首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
从川西高原贡嘎山区杜鹃林下土壤中分离纤维素降解菌,构建具有高效降解纤维素能力的复合菌系,并对秸秆降解效果进行分析,为农业废弃物的循环利用提供菌种资源和理论依据.样品及经风干、高温等预处理后,采用平板涂布法进行分离,共获得79株菌株;通过刚果红实验对分离获得的菌株进行初步筛选,运用DNS法测定各菌株的羧甲基纤维素酶活(Carboxymethyl cellulase,CMCase),复筛得到15株具有CMCase活能力的菌株.经滤纸条崩解实验、秸秆崩解实验及降解率测定,最终确定了各菌株的纤维素降解能力,进一步经拮抗实验,选取相互无拮抗的菌株构建5个复合菌系:A(112、146、156、171),B(145、147、150、153),C(110、116、174),D(147、154、171),E(145、146、150、152、153).复合菌系的滤纸酶活(Fpase)与秸秆降解率测定结果显示,组合C对秸秆的降解率较单菌株116提高了50.71%,组合D对秸秆的降解率较单菌株154提高了41.54%.经形态学和分子生物学鉴定,纤维素降解能力比较好的两个组合中的菌株分别被鉴定为类芽孢杆菌属(Paenibacillus sp.)、芽孢杆菌属(Bacillus sp.)、不动杆菌属(Acinetobacter sp.)以及链霉菌属(Streptomyces sp.).本研究表明,复合菌系纤维素降解能力优于单一菌株,C、D两组复合菌系表现出较高的纤维素降解能力,具有进一步开发的价值.  相似文献   

2.
对实验室6株产纤维素酶菌株进行酶活特性研究.首先通过观察纤维素平板的酶溶解透明圈大小进行初步分析,比较6株菌种子发酵液中纤维素酶含量.再根据不同种纤维素酶作用的底物化学键的不同,分别测定菌株的滤纸酶活(FPA)、纤维素内切葡聚糖酶(CMCase)活、纤维素外切葡聚糖酶(CBH)活和β-葡萄糖苷酶酶活,发现菌株中黑曲霉的各产酶指标均高于其它菌株.根据Box-Behnken原理对黑曲霉发酵工艺进行优化设计,得到最适碳源稻草粉含量9.47 g.L-1、麸皮含量49.33 g.L-1,氮源中(NH4)2SO4含量为2.0 g.L-1,发酵后黑曲霉产生的滤纸酶活力达到76.72 U.mL-1,比优化前酶活力提高88.69%.  相似文献   

3.
采用DNS法研究了我国广泛分布的一种低等木食性白蚁——黑胸散白蚁纤维素酶的体外酶活特性以了解其纤维素降解机制.结果表明,内切β-1,4-葡聚糖酶(EG)、纤维二糖水解酶(CBH)和β-葡萄糖苷酶(BG)这3种酶的最佳反应时间均为15 min,最佳底物浓度为1%,最适反应pH为5.6,最适反应温度为35℃.在最适反应条件下,EG、CBH和BG的活性分别达到71.3(±13.9)U/mg、5.8(±0.8)U/mg和4.1(±0.7)U/mg.EG在体外的热稳定性较差,在50℃及更高温度酶活很低或完全失活,但该酶对pH稳定性较好,在pH 3.2~8.0范围内酶活力变化不大.Native-PAGE电泳检测到该白蚁体内至少有8种不同的EG活性条带,肠道不同部位纤维素酶活性条带种类不同.这些研究表明,木食性白蚁降解纤维素是一个复杂的过程,需要多种纤维素酶的共同作用.  相似文献   

4.
低温纤维素降解菌的分离与鉴定   总被引:2,自引:0,他引:2  
对内蒙古部分地区土壤中低温降解纤维素的微生物进行研究,以期获得一些高酶活的低温纤维素酶产生菌.采用纯培养的方法,在10℃下培养获得纯培养物.以细菌16S rDNA通用引物PCR扩增后进行序列同源性比对确定种属.以DNS法测定纤维素酶活性,并对酶活较高的菌株进行产酶条件的优化.结果共分离得到55株可低温降解纤维素的菌株,16S rDNA序列分析表明它们分别属于γ-变形菌纲(γ-Proteobacteria)、硬壁菌门(Firmicutes)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)以及β-变形菌纲(β-Proteobacteria).该55株菌的纤维素酶活性均在22℃下最高.其中菌株CF11在10℃下的酶活在分离得到的55株细菌中最高.通过优化,菌株CF11产纤维素酶的最佳条件初步确定为pH值为6.5,培养时间为10 d,并且是以酵母提取物作为氮源,其纤维素酶活为58.091 IU.因此菌株CF11是一株极具开发潜力的低温纤维素酶产生菌.  相似文献   

5.
若尔盖高原湿地常年低温,泥炭沼泽土分布广泛,为了解该特殊生境中的低温纤维素降解菌群落结构,将采自3个乡(阿西茸、黑河、达扎寺)的泥炭沼泽土样品于10℃条件下富集培养于羧甲基纤维素钠(CMC-Na)液体培养基中,用3,5-二硝基水杨酸(DNS)法测定纤维素酶活性,并利用变性梯度凝胶电泳技术(Denaturing gradient gel electrophoresis,DGGE)分析原始土壤样品和富集培养系中的细菌群结构.酶活测定结果表明,低温富集传代过程中,3个地区样品的相对酶活均随着培养代数的增加而增加,第3代的相对酶活最高,为25.5 U.DGGE分析表明:相对于原始土壤样品,富集系中的微生物菌群变简单;不同富集代数间,阿西茸乡样品细菌群落结构随传代次数增加而增加,而黑河乡和达扎寺乡样品表现为减少.对DGGE图谱条带序列的系统发育分析表明,富集培养系中的细菌属于α-变形菌纲(α-proteobacteria)、β-变形菌纲(β-proteobacteria)、γ-变形菌纲(γ-proteobacteria)、酸杆菌门(Acidobacteria)、疣微菌门(Verrucomicrobia)等类群.本研究结果揭示若尔盖高原湿地泥炭沼泽土低温纤维素降解菌种群丰富,具有潜在工业开发应用前景.(图3表2参35)  相似文献   

6.
产氢细菌是厌氧发酵过程中重要的功能微生物.将分离自纤维素降解产甲烷复合菌系FSC的产氢细菌FSC-15回补至复合菌系,通过监测氢气产量、甲烷产量、脂肪酸浓度及秸秆降解效率,探究产氢细菌对水稻秸秆水解产甲烷代谢及微生物群落结构的影响.结果显示:添加菌株FSC-15使FSC中纤维素、半纤维素和木质素降解率分别提高了17.33%、28.61%和47.21%,对复合菌系FSC中秸秆降解效率有一定促进作用.培养第3天,氢气产量相比复合菌系FSC提高了41.18%,为产甲烷菌提供更充足的底物,使甲烷产量提高1倍.高通量测序结果显示,Ruminococcaceae和Methanobacteriaceae分别是水稻秸秆厌氧发酵产甲烷体系中水解纤维素和产甲烷的主要类群,Methanobacteriaceae是厌氧发酵体系挥发酸含量较高时产甲烷的主要物种,补加产氢细菌FSC-15对厌氧降解纤维素产甲烷菌系中的细菌群落结构无明显影响,但可以改变古菌的物种多样性及丰度.本研究证明向水稻秸秆厌氧发酵体系补加功能微生物能有效提高体系甲烷产量,可为调控水稻秸秆厌氧消化技术提供理论支撑.  相似文献   

7.
嗜热子囊菌是一种嗜热真菌,可以产生具有很高工业价值的内切葡聚糖酶.本研究成功表达了嗜热子囊菌内切葡聚糖酶Ⅰ基凶,并获得热稳定的重组内切葡聚糖酶.提取嗜热子囊菌光孢变种(Thermoascus aurantiacus var.levisporus)总RNA,通过RT-PCR方法克隆出内切-β-葡聚糖酶eg1基因的成熟肽编码序列.采用基因重组的方法构建该基因的巴斯德毕赤酵母Pichia pastoris分泌型表达载体pPIC9K-eg1,经线性化后采用电穿孔法将其导入毕赤酵母GS115中,大量筛选后获得高效表达内切葡聚糖酶Ⅰ的毕赤酵母工程菌株GpN24.该菌株采用甲醇诱导120 h后,内切葡聚糖酶Ⅰ的活力可达570.7 U/mL,最适温度为55℃,在90℃的条件下保温30 min后仍具有60%的酶活力;最适pH为5.0,在pH 3.0~5.0的条件下酶活力保持稳定.图6表2参16  相似文献   

8.
糠醛是木质纤维素转化过程中产生的有毒的代谢抑制物,能阻碍菌株正常发酵,增加发酵成本.为提高发酵菌株耐受糠醛的能力,促进对木质纤维素的高效转化,以糠醛为耐受物添加到培养基中,竹虫幼虫肠道作为分离源,经刚果红染色法初步筛选,分离到一株可耐受糠醛的纤维素降解菌株BREC-11;通过形态学观察、生理生化分析、细胞化学分析、16S rDNA序列比对等多相分类学方法鉴定;进一步进行了不同浓度糠醛耐受试验研究,并测定菌株的滤纸酶活(FPA)、CMC酶活、纤维二糖酶活(β-G).确定菌株BREC-11属于芽孢杆菌属的一个种,将其定名为Bacillussiamensis BREC-11.菌株BREC-11在含3.5 g/L糠醛的培养基中可以生长;在3.5 g/L糠醛的耐受浓度下,在30℃、150 r/min培养2 d后,滤纸酶活达到0.1 U/m L,CMC酶活达到0.21 U/m L,纤维二糖酶活达到0.07 U/m L.本研究表明BREC-11是一株耐受糠醛的纤维素降解菌株,在生物炼制过程中具有一定的应用潜力.  相似文献   

9.
从PVA降解酶的角度对本实验室前期实验筛选到的共生菌B1 B2进行了研究.在考察共生菌的基本生长和酶活的关系以及PVA降解酶和氧化酶的关系后,研究了不同的营养条件对PVA降解酶活性的影响.通过对主要营养条件的单因素考察,设计正交实验,优化出影响PVA降解酶活性的最佳主要营养条件为酵母汁0.2gL-1、硝酸铵0.2gL-1、葡萄糖0.5gL-1.采用优化条件进行验证实验,PVA降解酶活性(1.61UmL-1)高于正交实验中的最高酶活(1.56UmL-1),研究结果对发酵生产PVA降解酶和提高该菌在PVA废水处理中的降解性能有一定的价值.图5表3参11  相似文献   

10.
木质素的有效降解是秸秆等农业废物减量化及资源化利用的难点.采用连续驯化培养的方法,从农业废物堆肥过程升温、降温和腐熟3个阶段的微生物菌群中分别筛选驯化出3组具有木质素降解能力的复合菌MC1、MC2和MC3.通过初筛和复筛实验,筛选出一组性能稳定并具有高效木质素降解能力的复合菌,并对其继代培养的稳定性进行了验证.结果表明,从堆肥升温阶段筛选出的复合菌MC1的木质素降解能力最强.在37℃静置条件下液态发酵培养14d,d6时复合菌MC1各酶活值均达到最大,其中木质素过氧化物酶酶活为258.37UL-1,锰过氧化物酶酶活486.39UL-1,漆酶酶活为49.25UL-1;d14时木质素降解率达到36.25%.继代培养实验结果表明复合菌MC1具有较好的稳定性.图2表1参19  相似文献   

11.
一株降解苄嘧磺隆光合细菌的分离鉴定及其降解特性   总被引:1,自引:0,他引:1  
从农药厂工业废水和污泥中富集分离到一株能降解苄嘧磺隆(Bensulfuron methyl)的光合细菌PSB07-6,根据分离菌株的细胞形态结构、活细胞光吸收特征、生理生化特征以及系统发育分析将该菌初步鉴定为沼泽红假单胞菌(Rhodopseudomonas palustris).高效液相色谱法(HPLC)测定该菌降解光合细菌培养基中苄嘧磺隆的能力,在pH为6.5的光合细菌培养基中培养5 d,对350 mg·L-1苄嘧磺隆降解率达25.03%.添加回收率为105%~112%.降解特性研究结果表明,该菌能以苄嘧磺隆为唯一碳源和氮源,降解最佳条件为30℃、pH6.5.  相似文献   

12.
以青藏高原湿地若尔盖地区不同生境土壤为材料,通过富集,计算降解圈个数,分析该地区纤维素降解菌的含量.分离得到15株具有纤维素降解能力的菌株,从中复筛得到一株降解能力较强的菌株3C-6.12,经16S rRNA和Biolog鉴定为野油菜黄单胞菌(Xanthomonas campestris).该菌株在以质量比例3:2的麸皮与玉米芯为发酵培养基时,酶活最高为66.44U/mL,最适pH值为6~8,最佳生长温度为30℃.该菌株的成功选育为后续高效、充分利用纤维素类物质生产生物能源提供了很好的菌种来源.  相似文献   

13.
以往对多菌灵降解菌Rhodococcus qingshengii sp.nov.djl-6的降解途径研究显示,该菌株首先通过多菌灵水解酶将多菌灵水解成二氨基苯并咪唑,从而对多菌灵进行脱毒.为开发酶制剂并有效应用于环境中残留污染物多菌灵的降解,比较了不同提取方法(高压细胞破碎、超声波破碎和添加溶菌酶破碎)对多菌灵水解酶提取效率的影响,并对其酶学特性进行了初步研究.结果表明,djl-6菌株在LB培养基中培养72~84 h,生长量和产酶量均达到最大值.采用超声波破碎提取酶的效率较高(蛋白浓度为7.92 mg/mL),但酶活损失较大(比酶活只有1.2 U/μg protein).多菌灵水解酶属于一种胞内组成型酶.该酶水解多菌灵的最适pH值为7.0,最适温度为30℃,Zn2+和K+对酶活有一定的抑制作用.  相似文献   

14.
在纤维素酶生产过程中,常用的固体诱导物存在着诱导效率低、传质阻力大和不易于流加培养等局限性,所以利用β-葡萄糖苷酶催化葡萄糖生产槐糖等可溶性诱导物进行纤维素酶发酵具有重要意义.为实现β-葡萄糖苷酶的低成本高效生产,首先利用本实验室分离的β-葡萄糖苷酶生产菌Penicillium sp.YH02为产酶菌株,利用响应面法对麸皮、麦草和微晶纤维素3个参数浓度进行优化,优化后β-葡萄糖苷酶酶活提高15.03%.其次,利用菌株YH02所产的β-葡萄糖苷酶,以高浓度葡萄糖为底物进行转糖苷反应,合成诱导里氏木霉(Trichodema reesei)产纤维素酶的可溶性诱导物.结果表明,以10 g/L该可溶诱导物为碳源时,里氏木霉Rut-C30在48 h时滤纸酶活比未进行催化反应的葡萄糖对照高24.9倍.离子色谱分析结果表明,高浓度葡萄糖经过菌株YH02分泌的β-葡萄糖苷酶催化后产生具有诱导能力的槐糖、龙胆二糖和纤维二糖.本研究实现了β-葡萄糖苷酶的高效生产并成功制备了可溶性诱导物,为降低纤维素酶生产成本提供了参考.(图4表1参22)  相似文献   

15.
生孢噬纤维菌荚膜多糖的分离纯化及其性质   总被引:1,自引:0,他引:1  
生孢噬纤维菌(Sporocytophaga)是能降解纤维素的滑动细菌,它可将滤纸和棉花纤维素完全降解.本文对生孢噬纤维菌产生的荚膜多糖的分离纯化以及性质进行了研究.以滤纸平板法培养生孢噬纤维菌,加入1%苯酚后,荚膜多糖溶解在水相中,再经氯化十六烷基吡啶(CPC)沉淀,分离出荚膜多糖提取物.利用Sephadex G-75柱层析法、胰蛋白酶和Sevag法对荚膜多糖提取物进行纯化;并利用比旋光度检查、红外光谱、液相色谱以及气相色谱等分析手段对精制后的荚膜多糖进行分析.结果表明,分离纯化得到了纯度较高的生孢噬纤维菌荚膜多糖.Sephadex G-75柱层析分析表明,荚膜多糖提取物中含有结合蛋白,除去结合蛋白后,多糖分子量约为6.5×103;气相色谱分析表明,该荚膜多糖主要由Gal、Glc、GlcA以及Man等单糖组成,其比值约为3.513.33.61;同时该荚膜多糖的红外光谱显示,该多糖所含的甲基、亚甲基等基团的量比正常多糖多;红外光谱图中881cm-1处的峰位显示,该多糖含有不典型β糖苷键特征吸收峰.图5参8  相似文献   

16.
为了解木质纤维素水解过程中木聚糖酶作为辅助酶对纤维素酶的协同促进作用,采用实验室保存的单展示3种纤维素酶(内切葡聚糖酶EGII、外切葡聚糖酶CBHII和β-葡糖苷酶BGLI)和2种木聚糖酶(β-D-1,4内切木聚糖酶Xyn II和β-D-1,4外切木聚糖酶Xyl A)的酿酒酵母功能菌群,以蒸汽爆破玉米秸秆为底物进行乙醇发酵实验(SSF).结果显示,以蒸汽爆破玉米秸秆为底物时,加入纤维素酶和木聚糖酶共发酵96 h的最高乙醇浓度达到0.695 g/L,乙醇产率为0.254 g/g,相当于理论值的49.8%,纤维素酶与木聚糖酶之间的协同因子(DS)最高达到1.16(始终大于1).本研究表明在细胞表面展示体系中适量添加木聚糖酶对纤维素酶水解底物具有较明显的促进作用,为直接以木质纤维素为原料制取纤维素乙醇提供了一定的可行性依据,可通过调节单展示酵母细胞在菌群间的动态比例实现对酶协同作用的优化调控.  相似文献   

17.
选择琼脂、明胶、琼脂-明胶3类固定化载体对具有降解纤维素能力的放线菌2235产生的纤维素酶进行固定化,在分别以羧甲基纤维素钠( CMC - Na)和滤纸为底物条件下,通过测定不同方法固定化后的纤维素酶活性,确定用于固定化纤维素酶的优良载体.结果表明,明胶法固定化效果最差;琼脂-明胶协同法固定化效果最优,采用该方法测得的滤纸酶和CMC酶活性分别可达3 317和8 868 nkat·mL-1.  相似文献   

18.
青霉木质纤维素降解酶系研究进展   总被引:2,自引:0,他引:2  
越来越多的研究表明青霉属(Penicillium)真菌中的一些种类不仅能分泌组成齐全、酶活较高的木质纤维素降解酶系,而且具有易培养和生长快的优势.本文就国内外对青霉菌木质纤维素降解酶系研究的最新动态进行了综述,包括菌株的选育、纤维素酶系的特性与合成调控,以及基因分析与克隆.同时介绍了斜卧青霉纤维素酶系的生产与发酵工艺,以及酶解过程分析等相关研究进展.表4参48  相似文献   

19.
木质纤维素原料作为一种储量丰富、价格低廉的可再生资源,在生物燃料以及相关高附加值产品领域的应用已成为一个研究热点.纤维素酶是木质纤维素原料资源化利用过程中的关键酶,但从自然中筛选的纤维素降解菌株酶活较低,因而制约了木质纤维素原料的资源化利用.本文综述了真菌产纤维素酶的诱导物及纤维素酶表达调控机理研究的主要进展,着重讨论了纤维素、纤维二糖、槐糖、龙胆二糖等诱导物对真菌产纤维素酶的诱导作用以及葡萄糖等代谢产物的抑制作用,并阐述了真菌纤维素酶诱导表达调控的机理以及纤维素酶基因表达激活子(ACE)、木聚糖酶转录激活因子(Xyr1)、内切葡聚糖苷酶激活元件(CAE)、分解代谢物抑制蛋白(CRE)等调控因子的研究进展.提出通过对纤维素酶合成代谢进行调控来高效合成纤维素酶,为提高纤维素酶的活性和纤维素酶工业化应用提供参考.  相似文献   

20.
由一株青霉菌产生的聚乙烯醇降解酶   总被引:8,自引:3,他引:8  
从纺织污水活性污泥中筛选得到一株新型聚乙烯醇(PVA)降解酶产生菌,根据形态学特征鉴定该菌属于青霉属(Penicillium sp.),实验室编号WStt02-21.这是由霉菌产生PVA降解酶的首例报道.在考察了菌株WSH02-21基本生长和产酶特性的基础上,研究了营养条件对PVA降解酶合成的影响.通过对营养条件的单因素考察和正交试验,确定了最优培养条件为PVA 40 g L-1、葡萄糖3.0 g L-1、NH4Cl 8.0 g L-1、KH2PO4 2.0 g L-1、酵母膏1.0 g L-1、:MgSO40.5 g L-1。、CaCl2 1.0 g L-1、NaCl 0.02 g L-1、FeSO4·7H2O 0.02 g L-1,初始pH 6.4.其中PVA浓度是影响Penicilliumsp.WSH02-21合成PVA降解酶的最重要因素.采用最优化条件进行验证试验,PVA降解酶酶活(4.4 U mL-1)略高于正交试验中的的最高酶活(4.3 U mL-1).图7表2参11  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号