首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Effective environmental impact assessment and management requires improved understanding of the organization and transformation of ecosystems in which independent agents are linked through an intricate network of energy, matter, and informational interactions. While advances have been made, we still lack a complete understanding of the processes that create, constrain, and sustain ecosystems. Network environ analysis (NEA) provides one approach for building novel ecosystem insights, but it is model dependent. As ecological modeling is an imprecise art, often complicated by inadequate empirical data, the utility of NEA may be limited by model uncertainty. Here, we investigate the sensitivity of NEA indicators of ecosystem growth and development to flow and storage uncertainty in a phosphorus model of Lake Sidney Lanier, USA. The indicators are total system throughflow (TST), total system storage (TSS), total boundary input (Boundary), Finn cycling index (FCI), ratio of indirect-to-direct flows (Indirect/Direct), indirect flow index (IFI), network aggradation (AGG), network homogenization (HMG), and network amplification (AMP). Our results make two primary contributions. First, they demonstrate that five of the indicators – FCI, Indirect/Direct, IFI, AGG and HMG – are relatively robust to the flow and storage uncertainty in the Lake Lanier model. This stability lets us draw robust conclusions about the Lake Lanier ecosystem organization (e.g., phosphorus flux in the lake is dominated by internal processes) in spite of uncertainties in the model. Second, we show that the majority of the indicators co-vary and that most of their common variation could be mapped onto two latent factors, which we interpret as (1) system integration and (2) boundary influences.  相似文献   

2.
Network particle tracking (NPT), building on the foundation of network environ analysis (NEA), is a new development in the definition of coherence relations within and between connected systems. This paper evaluates three ecosystem models in a comparison of throughflow- and storage-based NEA and NPT. Compartments in models with high indirect effects and Finn cycling showed low correlation of NEA storage and throughflow with particle repeat visits and numbers of particles in compartments at steady state. Conversely, the correlation between NEA and NPT results was high with two models having lower indirect effects and Finn cycling. Analysis of ecological orientors associated with NEA showed NPT to fully support conventional NEA results when the common conditions of donor control and steady state are satisfied. Particle trajectories are recorded in the new concept of a particle “passport”. Ability to track and record particle in-system histories enables views of multiple scales and opens the possibility of making pathway-dependent modeling decisions. NPT may also enable modeling of time, allowing integration of Newtonian, organismal and stochastic modeling perspectives in a single comprehensive analysis.  相似文献   

3.
Analysis of the structure and function of urban metabolic systems is an important goal of urban research. We used network pathways and network utility analysis to analyze the basic network structure of the urban metabolic system and the complex ecological relationships within the system, providing a new way to perform such research. Using four Chinese cities as examples, we developed an ecological network model of the urban metabolic system. By using network pathway analysis, we studied the changing relationships between metabolic length and the number of metabolic pathways, and between metabolic length and reachability. Based on the distribution of the number of metabolic pathways, we describe the basic structure and intercompartment relationships of the system. By using the sign distribution in the network utility matrix, we determined the ecological relationships and degree of mutualism between the compartments of the system. The basic components of the system consisted of the internal environment, the external environment, and the agricultural, industrial, and domestic sectors. With increasing metabolic length, the ecological relationships among the components of the system became more diverse, and the numbers of metabolic paths and their reachability improved. Although the basic network structure of the four cities was identical, the mutualism index differed. Beijing's mutualism index was superior to that of Shanghai, and much higher than those of Tianjin and Chongqing. By analyzing the structure and function of the urban metabolic system, we provide suggestions for optimizing the structure and adjusting the relationships, and propose methods for the application of ecological network analysis in future urban system research.  相似文献   

4.
There is a vast body of knowledge that eutrophication of lakes may cause algal blooms. Among lakes, shallow lakes are peculiar systems in that they typically can be in one of two contrasting (equilibrium) states that are self-stabilizing: a ‘clear’ state with submerged macrophytes or a ‘turbid’ state dominated by phytoplankton. Eutrophication may cause a switch from the clear to the turbid state, if the P loading exceeds a critical value. The ecological processes governing this switch are covered by the ecosystem model PCLake, a dynamic model of nutrient cycling and the biota in shallow lakes. Here we present an extensive analysis of the model, using a three-step procedure. (1) A sensitivity analysis revealed the key parameters for the model output. (2) These parameters were calibrated on the combined data on total phosphorus, chlorophyll-a, macrophytes cover and Secchi depth in over 40 lakes. This was done by a Bayesian procedure, giving a weight to each parameter setting based on its likelihood. (3) These weights were used for an uncertainty analysis, applied to the switchpoints (critical phosphorus loading levels) calculated by the model. The model was most sensitive to changes in water depth, P and N loading, retention time and lake size as external input factors, and to zooplankton growth rate, settling rates and maximum growth rates of phytoplankton and macrophytes as process parameters. The results for the ‘best run’ showed an acceptable agreement between model and data and classified nearly all lakes to which the model was applied correctly as either ‘clear’ (macrophyte-dominated) or ‘turbid’ (phytoplankton-dominated). The critical loading levels for a standard lake showed about a factor two uncertainty due to the variation in the posterior parameter distribution. This study calculates in one coherent analysis uncertainties in critical phosphorus loading, a parameter that is of great importance to water quality managers.  相似文献   

5.
指示生物监测及水生态预警是利用水环境中指示物种的数量、群落结构指标和个体生理指标等描述水生态系统的健康状态,其相比于常规理化监测和预警更直接地反映水体的生态质量。本研究在松花江干流2012—2015年大型底栖无脊椎动物监测结果的基础上,结合各监测点生态质量管理目标,通过分析物种的种类、出现的频次、物种污染敏感性(耐污值),尝试提出了松花江干流监控断面以底栖动物为指示生物的水生态预警模式,研究思路和结果对流域水环境风险管理指标的拓展有积极作用。  相似文献   

6.
Ecological network analysis (ENA), predicated on systems theory and Leontiev input–output analysis, is a method widely used in ecology to reveal ecosystem properties. An important ecosystem property computed in ENA is throughflows, the amount of matter/energy leaving each compartment of the ecosystem. Throughflows are analyzed via a matrix representing their relationships to the driving input at the boundary. Network particle tracking (NPT) builds on ENA to offer a Lagrangian particle method that describes the activity of the ecosystem at the microscopic level. This paper introduces a Lagrangian throughflow analysis methodology using NPT and shows that the NPT throughflow matrix, , agrees with the conventional ENA throughflow matrix, , for ecosystems at steady-state with donor-controlled flows. The matrix is computed solely from the pathways (particles’ histories) generated by NPT simulations and its average over multiple runs of the algorithm with longer simulation time agrees with the Eulerian matrix (Law of Large Numbers). While the traditional NEA throughflow analysis is mostly used with steady-state ecosystem models, the Lagrangian throughflow analysis that we propose can be used with non-steady-state models and paves the way for the development of dynamic throughflow analysis.  相似文献   

7.
A trophic structure model of the rocky coastal ecosystem in Bahia Tortugas, Mexico was constructed using Ecopath software to represent the main biomass flows in the system. Data for the model came from field observations (biomass estimates, stomach contents, and ecological observations for sea snails, abalones, lobster, some demersal finfishes, and macroalgae) carried out through ten field trips from 2006 to 2008. The results provide a snapshot of how the ecosystem operates. The model considers 23 functional groups. The total system throughput was 553 t/km2/year, 57% corresponds to internal consumption, 28% to respiration, 14% becomes detritus, and only 1% is removed through commercial fishing. The model suggests that even for exploited populations, predation and competition are heavier stresses than current fishing effort; however, because spiny lobster showed the second highest keystoneness’ index value, increasing fishing pressure on this group could strongly impact the entire ecosystem. We believe that this model has the potential to support management by allowing the exploration of the potential impacts of different fishing decisions at ecosystem level.  相似文献   

8.
A trophic model of an intertidal mangrove-based polyculture system in Pearl River Delta, China, was constructed using the Ecopath with Ecosim software. This polyculture system was chosen since it is the first integrated multi-trophic aquaculture (IMTA) system that was constructed on the basis of mangrove planting in China. The energy flows, ecosystem property, and carrying capacity of tilapia in the polyculture system were analyzed and evaluated. The results show the trophic level of 1.00 for primary producers and detritus to 2.85 for grass carp. The geometric mean of the trophic transfer efficiencies was 7.0%, with 7.2% from detritus and 6.8% from primary producers within the system. The ecosystem property indices show that this polyculture system has a high value of total primary production/total respiration (TPP/TR) and total primary production/total biomass (TPP/TB), together with low Finn's cycled index (FCI), Finn's mean path length (FML), and connectance index (CI), indicating that this system is at a development stage according to Odum's theory. The principal fish cultured in the system is tilapia, and mixed trophic impacts (MTI) show that tilapia has a marked impact on most compartments in this system, and the carrying capacity was found to be a tilapia culture biomass of 5.8 t ha−1 in the system.  相似文献   

9.
Cosmic exergy based ecological assessment for a wetland in Beijing   总被引:1,自引:0,他引:1  
Wetlands research and restoration has become one of the critical concern due to their importance in providing ecosystem services. This study proposes a holistic methodology to assess the wetland ecosystem based on cosmic exergy as a thermodynamic orientor. This new approach is applied to two typical wastewater treatment facilities (an activated sludge system and a cyclic activated sludge system) and to a constructed wetland ecosystem in Beijing for comparison. Results show that the Beijing wetland ecosystem gains positive net present ecological value of 3.08E+14 Jc regarding its total life cycle. Comparison with the activated sludge system and cyclic activated sludge system, shows that the wetland ecosystem has greater dependencies on local resources (22% vs. 0% vs. 0%) and renewable resources (67% vs. 38% vs. 31%) as well as a larger ecological sustainability index (0.64157 vs. 0.00005 vs. 0.00008). This implies that the wetland ecosystem is more environmentally friendly and sustainable method for water treatment.  相似文献   

10.
In recent years, it has been important to objectively evaluate the degree of regional ecological security with regard to resource depletion and to analyse influential factors to assess sustainable development. This paper tries to assess ecological security in Chongqing while investigating the main influencing factors. Calculations of the consumption footprint, production footprint and ecological capacity for Chongqing from 1996 to 2007 based on an ecological footprint approach were carried out. An ecological security index was also calculated from these results and factors influencing security were analysed using factor analysis. Both the consumption and production footprints present an upward trend, contrary to the gradually decreasing trend of ecological capacity. In addition, the ecological security index shows that Chongqing has deteriorated from a level of less risk to that of risk. Factor analysis suggests that the deterioration of ecological security could primarily be ascribed to socio-economic factors and industrialisation. With socio-economic development and industrialisation, appropriate measures must be taken to improve the ecosystem in Chongqing so as to achieve sustainable development. The limitations of the methodology are also discussed and areas that require further research are presented.  相似文献   

11.
A simulation model for Russian wheat aphid (RWA), Diuraphis noxia (Mordvilko), populations is built by integrating survival-analysis-based development and survivor functions and the same-shape reproduction distribution model in the framework of Leslie [Leslie, P.H., 1945. On the use of matrices in certain population mathematics. Biometrika 33, 183–212] matrix structure. Survival analysis is utilized to model both the development and survival of RWA populations, and the Cox (1972) proportional hazards model is fitted with the data sets from our laboratory observation of 1800 RWA individuals under 25 factorial combinations of five temperature regimes and five barley plant-growth stages. Rather than using simple age-specific survivor rates as in the traditional Leslie matrix, the survivor functions based on survival analysis describe age-specific, temperature and plant stage-dependent RWA survival probabilities. Similarly, a probability model from survival analysis to estimate the probability that an individual will reach mature adult stage is utilized to describe the development process; this makes the transition from nymphal stage to mature adult stage dependent on RWA age as well as temperature and plant-growth stage.Inspired by the same-shape distribution and rate-summation approach for modeling insect development, a similar approach for modeling insect reproduction under variable temperature is developed. This new same-shape reproduction distribution model incorporates individual variation in reproduction capability, as well as the effects of RWA age, temperature and plant-growth stage. Consequently, the same-shape reproduction distribution model replaces the simple age-specific fecundities in Leslie matrix model. To the best of our knowledge, this work is the first to introduce survival analysis to simulation modeling in entomology and ecology and also the first to integrate our newly developed same-shape reproduction distribution model into application.  相似文献   

12.
Modelling ecological or environmental problems has potential to provide understanding of the causes of such problems and to indicate how to better manage them. Özesmi and Özesmi (2004) showed that cognitive or causal mapping can be used to develop maps of socio-ecological systems but these maps were based on stakeholders concerned with one ecosystem. This article shows how maps from a number of different dairy farmers in different locations, but each considering his or her own farm, can be used in meta analysis to make maps that represent how farmers think their farm ecosystem works. It also shows that the combination of causal mapping with the additional technique of Q method provides a useful solution to the practical problem of selecting from a sufficiently broad range of factors with potential to use in a map. Causal mapping in single or multiple locations contributes to the goal of using peoples’ knowledge of ecosystems to improve our understanding of socio-ecological systems.  相似文献   

13.
从区域生态安全内涵出发,基于可持续发展理论、自然—经济—社会复合生态系统理论和压力(pressure)—状态(state)—响应(response)概念模型,从资源环境负荷、生态环境状态、人类社会响应3方面构建城镇生态安全评价指标体系。选择上海崇明岛处于核心地位且代表着不同城镇化水平(较高、中等、较低)的城桥镇、堡镇、陈家镇为研究对象,通过实地调研、监测、实验分析等方式获取指标数据,应用层次分析法(AHP)确定指标权重,并通过综合指数模型进行安全评价。评价结果表明:3个城镇生态安全综合评价结果为城桥镇(0.773 3)>陈家镇(0.762 8)>堡镇(0.749 0),社会经济的发展对资源环境的负荷较小,生态环境现状水平良好,但人类响应措施滞后;随着城镇化进程的加快,部分生态环境要素可能有恶化趋势,现已进入预警状态。  相似文献   

14.
The thesis is presented that classical taxonomy is of limited value to ecosystem science, and that the further development of ecosystem theory may actually be hindered by a reliance on the biological (phylogenetic) species as the basic functional unit of ecosystems. It is further argued that this situation could be improved if ecologists could agree on a system of functional classification in which ecological taxa would be distinguished solely on the basis of what they do in the context of an ecosystem, and not on their evolutionary relationships.A functional classification system is proposed in which functional taxa for specific ecosystems (ecological sectors) are defined as broad trophic groups of organisms in common vertical habitat zones, and with common inputs and outputs (ecosystem commodities and services). This system is envisioned as potentially useful in the development of comparative ecosystem theory, for constructing simulation models, for ongoing research in economic versus ecological values, and for cataloging new functional information as it becomes available.The proposed system is tentatively applied to the salt marsh estuarine ecosystem in the southeastern U.S.A. and to the swampforest ecosystem in Louisiana (U.S.A.). Twenty-five sectors are identified in the former and twenty in the latter.“It is by endless subdivisions based upon the most inconclusive differences, that some departments of natural history become so repellingly intricate”. Melville (1851), Moby Dick.  相似文献   

15.
Urban metabolism research faces difficulties defining ecological trophic levels and analyzing relationships among the metabolic system's energy components. Here, we propose a new way to perform such research. By integrating throughflow analysis with ecological network utility analysis, we used network flows to analyze the metabolic system's network structure and the ecological relationships within the system. We developed an ecological network model for the system, and used four Chinese cities as examples of how this approach provides insights into the flows within the system at both high and low levels of detail. Using the weight distribution in the network flow matrix, we determined the structure of the urban energy metabolic system and the trophic levels; using the sign distribution in the network utility matrix, we determined the relationships between each pair of the system's compartments and their degrees of mutualism. The model uses compartments based on 17 sectors (energy exploitation; coal-fired power; heat supply; washed coal; coking; oil refinery; gas generation; coal products; agricultural; industrial; construction; communication, storage, and postal service; wholesale, retail, accommodation, and catering; household; other consuming; recovery; and energy stocks). Analyzing the structure and functioning of the urban energy metabolic system revealed ways to optimize its structure by adjusting the relationships among compartments, thereby demonstrating how ecological network analysis can be used in future urban system research.  相似文献   

16.
Ecosystems are balanced by nature and each component in the system has a role in the sustenance of other components. A change in one component would invariably have an effect on others. Stomatopods (mantis shrimps) are common and ecologically important predatory crustaceans in tropical marine waters. The ecological role of mantis shrimps and potential impacts of trawling in a marine ecosystem were estimated using Ecopath with Ecosim (EwE) Version 5.0 software, by constructing a mass balanced Ecopath model of Parangipettai (Porto Novo) ecosystem. Based on fisheries information from the region, 17 ecological groups were defined including stomatopods. Both primary and secondary data on biomass, P/B, Q/B and diet composition were used as basic inputs. The mass balanced model gave a total system throughput of 14,756 t km−2 year−1. The gross efficiency of 0.000942 indicated higher contribution of lower food chain groups in the fishery though the mean trophic level was 3.08. The immature and developing stage of the ecosystem was indicated by the ratio of total primary production and total respiration (1.832) and the net system production (2643.30 t km−2 year−1). Key indices (flow to detritus, net efficiency and omnivory index), split mortality rates and mixed trophic impact of different ecological groups were obtained from the model. A flow diagram was constructed to illustrate the trophic interactions, which explained the biomass flows in the ecosystem with reference to stomatopods. Two temporal simulations were made, with 10 year durations in the mass balanced Ecopath model by using ecosim routine incorporated in EwE software. The effect of decrease in biomass of stomatopods in the ecosystem was well defined, in the first run with increase in stomatopod fishing mortality, and the group showed a high positive impact on benthopelagic fish biomass increase (129%). The simulation with increase in trawling efforts resulted in the biomass decline of different ecological groups as elasmobranchs to 1%, stomatopods to 2%, crabs and lobsters to 36%, cephalopods to 63%, mackerel to 78%, and shrimps to 89%. Present study warns stomatopod discards and further increase in trawling efforts in the region and it explained the need for ecosystem based fisheries management practices for the sustainability of marine fisheries.  相似文献   

17.
湿地是陆地与水域之间的过渡地带,是地球上生产力最高的生态系统。湿地生态风险评价的实际应用将使人们更好地理解物理、化学和生物风险源如何影响湿地,并为湿地管理提供科学支撑,这就要求确定湿地生态健康评价指标的完整性。生物完整性指数以环境生态毒理学数据为依据,是进行生态系统健康风险评价的最有力工具。大中型无脊椎动物作为易选择的分类群,可用于湿地评估的生物完整性指数的建立,土壤动物特别是线虫类群作为湿地土壤和水环境健康评价的指示生物具有广阔前景。通过线虫分子毒理学等研究方法,可优化出生物完整性指数体系,建立扰动背景下的湿地生态风险评价模型,为湿地污染的监测、防控和修复,提供理论依据和实践方法。  相似文献   

18.
陕西省生态城市建设评价指标体系   总被引:4,自引:0,他引:4  
从陕西省各城市的社会状况和地域情况入手,选择和构建了适合陕西省自身情况的生态城市指标评价体系,并进一步建立了描述城市生态系统发展状况的标准化处理方法和计算方法,最后使用以上方法,对陕西省2008年的生态城市建设进行综合分析和评价。结果表明:陕西省10个城市的生态城市建设基本可以分为3类,其中西安等3个城市生态建设水平较高;铜川市等5个城市生态建设水平一般;延安市等2个城市生态城市建设水平较低。各个城市都应该依照自身情况明确生态建设的发展方向,制定生态建设方案,大力开展城市生态建设,从而使整个陕西省生态实现一体化发展。  相似文献   

19.
Programs and projects employing payments for ecosystem service (PES) interventions achieve their objectives by linking buyers and sellers of ecosystem services. Although PES projects are popular conservation and development interventions, little is known about their adherence to basic ecological principles. We conducted a quantitative assessment of the degree to which a global set of PES projects adhered to four ecological principles that are basic scientific considerations for any project focused on ecosystem management: collection of baseline data, identification of threats to an ecosystem service, monitoring, and attention to ecosystem dynamics or the formation of an adaptive management plan. We evaluated 118 PES projects in three markets—biodiversity, carbon, and water—compiled using websites of major conservation organizations; ecology, economic, and climate‐change databases; and three scholarly databases (ISI Web of Knowledge, Web of Science, and Google Scholar). To assess adherence to ecological principles, we constructed two scientific indices (one additive [ASI] and one multiplicative [MSI]) based on our four ecological criteria and analyzed index scores by relevant project characteristics (e.g., sector, buyer, seller). Carbon‐sector projects had higher ASI values (P < 0.05) than water‐sector projects and marginally higher ASI scores (P < 0.1) than biodiversity‐sector projects, demonstrating their greater adherence to ecological principles. Projects financed by public–private partnerships had significantly higher ASI values than projects financed by governments (P < 0.05) and marginally higher ASI values than those funded by private entities (P < 0.1). We did not detect differences in adherence to ecological principles based on the inclusion of cobenefits, the spatial extent of a project, or the size of a project's budget. These findings suggest, at this critical phase in the rapid growth of PES projects, that fundamental ecological principles should be considered more carefully in PES project design and implementation in an effort to ensure PES project viability and sustainability.  相似文献   

20.
生态风险评价的目的是保护生态系统功能的完整性、稳定性和持久性,为环境风险管理提供理论依据。然而,目前常见的用于保护生物的化学污染物浓度阈值大多是以个体水平的毒性试验结果为基础,忽略了物种在时间和空间相互作用等因素,不能够完全保护生态环境安全和生态系统功能的延续性。本文从生态风险评价的概念、目的和意义引出种群水平生态风险评价在环境管理应用的重要性,综述了种群水平生态风险评价的科学问题(如密度依赖、遗传变异和空间结构等),归纳了种群水平风险评价主要模型方法及其应用(如Euler-Lotka方程、预测矩阵、个体模型、空间模型和动态能量预算模型等),列举了各国现有法律法规中关于种群水平生态风险评价的规定,以期为种群水平生态风险评价方法研究及在环境管理中的应用提供有益借鉴。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号