首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
采用密度泛函理论(DFT)量子化学计算方法对铝-8-羟基喹啉配合物(Al-8-Hq)的静态结构以及水交换反应进行了研究,系统地开展了以下工作:(1)采用GP-PCM(气相模型并考虑本体溶剂效应)在B3LYP6-311+G(d,p)水平优化了Al-8-Hq溶液中可能存在的8种构型,获得了相应的静态结构参数、NPA电荷和能量;(2)采用GIAO方法在HF 6-311+G(d,p)水平下计算了1∶3配合物的27Al NMR化学位移,结果表明采用HF的GP-PCM模型化学位移计算值与实验值一致;(3)通过模拟1∶1/1∶2配合物8个不同位点的动态水交换反应,探讨了水交换反应机制并预测了水交换反应速率.本研究有助于从原子层面加深对Al-8-Hq配合物形态结构以及水交换反应动力学过程的理解和认识.  相似文献   

2.
手性物质广泛存在于环境和生物体中,探讨环境体系中手性金属-有机配合物特性具有重要科学意义.本文采用密度泛函理论(DFT)结合团簇模型(CM)的量子化学计算方法,在B3LYP/6-311+G(d,p)基组水平下,以铝-草酸和铝-麦芽酚为典型实例,研究手性"铝-有机配合物"的动静态性质,系统地开展了以下工作:(1)优化得到了1对铝-草酸和3对铝-麦芽酚手性配合物,并通过静态结构参数、能量参数和谱学性质分析了手性配合物之间的差异;(2)模拟了手性配合物可能存在的10条水交换反应路径,对比了手性配合物水交换反应速率常数;(3)通过Berny方法得到了铝-草酸手性配合物异构体构型转化的动态反应路径,并计算了对映体构型转化的活化能.结果表明,手性对映体具有基本相同的静态结构和能量特征,但偶极矩存在明显差异;溶剂效应对手性对映体静态结构特征、偶极矩和动态水交换反应速率均有影响;手性对映体之间可发生构型相互转化从而改变对映体所占比例.  相似文献   

3.
采用密度泛函DFT量子化学计算,初步探讨了"平面型"十三聚合铝(F-Al13)的水交换反应.在B3LYP/6-31G水平下模拟了气相体系中全水合F-Al1153+与脱质子形态(F-Al913+和F-Al313+)中η-OH2(1)键合水位点的水交换反应;比较了F-Al13和K-Al13两种不同十三聚合铝形态的水交换反应特点;讨论了不同铝形态(二聚铝Al2、三聚铝Al3、Al6六元环以及Al7Anderson内核等)水交换反应研究对于阐明F-Al13形成机制的重要意义.  相似文献   

4.
采用密度泛函理论(DFT)对不同温度、压力和溶剂条件下的Al(H_2O)_6~(3+)水交换反应进行了研究,系统地开展了以下工作:(1)采用超分子-极化连续模型在B3LYP/6-311+G(d,p)基组水平下优化得到Al(H_2O)_6~(3+)水交换反应的路径,在优化构型的基础上计算得到5组温度(278—358 K)条件下相应的水交换反应速率常数kex,结果表明温度升高促进了Al(H_2O)_6~(3+)水交换反应的进行;(2)计算得到5组压力(0.4—1.2 atm)条件下Al(H_2O)_6~(3+)水交换反应的kex,研究表明在该地表水中常压范围内的压力变化对kex没有影响;(3)在极化连续模型下进行单点能计算时分别选择水、乙腈、乙醇、苯和四氯化碳等5种不同的主体溶剂,计算不同溶剂中Al(H_2O)_6~(3+)水交换反应的kex,结果表明非极性溶剂中反应的活化Gibbs自由能较低,水交换速率加快.本文为不同环境条件下Al(H_2O)_6~(3+)水交换反应的研究提供了有用参考.  相似文献   

5.
用DFT方法在B3LYP/6-31G·水平下,对水合铝离子的单体和二聚体形态进行计算.在单体[Al(H2O)6]3 ,[Al(OH)(H2O)5]2 ,[Al(OH)2(H2O)4] 和二聚体[Al2(OH)2(H2O)8]4 ,[Al2(OH)3(H2O)7]3 ,[Al2(OH)4(H2O)6]2 ,[Al2(OH)5(H2O)5] 及其异构体中, Al和羟基O之间的键长明显小于Al和H2O中O之间的键长.将H2O代以羟基后,六配位的Al-O八面体骨架发生了较大的畸变.在[Al2(OH)4(H2O)6]2 形态的不同几何异构体中,当2个羟基相互邻近时稳定性较低.羟铝比(OH/Al)增大将有更多的电子流向Al(Ⅲ),同时,单体和二聚体中H2O的氢原子所带正电荷均有所减小.二聚体的羟桥氢原子所带正电荷随OH/Al比的增大而减小.各形态的键强度呈现:Al-O(H2O)<Al-O(OH)-Al<Al-O(OH),即Al-Ow<Al-Ob-h<Al-Oh.对单体形态,随OH/Al比增大, Al-Ow和Al-Oh键强度均逐渐减小.二聚体形态OH/Al比增大, Al-Ow键强度减小,但Al-Ob-h键强度基本不变, Al-Oh则呈不规则变化.无论是单体还是二聚体,OH/Al比较大形态的HOMO能级与OH/Al比较小形态的LUMO能级相近或前者稍高,前者很容易向后者提供电子.聚合过程主要是在不同形态组分之间进行.  相似文献   

6.
针对水溶液中铝离子第三水化层(hydration shell)对Al(H_2O)~(3+)_6动态水交换反应特性的影响,本文采用密度泛函理论(Density functional theory,DFT)在B3LYP/6-311+G(d,p)基组水平上进行了研究.探讨了第三水化层对第一到第二水化层水交换反应速率常数k~(1-2)_(ex)以及第二到三水化层水交换反应速率常数k~(2-3)_(ex)的影响.研究结果表明,在第三水化层添加不同数目水分子时相应于k~(1-2)_(ex)和k~(2-3)_(ex)的活化能垒变化均不大,表明第三水化层对水交换反应速率常数k~(1-2)_(ex)和k~(2-3)_(ex)影响不大,采用第二水化层就可以较好处理Al(H_2O)~(3+)_6的真实溶剂效应.  相似文献   

7.
采用钙镁试剂 (CLG) 示波计时电位法 ,分别在中性和碱性条件下直接检测天然水中的无机单核铝 [Ali]和总单核铝 [Ala]浓度 .并用该法测定了酸消化水样中的总铝 [AlT],由 [Ala]-[Ali]间接得到有机单核铝 [Alo],[AlT]-[Ala]得到酸溶态铝 [Alr],从而实现了水中五种Al形态的电化学测定 .实验结果表明 :在pH9 0的 0 5mol·1 - 1KCl+ 0 1mol·1 - 1Na2 B4 O7缓冲溶液中 ,CLG切口为Ep1=-0 75V ,加入铝后出现新切口 ,Ep2 =-0 90V ,检测线性范围为 8× 1 0 - 6— 4× 1 0 - 5mol·1 - 1,检测下限为 6× 1 0 - 7mol·1 - 1,在 3× 1 0 - 5mol·1 - 1Al时 ,相对标准偏差为 4 8% (n =1 0 ) .在中性条件下测定的是无机单核铝 ,而在碱性条件下则是总单核铝 (包括无机单核铝和有机单核铝两部分 ) .  相似文献   

8.
通过铝(Al)毒胁迫处理,检测两个不同耐Al玉米自交系(耐Al自交系178和Al敏感自交系Mo17)根系氧化胁迫相关指标如Al含量、H2O2含量、丙二醛(MDA)含量,抵御氧化胁迫的过氧化物酶(POD)活性及细胞壁木质素含量,以期为揭示Al毒抑制玉米根系发育的机制提供佐证.结果表明,Al毒处理后,两个玉米自交系根系的Al含量、H2O2含量、MDA含量、木质素含量和POD活性均有所增加.当Al处理24 h时,这些生理指标变化最大.其中,178中木质素含量和POD活性增加幅度大于Mo17,分别为0.126 OD和2.04 U;而Mo17中Al含量、H2O2含量和MDA含量增加幅度更大,分别为1.835μg g-1、16.71μmol g-1和40.2 nmol g-1.综上,玉米根系的生长抑制与Al诱导的膜脂过氧化有关,而根系细胞抗氧化酶POD的活性及木质素含量的变化是玉米对Al毒胁迫的一种诱发性防御反应.图5参29  相似文献   

9.
Al(Ⅲ)与Fe(Ⅲ)溶液共聚合研究   总被引:7,自引:0,他引:7  
以AlCl_3·6H_2O和FeCl_3·6H_2O混合溶液通过滴加NaOH溶液的方法制备了不同Al/Fe(摩尔比,下同)和不同[OH]_b/[Al+Fe]值的共聚物.测定了聚合过程和熟化过程中的pH值变化,并对不同碱化度和熟化时间下的聚合物进行了混凝效能实验.结果表明,在共聚过程中,Fe(Ⅲ)与 OH~-的络合速度比Ai(Ⅲ)快,即 Fe(Ⅲ)具有较强的共聚合活性.Al/Fe,[OH」_b/[Al+Fe]值对铝铁共聚物形态分布有明显影响.不同条件下共聚物混凝对比实验表明,在Al/Fe为5:5,[OH]_b/[Al+Fe]为 1.6,熟化时间为24h时,显示出了较优异的混凝效能.  相似文献   

10.
长期高速率的氮(N)沉降将大量的活性N输入到陆地生态系统,使得部分森林生态系统的土壤酸化问题日益严重。酸化导致的土壤中交换性铝(Al)的增加直接威胁着植物生长和生态系统安全。为探索长期不同N沉降情形下竹林土壤Al组分的响应,于2007年10月在苦竹(Pleioblastus amarus)林中建立模拟N沉降样地,分别设置对照(CK,N0 g·m~(-2)·a~(-1))、低N(LN,N 5 g·m~(-2)·a~(-1))、中N(MN,N 15 g·m~(-2)·a~(-1))和高N(HN,N 30 g·m~(-2)·a~(-1))4个处理,每个处理设置3个重复。在连续10 a的N添加处理后,于2017年7月采集0—10 cm根际与非根际土壤样品并测定土壤pH和土壤Al组分。结果表明,模拟N沉降显著降低了根际土壤pH,HN处理显著降低了非根际土壤pH。在对照处理下,根际土壤pH比非根际大0.56个单位。模拟N沉降对根际交换态Al组分含量有显著的影响,对碳酸态Al、有机络合态Al、铁锰氧化态Al和残留态Al组分含量无显著影响;模拟N沉降对非根际土壤的各个Al组分含量无显著影响。相关性分析结果表明根际土壤与非根际土壤的pH均与交换态Al组分含量呈极显著的负相关关系,根际土壤pH与有机络合态Al组分含量呈显著的负相关关系,与其余Al组分含量无显著相关性。研究结果表明长期N沉降导致的土壤酸化使得土壤交换态Al显著增加,苦竹根系或将遭受到Al毒害,对竹林生态系统健康存在潜在危害。  相似文献   

11.
The relative distribution of Al between its various organic and inorganic complexes dictates its mobility in the environment, bioavailability, and toxicity. In recent years, there has been significant progress made in understanding the differential bioavailability and toxicity of various chemical species of Al to plants and certain aquatic organisms. Far less information concerning chemical speciation and differential uptake and transport of Al in humans is available. Among the important inorganic complexes of interest are the hydrolyzed-Al species, particularly the nonequilibrium, metastable polynuclear complexes, which form readily, have a fairly wide stability range, and have been demonstrated toxic to plants and fish. In recent years27Al NMR spectroscopy has provided significant direct information on the polynuclear complexes existing in a wide range of aqueous solutions. The [Al12O4(OH)24+n(H2O)12–n](7–n)+ polynuclear complex is often found to be the predominant species in partially neutralized Al solutions and has recently been demonstrated to be more toxic to certain plants than the hexaaqua Al cation. It is also the principal component of Al-chlorohydrate, a highly soluble antiperspirant, present in many hydrolyzed Al solutions utilized in water and waste water treatment, and, as hypothesized herein, a primary constituent of many hydroxide gels utilized as antacids. This polynuclear has a wide pH stability range, reportedly forms copolynuclears with Si, and contains tetrahedrally coordinated Al within its structure, all features that may be relevant to the recently reported properties of Al associated with neuritic plaque cores.  相似文献   

12.
Insoluble porous solid functionalized ligand system bearing 2-aminophenylaminopropyl chelating ligand of the general formula P–(CH2)3NH–(C6H4)–NH2 was prepared via the sol–gel process, where P represents [Si–O] n polysiloxane network. First, the 2-aminophenylaminopropylsilane agent was prepared by substitution reaction between 3-chloropropyltrimethoxysilane and 1,2-phenylenediamine, followed by hydrolytic polycondensation between 2-aminophenylaminopropylsilane agent and tetraethylorthosilicate(TEOS). The immobilized 2-aminophenylaminopropylpolysiloxane P–(CH2)3NH–(C6H4)–NH2(P–AphA) was characterized by 13C NMR, XPS, and FTIR. The results showed that 1,2-phenylenediamine groups were introduced onto polysiloxane network. The functionalized ligand system exhibits 90–100% metal uptake capacity for all metal ions except Cd2+. The elemental analysis data and the metal uptake capacities of the immobilized ligand system suggest that over than 90% ligand sites were involved in coordination with metal ions except that of cadmium forming 1:1 metal to ligand ratio complexes.  相似文献   

13.
Synthesis and characterization of Cu(II), Ni(II), and Zn(II) Schiff bases complexes resulted from the condensation of salicylaldehyde derivatives with o-amino phenol were discussed using elemental analysis (carbon, hydrogen, and nitrogen), molar conductance, magnetic measurements, mass spectra, and electronic spectra. The essential bands of infrared, 1HNMR, and UV-Vis spectra as well as thermogravimetric analysis corresponding to the active groups within the three ligands and their complexes were interpreted. The dehydration and decomposition processes of the [Cu(H2L1)(H2O)](OAc)2, [Ni(H2L1)(H2O)]SO4 · H2O, [Zn(H2L1)(H2O)]SO4 · H2O, [Cu(H2L2)(H2O)](OAc)2, [Ni(H2L2)(H2O)]SO4 · H2O, [Zn(H2L2)(H2O)]SO4 · 2H2O, [Cu(H2L3)(H2O)](OAc)2 · H2O, [Ni(H2L3)(H2O)]SO4 · 2H2O, [Zn(H2L3)(H2O)]SO4 complexes were studied thermodynamically using the integral method applying the Coats–Redfern and Horowitz–Metzger equations and the thermodynamic parameters were calculated. It was found from the elemental analysis and the thermal studies, that the ligand behaves as tridentate ligand forming chelates with 1 : 1 (metal : ligand) stoichiometrically. The molar conductance measurements of the complexes in dimethyl sulfoxide solvent indicate that the complexes have an electrolytic nature. The biological activities of the three ligands in comparison with metal(II) complexes were studied against different Gram positive and Gram negative bacteria.  相似文献   

14.
Although Al-based coagulation and adsorption processes have been proved highly efficient for fluoride (F) removal, the two processes both generate large amount of Al(OH)3 solid waste containing F (Al(OH)3-F). This study aimed to investigate the feasibility of utilizing Al(OH)3-F generated in Al(OH)3 adsorption (Al(OH)3-Fads) and coagulation (Al(OH)3-Fcoag) for the adsorption of cadmium ion (Cd(II)). The adsorption capacity of Al(OH)3-Fads and Al(OH)3-Fcoag for Cd(II) was similar as that of pristine aluminum hydroxide (Al(OH)3), being of 24.39 and 19.90 mg·g–1, respectively. The adsorption of Cd(II) onto Al(OH)3-Fads and Al(OH)3-Fcoag was identified to be dominated by ion-exchange with sodium ion (Na+) or hydrogen ion (H+), surface microprecitation, and electrostatic attraction. The maximum concentration of the leached fluoride from Al(OH)3-Fads and Al(OH)3-Fcoag is below the Chinese Class-I IndustrialWastewater Discharge Standard for fluoride (<10 mg·L–1). This study demonstrates that the Al(OH)3 solid wastes generated in fluoride removal process could be potentially utilized as a adsorbent for Cd(II) removal.  相似文献   

15.
16.
Due to the slow rate of incorporation of inert-metal ions into free-base porphyrins compared to other transition metals, several methods have been proposed to accelerate the rate of metalation. However, these methods have disadvantages such as low yields, difficulties of purification of final products, and environmental effects. To avoid those disadvantages, we reacted Pt(II) and Pd(II) salts with H2(TPP), H2(TMPyP)4+, and their β-pyrrole derivatives, H2(Br8TPP) and H2(Br8TMPyP)4+, in 1-butyl-3-methylimidazolium bromide ([bmim]+Br) under microwave irradiation. The combination of microwave heating and ionic liquids provides efficient thermal energy transfer among the porphyrins and metal salts. In addition, ionic liquids stabilize charged species as well as their intermediates, due to their high dipole moment and high boiling point. This not only shortens the reaction time but also gives high yields of products at relatively low temperatures, of about 100°C compared to conventional synthesis methods: 150°C for DMF, 190°C for DMSO. Here, we demonstrate that Pt(II)/Pt(II) metalloporphyrins are synthesized at high rates, e.g. 6–30 min for 100% metalation, with high yields of 79–93% in [bmim]+Br by microwave activation.  相似文献   

17.
The interactions of 10 different chromium(III) complexes with isolated calf thymus DNA have been analysed by studying the electronic and fluoresence spectra of intercalated ethidiumbromide. Triply charged cationic complexes including: [Cr(urea)6]Cl3.3H2O, [Cr(1,10‐phenanthroline)3](ClO4)3.2H2O, [Cr(2,2'‐bipyridyl)3] (ClO4)3.2H2O, [Cr(ethylendiamine)3]Cl3.3.5H2O and [Cr(NH3)6](NO3)3 displaced the dye from DNA. Similar effects were observed in experiments using the non‐intercalating dye bisbenzimidazole ("Hoechst 33258"). However, singly charged cationic, anionic and uncharged chromium(III) complexes such as: cis‐[Cr(1,10‐phenanthroline)2Cl2]Cl.2H2O, cis‐[Cr(2,2'‐bipyridyl)2Cl2]Cl.2H2O, [Cr(glutathione)2]Na2, [Cr(cysteine)2]Na.2H2O and [Cr(glycine)3] were unable to displace both ethidiumbromide and bisbenzimidazole from DNA. There was no evidence for the formation of co‐ordinate bonds between chromium(III) and DNA for any of the above complexes. The charge and type of ligand are important in controlling the interaction of chromium(III) with isolated DNA in vitro. Our findings indicate that the outer sphere interaction of a chromium(III) complex with DNA is weak and unlikely to be the mechanism by which chromate causes DNA impairments in vivo and in vitro.  相似文献   

18.
The chemistry of aluminum in the environment   总被引:6,自引:0,他引:6  
There is increased concern over the effects of elevated concentrations of Al in the environment. Unfortunately, studies of the environmental chemistry and toxicity of Al have been limited by our understanding of the processes regulating the aqueous concentration, speciation and bioavailability of this element.Although Al is the most abundant metallic element in the Earth's crust, it is highly insoluble and generally unavailable to participate in biogeochemical reactions. However, under highly acidic or alkaline conditions, or in the presence of complexing ligands, elevated concentrations may be mobilized to the aquatic environment. Ecologically significant concentrations of Al have been reported in surface waters draining acid-sensitive regions that are receiving elevated inputs of acidic deposition. Acid- sensitive watersheds are characterized by limited release of basic cations (Ca2+, Mg2+, Na+, K+) and/or retention of strong acid anions (SO4 2–, NO3 , Cl). Under these conditions inputs of strong acids are not completely neutralized, but rather acidic water is exported from the terrestrial environment. It has been hypothesized that acidic deposition to acid-sensitive watersheds mobilizes Al within the mineral soil, causing elevated concentrations in soil solutions and surface waters. As a result of mineral phase solubility constraints, concentrations of aqueous Al increase exponentially with decreases in pH below 6.0.Monomeric Al occurs as a series of complexes in the aqueous environment, including aquo, OH, F, SO4 2–, HCO3 and organic species. Of these aquo, OH, F and organic complexes are the most significant in natural waters.Elevated concentrations of Al are ecologically significant because: 1) Al is an important pH buffer in acidic waters, regulating the lower limit of pH values following acidification by strong acids; 2) through adsorption and coagulation reactions, Al may alter the cycling and availability of important elements like phosphorus, organic carbon and certain trace metals; 3) Al may serve as a coagulant facilitating the removal of light attenuating materials, thereby increasing the clarity and decreasing the thermal stability of lakes; and 4) Al is potentially toxic to organisms. Better understanding of the chemistry and speciation of Al is essential to assess these effects.  相似文献   

19.
20.
This study investigated geochemical characteristics of the acid mine drainage (AMD) discharged from the abandoned mine adits in the vicinity of the Dogye coal mine in Korea. Acid mine drainage discharged from Jeoncha pit adit of the Dogye coal mine, which is the main source of the AMD in the study area, had a pH value of 3.0 and concentrations of 2148mg SO4 2– L–1, 229mg Fe L–1, 71mg A1 L–1 and 11mg Mn L–1. The reduction of some metal concentrations downstream from the discharge point could be explained on the basis of dilution and precipitation. The order of removal of metal ions downstream from the discharge point was Fe>A1, Cu>Zn, Mn. Acidity could be used as a good determining factor offering comprehensive and quantitative values for the polluting extent of acid mine drainage. The acidities existing in all acidic water samples in the Gunahan district originated primarily from mineral acidity, especially in the upper Nahan Creek from dissolved Fe and Al and in the middle and down Nahan Creek from dissolved Al. From the application of the WATEQ4F program, it was determined that predominant species of dissolved Fe in all water samples was Fe2+, and those of dissolved Al were AlSO4 + and Al3+ except for IW2 sample which was associated with white precipitates. The species of dissolved Al in IW2 sample include also AlOH2+ and Al(OH)2 +. The saturation indices of goethite and haematite were positive in the water samples associated with ochrous precipitates (usually called Yellow Boy), therefore these solids might be precipitated. For the IW2 sample, the saturation indices of amorphous Al(OH)3 and gibbsite were positive, so theoretically these solids might also be precipitated. By XRD analysis, it was found that goethite occurs in ochrous precipitates, and gibbsite in white precipitates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号