首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
• Microplastics are widely found in both aquatic and terrestrial environments. • Cleaning products and discarded plastic waste are primary sources of microplastics. • Microplastics have apparent toxic effects on the growth of fish and soil plants. • Multiple strains of biodegradable microplastics have been isolated. Microplastics (MPs) are distributed in the oceans, freshwater, and soil environment and have become major pollutants. MPs are generally referred to as plastic particles less than 5 mm in diameter. They consist of primary microplastics synthesized in microscopic size manufactured production and secondary microplastics generated by physical and environmental degradation. Plastic particles are long-lived pollutants that are highly resistant to environmental degradation. In this review, the distribution and possible sources of MPs in aquatic and terrestrial environments are described. Moreover, the adverse effects of MPs on natural creatures due to ingestion have been discussed. We also have summarized identification methods based on MPs particle size and chemical bond. To control the pollution of MPs, the biodegradation of MPs under the action of different microbes has also been reviewed in this work. This review will contribute to a better understanding of MPs pollution in the environment, as well as their identification, toxicity, and biodegradation in the ocean, freshwater, and soil, and the assessment and control of microplastics exposure.  相似文献   

2.

Microplastic pollution has recently been identified as a major issue for the health of ecosystems. Microplastics have typically sizes of less than 5 mm and occur in various forms, such as pellets, fibres, fragments, films, and granules. Mangroves and coral reefs are sensitive and restricted ecosystems that provide free ecological services such as coastal protection, maintaining natural cycles, hotspots of biodiversity and economically valuable goods. However, urbanization and industrial activities have started contaminating even these preserved ecosystems. Here we review sources, occurrence, and toxicity of microplastics in the trophic levels of mangrove and coral reef ecosystems. We present detection methods, such as microscopic identification and spectroscopy. We discuss mitigating measures that prevent the entry of microplastics into the marine environment.

  相似文献   

3.

Microplastic pollution is occurring in most ecosystem, yet their presence in high altitude clouds and their influence on cloud formation and climate change are poorly known. Here we analyzed microplastics in cloud water sampled at the summits of Japan mountains at 1300–3776 m altitude by attenuated total reflection imaging and micro-Fourier transform infrared spectroscopy. We observed nine microplastics including polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyamide 6, polycarbonate, ethylene–propylene copolymer or polyethylene–polypropylene alloy, polyurethane, and epoxy resin. Microplastic were fragmented, with mean concentrations ranging from 6.7 to 13.9 pieces per liter, and with Feret diameters ranging from 7.1 to 94.6 μm. Microplastics bearing hydrophilic groups such as carbonyl and/or hydroxyl groups were abundant, suggesting that they might have acted as condensation nuclei of cloud ice and water. Overall, our finding suggest that high-altitude microplastics cloud influence cloud formation and, in turn, might modify the climate.

  相似文献   

4.
微塑料一般指直径小于5 mm的微小型塑料颗粒或碎片,海洋中常见的微塑料类型主要包括聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯等。由于形状、颜色多变,分子量大,结构稳定,粒径范围与浮游植物相近,海洋中的微塑料很容易被对浮游植物、浮游动物和其他海洋动物等产生影响。微塑料还可以为病毒、细菌提供附着载体,影响浮游植物分布,进入海洋生物消化道或进一步转移到组织中对机体产生毒性效应,甚至通过捕食作用沿食物链传递,对高等动物及人类健康造成威胁。此外,微塑料可以作为海水中痕量化学物质的吸附载体,对生物产生联合毒性。根据目前对微塑料的研究进展情况,未来应加强对海洋微塑料分离、鉴定技术的研发以及海洋微塑料的生物毒性效应和生物传递效应机制等问题的研究。  相似文献   

5.
微塑料已成为一类新型污染物遍布全球各个角落,由此产生的环境问题日趋严峻。第二届联合国环境大会上将微塑料污染列为环境与生态科学研究领域的第二大科学问题。目前大多数研究集中在海洋环境方面,有关土壤-地下水系统中微塑料的环境行为及生态毒性相关研究还较为薄弱。本文基于大量文献调研,较系统地回顾梳理了有关土壤-地下水中微塑料的来源、迁移归趋及其生态毒理效应的研究成果,并对未来研究做出评述和展望,旨在促进土壤-地下水系统中微塑料污染的相关研究。  相似文献   

6.
● Coastal and marine regions are the most studied for microplastic pollution. ● Tourism is a major cause of microplastic pollution in coastal regions. ● Sediments contain larger microplastics while fish ingest smaller microplastics. ● Inland lakes, rivers, and freshwater fish are impacted by microplastic pollution. ● Microplastics are found in edible salts, however, presence is less in refined salt. The research on the extent and effects of microplastics pollution in the Global South is only getting started. Bangladesh is a South Asian country with one of the fastest growing economies in the world, however, such exponential economic growth has also increased the pollution threats to its natural and urban environment. In this paper, we reviewed the recent primary research on the assessment of the extent of microplastics pollution in Bangladesh. From the online databases, we developed a compilation of emerging research articles that detected and quantified microplastics in different coastal, marine, and urban environments in Bangladesh. Most of the studies focused on the coastal environment (e.g., beach sediment) and marine fish, while limited data were available for the urban environment. We also discussed the relationship of the type of anthropogenic activities with the observed microplastic pollution. The Cox’s Bazar sea beach in south-east Bangladesh experienced microplastics pollution due to tourism activities, while fishing and other anthropogenic activities led to microplastics pollution in the Bay of Bengal. While microplastics larger than 1 mm were prevalent in the beach sediments, smaller microplastics with size below 0.5 mm were prevalent in marine fish samples. Moreover, the differences in microplastic abundance, size, shape, color, and polymer type found were depended on the sampling sites and relevant anthropogenic activities. It is imperative to identify major sources of microplastics pollution in both natural and urban environment, determine potential environmental and human health effects, and develop mitigating and prevention strategies for reducing microplastics pollution.  相似文献   

7.
Environmental Chemistry Letters - Research on plastic pollution has recently evidenced the ubiquitous presence of tiny plastic particles called microplastics. Microplastics alter organisms because...  相似文献   

8.
Microplastics pollution and reduction strategies   总被引:1,自引:0,他引:1  
Microplastic particles smaller than 5 mm in size are of increasing concern, especially in aquatic environments, such as the ocean. Primary source is microbeads (<1 mm) used in cosmetics and cleaning agents and fiber fragments from washing of clothes, and secondary source such as broken down plastic litter and debris. These particles are mostly made from polyethylene (PE), polypropylene (PP), polystyrene (PS), polyethylene terephthalate (PET) and polyesters. They are ingested by diverse marine fauna, including zooplanktons, mussel, oyster, shrimp, fish etc. and can enter human food chains via several pathways. Strategy for control of microplastics pollution should primarily focus on source reduction and subsequently on the development of cost-effective clean up and remediation technologies. Recent research results on biodegradation of plastics have revealed a potential for microbial biodegradation and bioremediation of plastic pollutants, such as PE, PS and PET under appropriate conditions.  相似文献   

9.
ABSTRACT

Microplastics are emerging environmental pollutants that have gained tremendous scientific interest in recent years. These micropollutants are omnipresent both in the terrestrial and aquatic environments posing a deleterious threat to the ecosystem and biodiversity. So, it is important to develop a deep understanding of the environmental fate and potential adverse impacts of microplastics on the aquatic and terrestrial environments. By critically reviewing the previously published scientific literature, the present synthesis briefly outlines the characteristics, occurrence and potential toxic effects of microplastics on terrestrial and aquatic biota. The article also focuses on some innovative approaches for sustainable remediation of macroplastics as well as microplastics. Since the concept of microplastics pollution has yet in its infancy in Bangladesh, this synthesis provides an overview of the current scenario of microplastics pollution and some future research recommendations in the context of Bangladesh which might be helpful to the novice researchers of this field.  相似文献   

10.
Over the past decades, the plastic production has been dramatically increased. Indeed, a category of small plastic particles mainly with the shapes of fragments, fibers, or spheres, called microplastics (particles smaller than 5 mm) and nanoplastics (particles smaller than 1 μm) have attracted particular attention. Because of its wide distribution in the environment and potential adverse effects to animal and human, microplastic pollution has been reported as a serious environment problem receiving increased attention in recent years. As one of the commonly detected emerging contaminants in the environment, recent evidence indicates that the concentration of microplastics show an increasing trend, for the reason that up to 12.7 million metric tons of plastic litter is released into aquatic environment from land-based sources each year. Furthermore, microplastic exposure levels of model organisms in laboratory studies are usually several orders of magnitude higher than those found in environment, and the microplastics exposure conditions are also different with those observed in the environment. Additionally, the detection of microplastics in feces indicates that they can be excreted out of the bodies of animal and human. Hence, great uncertainties might exist in microplastics exposure and health risk assessment based on current studies, which might be exaggerated. Policies reduce microplastic emission sources and hence minimize their environmental risks are determined. To promote the above policies, we must first overcome the technical obstacles of detecting microplastics in various samples.  相似文献   

11.
水环境中的微塑料及其生态效应   总被引:1,自引:0,他引:1  
塑料在日常生活中无处不在,随意丢弃的塑料会在各种作用下最终进入江河、湖泊、近海、深海、以及大洋甚至极地地区。在外界条件(如高温、风化、紫外线)影响下,大型塑料结构的完整性易遭到破坏而被逐渐分解成微小的塑料碎片,当其粒径小于5 mm时即可被称为微塑料。塑料中的某些添加剂,如壬基苯酚、多溴联苯醚、邻苯二甲酸盐、双酚A等会在塑料降解为微塑料的过程中释放到水环境中,从而威胁到水生生态系统的安全。微塑料粒径小,易被浮游动物误食或沿着食物链传递,在生物体内累积转移,对机体产生不可逆转的毒害作用。此外,微塑料还能作为某些污染物富集的载体,产生较强的复合毒性。因此水环境正面临着微塑料污染的威胁,如何治理已成为全球性的环境问题。本文对水环境中微塑料的来源与分布、微塑料的迁移和转化以及微塑料对水环境的影响进行了综述,并对水环境中的微塑料污染问题提出了一些解决方案,期望能为微塑料及其在水环境中的生态效应研究提供理论基础和数据支持。  相似文献   

12.
微塑料与农药污染的联合毒性作用研究进展   总被引:2,自引:0,他引:2  
近海环境中的微塑料污染问题已成为全球性的环境问题,引起了世界范围内的广泛关注。微塑料不仅能够对生物造成物理损伤,而且塑料中的添加剂如邻苯二甲酸酯、双酚A、多溴二苯醚等也会随着塑料的风化而浸出进入环境,对生物产生毒害,同时,微塑料还能吸附海洋环境中的其他污染物,从而对生物产生联合毒性作用。本文综述了微塑料与持久性有机污染物的联合作用,结果表明聚苯乙烯微塑料能够吸附海水中的持久性有机污染物如多环芳烃、多氯联苯、有机氯农药滴滴涕,从而可能导致这些污染物在海洋生物组织中富集,对人类健康存在直接或间接危害。最后本文在总结前人研究的基础上,对未来微塑料与农药污染联合毒性作用的研究方向做了简要分析和展望。  相似文献   

13.
微塑料一般指直径小于5 mm的微小型塑料颗粒或碎片,海洋中常见的微塑料类型主要包括聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯等。由于形状、颜色多变,分子量大,结构稳定,粒径范围与浮游植物相近,海洋中的微塑料很容易对浮游植物、浮游动物和其他海洋动物等产生影响。微塑料还可以为病毒、细菌提供附着载体,影响浮游植物分布,进入海洋生物消化道或进一步转移到组织中对机体产生毒性效应,甚至通过捕食作用沿食物链传递,对高等动物及人类健康造成威胁。此外,微塑料可以作为海水中痕量化学物质的吸附载体,对生物产生联合毒性。根据目前对微塑料的研究进展情况,未来应加强对海洋微塑料分离、鉴定技术的研发以及海洋微塑料的生物毒性效应和生物传递效应机制等问题的研究。  相似文献   

14.
微塑料与有机污染物的相互作用研究进展   总被引:1,自引:0,他引:1  
微塑料(粒径小于5 mm的塑料)作为海洋中一种新型的污染物正受到越来越多的关注。微塑料在全球多个海域均有检出,根据其来源分为原生微塑料和次生微塑料。原生微塑料由人工直接制造所得,常见于日常生活用品中;次生微塑料由大块塑料制品长期风化、磨损和光解形成。塑料自身含有多种有机添加剂,不断向环境中释放,污染海洋环境;微塑料表面还可吸附有机污染物,此吸附作用受两者的物理化学性质和环境条件影响,吸附污染物后的微塑料生物毒性增强。另外,聚合物复合光催化材料可加快有机污染物如染料的光降解反应速率,因而微塑料可能会促进有机污染物的光解。针对目前微塑料对有机物光降解的贡献、机理鲜见研究的问题,未来应加强以下3方面的研究:(1)微塑料对不同有机污染物光降解是否存在影响?(2)微塑料类型、尺寸以及反应条件对有机污染物光降解如何影响?(3)微塑料对有机污染物光降解影响的内在机制是什么?  相似文献   

15.
近年来,海洋和淡水环境中微塑料污染已成为全球关注的热点问题。微塑料不仅会对生物体造成物理损伤,而且微塑料会吸附环境中的疏水性有机污染物(HOCs),也能释放其本身含有的添加型疏水性有机化合物至表面,从而形成复合污染物进入生物体。然而,有关微塑料在污染物生物富集过程中发挥的作用及其机制还不清楚。本文从实验室暴露、野外富集和模型模拟研究3个方面对微塑料作用下HOCs的生物富集规律进行了综述,总结了微塑料作用下的生物富集机制。最后,针对微塑料对HOCs生物富集作用的研究方向提出了几点建议。  相似文献   

16.
Environmental Chemistry Letters - Microplastics have been detected in marine and terrestrial ecosystems, yet the toxic effects of microplastics on living organisms are poorly known. In particular,...  相似文献   

17.
• Total 174 subtypes of ARGs were detected by metagenomic analysis. • Chloramphenicol resistance genes were the dominant ARGs in water and microplastics. • The abundances of MRGs were much higher than those of ARGs. • Proteobacteria, Bacteroidetes, and Actinobacteria were the dominant phylum. • Microplastics in mariculture system could enrich most of MRGs and some ARGs. Microplastics existing widely in different matrices have been regarded as a reservoir for emerging contaminants. Mariculture systems have been observed to host microplastics and antibiotic resistance genes (ARGs). However, more information on proliferation of ARGs and metal resistance genes (MRGs) in mariculture system at the presence of microplastics is needed. This study used metagenomic analysis to investigate the distribution of ARGs and MRGs in water and microplastics of a typical mariculture pond. Total 18 types including 174 subtypes of ARGs were detected with the total relative abundances of 1.22/1.25 copies per 16S rRNA copy for microplastics/water. Chloramphenicol resistance genes were the dominant ARGs with the abundance of 0.35/0.42 copies per 16S rRNA copy for microplastics/water. Intergron intI1 was dominant gene among 6 detected mobile genetic elements (MGEs) with the abundance of 75.46/68.70 copies per 16S rRNA copy for water/microplastics. Total 9 types including 46 subtypes of MRGs were detected with total abundance of 5.02 × 102/6.39 × 102 copies per 16S rRNA copy for water/ microplastics while genes resistant to copper and iron served as the dominant MRGs. Proteobacteria, Bacteroidetes, and Actinobacteria accounted for 84.2%/89.5% of total microbial community. ARGs with relatively high abundance were significantly positively related to major genera, MGEs, and MRGs. Microplastics in mariculture system could enrich most of MRGs and some ARGs to serve as potential reservoir for these pollutants. The findings of this study will provide important information on resistance gene pollution at presence of microplastics in the mariculture system for further proposing suitable strategy of environmental management.  相似文献   

18.
微塑料污染的水生生态毒性与载体作用   总被引:2,自引:0,他引:2  
近年来,微塑料的水生生态环境污染与生态毒害问题引起了科学界的广泛关注。在总结国内外相关研究的基础上,本文对水生态环境中微塑料的来源、形成与分布展开分析;对微塑料污染的生态毒性研究进展给予评述;并深入探讨了微塑料在生态系统中扮演的多重载体角色。鉴于微塑料污染的严峻现实,我国应尽快开展有关微塑料环境污染和生态毒理方面的系统研究,并辅以政策引导和经济支持。  相似文献   

19.
近年来微塑料的水生生态环境污染与生态毒害问题引起了科学界的广泛关注。在总结国内外相关研究的基础上,本文对水生态环境中微塑料的来源、形成与分布展开分析;对微塑料污染的生态毒性研究进展给予评述;并深入探讨了微塑料在生态系统中扮演的多重载体角色。鉴于微塑料污染的严峻现实,我国应尽快开展有关微塑料环境污染和生态毒理方面的系统研究,并辅以政策引导和经济支持。  相似文献   

20.
● High amounts of microplastics are released to receiving media from WWTPs. ● The effect of classical treatment processes on MP removal is important. ● MP load in the effluent of WWTPs is important for developing treatment technology. ● Additional physical treatment could help further reduce MP discharge. Plastic particles smaller than 5 mm are microplastics. They are among the significant pollutants that recently attracted attention. Great quantities of microplastics enter the sewage system daily and reach wastewater treatment plants (WWTPs). As a result, WWTPs are potential microplastic sources. Hence, they create a pathway for microplastics to reach aquatic environments with treated wastewater discharge. Studies on microplastic characterization in WWTPs have gained momentum in academia. This study investigates the abundance, size, shape, color, polymer type, and removal efficiencies of microplastics in a municipal wastewater treatment plant (WWTP) in Denizli/Turkey. The results showed that the dominant microplastic shape in wastewater samples was fibers (41.78%–60.77%) in the 100–500 µm (58.57%–80.07%) size range. Most of the microplastics were transparent-white (32.86%–58.93%). The dominant polymer types were polyethylene (54.05%) and polyethylene vinyl acetate (37.84%) in raw wastewater. Furthermore, the microplastic removal efficiencies of the Denizli Central WWTP as a whole and for individual treatment units were evaluated. Although the microplastic pollution removal efficiency of the Denizli Central WWTP was over 95%, the microplastic concentration discharged daily into the receiving environment was considerably high (1.28 × 1010 MP/d). Thus, Denizli Central WWTP effluents result in a high volume of emissions in terms of microplastic pollution with a significant daily discharge to the Çürüksu Stream.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号