工业废水中目标物的加标回收率分别为81.0%—115%、74.1%—116%和88.4%—111%,相对标准偏差均小于10%.实验操作简单,无需有毒的有机溶剂,且方法灵敏度高,精密度和准确度好,适用于水中三甲基铅和三乙基铅的快速痕量分析.  相似文献   

16.
将大体积固相萃取与GC-MS/MS结合,建立了一种高灵敏度检测水样中有机磷酸酯阻燃剂的方法.通过比较不同填料的固相萃取小柱及洗脱溶剂进行了水样前处理优化,进一步通过三重四极杆气质联用仪的选择反应监测模式进行分析,方法的线性范围为1—100μg·L~(-1)(R20.99),检出限为0.31—64.51ng·L~(-1)(S/N=3).在500mL超纯水中分别加入100、200μL和1.0mL单标浓度均为0.1mg·L~(-1)的有机磷酸酯标准溶液,回收率分别为79.0%—96.3%、73.6%—111.6%和91.7%—103.2%,相对标准偏差(除TnBP外)均小于20%,取得了满意的结果.  相似文献   

17.
本研究建立了检测污泥中16种多环芳烃(PAHs)的气相色谱-质谱测定方法,对该介质中16种多环芳烃(PAHs)的提取、净化和色谱质谱条件进行了优化.采用100 m L正己烷∶丙酮(V∶V,50∶50)混合溶剂索式提取样品中的待测组分,经分子印迹固相萃取柱(MIPs/SPE)净化,内标法定量.结果表明,分子印迹固相萃取柱(MIPs/SPE)对PAHs单体专一吸附效果显著,对中环、高环PAHs的吸附明显,并且基质效应减弱.16种多环芳烃的线性范围为10—5000 ng·m L~(-1),相关系数(R2)不低于0.9978,加标水平为50、250、500 ng·m L~(-1)时,基质平均加标回收率分别为60%—105%,58%—121%和63%—115%,相对标准偏差(RSDs,n=6)为3.8%—9.4%.该方法快速、准确、灵敏度高、重现性好.  相似文献   

18.
本研究建立了沉积物和污泥中15种典型精神活性药品的QuEChERS(quick,easy,cheap,effective,rugged and safe)提取和超高效液相色谱-三重四极杆质谱(UPLC-MS/MS)痕量分析方法.冻干后的沉积物或污泥样品采用含1%乙酸的乙腈溶液提取,加入无水硫酸镁和乙酸钠促进提取和溶液分层,提取液通过无水硫酸镁/PSA/C18混合分散固相萃取(d-SPE)试剂进行净化,氮吹浓缩后供UPLCMS/MS检测.通过建立的痕量分析方法,15种目标精神活性药品在沉积物中的检出限(MDLs)和定量限(MQLs)分别为0.01—0.24 ng·g-1和0.04—0.80 ng·g-1,当加标浓度为5、20、50 ng·g-1时,回收率为5 6%—121%、57%—116%和58%—115%,相对标准偏差小于15%;在污泥中的检出限(MDLs)和定量限(MQLs)分别为0.06—0.83 ng·g-1和0.22—2.78 ng·g-1,当加标浓度为20、80、2...  相似文献   

19.
建立了自来水中6种氯代多环芳烃和15种多环芳烃的固相萃取-高效液相色谱荧光检测分析方法.500 mL水样过C18固相萃取柱富集,经6 mL的50%甲醇水溶液淋洗,10 mL二氯甲烷-正己烷(1∶1)洗脱.目标化合物经色谱柱(SUPELCOSILTMLC-PAH柱,150 mm×4.6 mm,5μm)分离后,荧光检测,外标法定量.结果表明,21种目标化合物在线性范围内线性关系良好,相关系数均大于0.999;目标化合物的加标回收率为70%—98%,相对标准偏差(RSD) 0. 6%—8. 8%;方法的检出限(LOD,S/N=3)为0. 3—5. 0 ng·L~(-1),定量限(LOQ,S/N=10)为1.1—16.7 ng·L~(-1).方法简便快速,可用于自来水中氯代多环芳烃和多环芳烃的检测.  相似文献   

20.
利用气相色谱(GC-ECD)、ICP-MS和原子荧光法,对海南五市淡水区表层水体和沉积物样品中14种有机氯农药和9种重金属进行检测和评价.结果表明,水样和表层沉积物有机氯农药含量分别为5.02—60.75 ng·L~(-1)和2.30—22.67 ng·g~(-1),其中水样中含量较高的化合物有β-HCH(6.67 ng·L~(-1))、p,p'-DDT(4.01 ng·L~(-1))、o,p'-DDT(3.35 ng·L~(-1))和p,p'-DDE(3.05 ng·L~(-1)),表层沉积物含量较高的化合物为异狄氏剂(3.09 ng·g~(-1))、β-硫丹(2.40 ng·g~(-1))、p,p'-DDD(1.82 ng·g~(-1))、β-HCH(1.63 ng·g~(-1))、α-硫丹(1.59 ng·g~(-1))和p,p'-DDE(1.04 ng·g~(-1)).海南养殖水体中HCHs和DDTs污染程度与其他水域比较属中低水平.重金属检测水样中Cr、Fe、Ni、Cu、Zn、As、Cd、Hg和Pb含量分别为nd—26.58、346.7—5310、0.28—14.81、nd—9.46、3.02—15.05、132.96—186.6、nd—0.11、0.01—0.11、1.15—21.60μg·L~(-1),底泥中Cr、Fe、Ni、Cu、Zn、As、Cd、Hg和Pb含量分别为4.04—71.28、6530—37040、1.06—29.34、nd—19.26、nd—111.04、1.04—5.68、nd—0.22、0.01—0.15、3.17—61.38 mg·kg~(-1),养殖鱼塘底泥中重金属潜在生态风险综合指数(RI)为10.37—51.80,平均为25.45,综合污染指数评价该区域除个别样点外重金属污染程度较低,7种重金属的单项潜在生态风险指数生态风险均值排列顺序为:HgCdAsPbCuZnCr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号