首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
安全科学   1篇
废物处理   3篇
环保管理   1篇
综合类   3篇
基础理论   6篇
污染及防治   4篇
评价与监测   1篇
  2023年   2篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2007年   2篇
  2006年   3篇
  2002年   1篇
  2001年   1篇
  1956年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
● B[a]P, nicotine and phenanthrene molecules altered the secondary structure of Aβ42. ● β-content of the peptide was significantly enhanced in the presence of the PAHs. ● Nicotine made stable cluster with Aβ42 peptide via hydrogen bonds. ● Phenanthrene due to its small size, interfered with the Aβ42 monomer more strongly. Recent studies have correlated the chronic impact of ambient environmental pollutants like polycyclic aromatic hydrocarbons (PAHs) with the progression of neurodegenerative disorders, either by using statistical data from various cities, or via tracking biomarkers during in-vivo experiments. Among different neurodegenerative disorders, PAHs are known to cause increased risk for Alzheimer’s disease, related to the development of amyloid beta (Aβ) peptide oligomers. However, the complex molecular interactions between peptide monomers and organic pollutants remains obscured. In this work, we performed an atomistic molecular dynamics study via GROMACS to investigate the structure of Aβ42 peptide monomer in the presence of benzo[a]pyrene, nicotine, and phenanthrene. Interestingly the results revealed strong hydrophobic, and hydrogen-bond based interactions between Aβ peptides and these environmental pollutants that resulted in the formation of stable intermolecular clusters. The strong interactions affected the secondary structure of the Aβ42 peptide in the presence of the organic pollutants, with almost 50 % decrease in the α-helix and 2 %–10 % increase in the β-sheets of the peptide. Overall, the undergoing changes in the secondary structure of the peptide monomer in the presence of the pollutants under the study indicates an enhanced formation of Aβ peptide oligomers, and consequent progression of Alzheimer’s disease.  相似文献   
2.

Microplastic pollution is occurring in most ecosystem, yet their presence in high altitude clouds and their influence on cloud formation and climate change are poorly known. Here we analyzed microplastics in cloud water sampled at the summits of Japan mountains at 1300–3776 m altitude by attenuated total reflection imaging and micro-Fourier transform infrared spectroscopy. We observed nine microplastics including polyethylene, polypropylene, polyethylene terephthalate, polymethyl methacrylate, polyamide 6, polycarbonate, ethylene–propylene copolymer or polyethylene–polypropylene alloy, polyurethane, and epoxy resin. Microplastic were fragmented, with mean concentrations ranging from 6.7 to 13.9 pieces per liter, and with Feret diameters ranging from 7.1 to 94.6 μm. Microplastics bearing hydrophilic groups such as carbonyl and/or hydroxyl groups were abundant, suggesting that they might have acted as condensation nuclei of cloud ice and water. Overall, our finding suggest that high-altitude microplastics cloud influence cloud formation and, in turn, might modify the climate.

  相似文献   
3.
Stable isotope ratios of hydrogen and oxygen of water are useful tracers of the hydrological cycle. For example, isotopes monitor the evapotranspiration in vegetated areas, local snow ice processes and stream water flow processes. δ18O and δD in rainwater reflect the processes of evaporation, condensation and precipitation. Heavy rains thus modify the stable isotope ratio of ground water, stream water and transpiration water vapor. However, the controlling factors of δ18O and δD are not clear. Here we analyzed the inorganic ion concentration and stable isotope ratio in 38 normal rainwater and 15 heavy rainwater samples were collected in Shinjuku, Tokyo, Japan, during four years from October 2012 to December 2015. Results show a decrease in δ18O and δD values with the total rainfall amount, thus highlighting the amount effect. δ18O and δD volume-weighted mean values in typhoon heavy rain were higher than the values estimated from amount effect, whereas δ18O and δD volume-weighted mean values in urban-induced heavy rain were lower. Typhoon heavy rain has high Na+ ratio and stable isotope ratios, while urban-induced heavy rain has low Na+ ratio and stable isotope ratio.  相似文献   
4.
Measures for vehicle exhaust emissions aimed at reducing either air pollution or global warming could have counterproductive effects on one another. Increasing diesel passenger vehicles, which generally have lower CO2 emissions than gasoline counterparts, leads to increasing particulate matter (PM) emissions, while gasoline has lower PM emissions than diesel. It is said that stringent limits on PM emission factors discourages improved CO2 emission factors. Without including both effects in a risk evaluation, one cannot evaluate whether the total risk is reduced or not. Hence, we evaluated representative exhaust emission measures based on risk evaluation for both air pollution and global warming. Considering consumer choice between diesel and gasoline passenger vehicles and emissions standards adopted in Japan from 1995 to 2005, we built five cases for vehicle policy evaluation. For each case, we estimated disability-adjusted life years (DALY) as an index of human health risk caused by lung cancer linked to inhalation exposure of elemental carbon in PM as well as due to global warming linked to CO2. The results of our risk evaluation reveal that the case adopting the 2005 new long-term Japanese emission standard reduces the human health risk caused by lung cancer due to air pollution by 0.6 × 103 DALY, but would increase the risk due to global warming by 31.9 × 103 DALY compared with the case of adopting EURO 4, for the same conditions of passenger vehicle choice from 1995. These results suggest that the characteristics of Japanese emissions standards are mainly designed to reduce air pollution.  相似文献   
5.
Pesticide residues in five freshwater areas that are directly affected by rice paddy effluents in southern Japan were measured to determine their maximum concentrations and temporal variations. Water samples were collected every week during the 2005 rice planting season in Kagoshima Prefecture and stations were established in Amori River, Sudo River, Nagaida River (that drains into the bigger Kotsuki River), rice paddy drainage canal, and wastewater reservoir (that collects effluents from rice paddy fields). Of the 14 target pesticides examined, a total of 11 were detected in all stations. Mefenacet, fenobucarb, and flutolanil were the three pesticides with the highest maximum concentrations and were also detected frequently. Analysis of temporal variations of pesticides showed that herbicides had relatively higher concentrations in the earlier stages of the rice planting season, while insecticides and fungicides had relatively higher concentrations at the later stages. There was no significant difference among stations with regards to the temporal patterns of the top three pesticides. The calculated toxic units were less than 1 in all stations, implying low or negligible environmental risk of pesticides detected to freshwater organisms.  相似文献   
6.
The effects of water-extractable organic matter (WEOM) from compost-like materials on peroxidative stress were investigated for hydroponic culture of barley exposed to Cd. In the presence of WEOM, lipoxygenase activity and malondialdehyde, indices of peroxidative stress in barley, were significantly reduced, compared to those with Cd alone (5 μM) for a 30-d culture (p < 0.05). In addition, Cd uptake in the presence of WEOM samples was significantly lower than that in their absence (p < 0.05). These results indicate that the addition of WEOM can be effective in mitigating the peroxidative stress in barley exposed to Cd. Of the total Cd in the solution, 7–8% was complexed with WEOM, indicating that the complexation of Cd with WEOM is a minor factor in reducing Cd-induced stress in barley. The WEOM sample was purified by cation-exchange column and ultrafiltration to remove the nutrient minerals, such as Ca, Mg and Fe. When the purified WEOM was employed for hydroponic culture in the presence of Cd, significant decreases in peroxidative stress and Cd uptake were observed (p < 0.05). These results show that the organic components in WEOM contribute to the mitigation of peroxidative stress in barley exposed to Cd.  相似文献   
7.
Environmental Chemistry Letters - The abundance of humic-like substances in the atmosphere has received considerable attention since these substances play an important role in various atmospheric...  相似文献   
8.
Current status and research on E-waste issues in Asia   总被引:2,自引:1,他引:2  
Rapid economic growth in Asia and the increasing transboundary movement of secondary resources will increasingly require both 3R endeavors (reduce, reuse, recycle) in each country and appropriate control of international material cycles. Recently, managing electrical and electronic waste (E-waste) has become an important target for domestic and international material cycles from the viewpoints of environmental preservation and resource utilization efficiency. To understand the current status of E-waste issues in the context of international material cycles and to discuss the future tasks related to achieving 3R in the region, we organized the National Institute for Environmental Studies (NIES) E-waste Workshop in December 2004. This article reviews past studies on E-waste and briefly describes the topics presented and discussions held at the workshop. The topics at the workshop included E-waste generation, recycling systems, international trade, and environmental impacts. In addition, we discussed various issues such as terminology, current environmental concerns, and possible solutions. Transboundary shipments of E-waste should be conducted taking into consideration the concept of sustainable development. The direction of future research and possible collaborations are also discussed.  相似文献   
9.
利用^15N示踪技术研究了水培甜椒果实收获期间吸收的氮素在体内的动态分配规律。结果表明:甜椒果实收获期间营养器官与生殖器官干物质积累动态呈一平行的线性增长趋势,果实干物质积累量于始采期以后开始超过叶片,而果实氮素积累到盛采期才超过叶片,果实含氮量在整个采果期间保持稳定,随生长发育,叶片含氮迅速下降,盛采期时与果实和根相近,且均高于茎和侧枝,始采期通过根吸收的标记态氮主要贮存在叶片与果实中,叶片、果实是甜椒始采用氮素分配的最主要器官。此后,叶片和根成为主要的氮素输出器官,而果实则成为主要的输入器官。研究发现,甜椒体内的氮即使一度成为结合态,能能够被再度输出,但是,氮素在植株体内滞留的时间越长,越难以再度向外输出,并且不同器官输出的难易程度也是不相同的,比较而言,叶片和根中一度成为结合态的氮素容易被再交输出,甜椒果实是氮的强力库,氮素竞争力最强。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号