首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
● Compositional patterns of PAHs in dust aerosol vary from soil during dust generation. ● The EF of PAH in dust aerosol is affected by soil texture and soil PAH concentration. ● The sizes of dust aerosol play an important role in the enrichment of HMW-PAHs. Polycyclic aromatic hydrocarbons (PAHs) are major organic pollutants in soil. It is known that they are released to the atmosphere by wind via dust aerosol generation. However, it remains unclear how these pollutants are transferred through the air/soil interface. In this study, dust aerosols were generated in the laboratory using soils (sandy loam and loam) with various physicochemical properties. The PAH concentrations of these soils and their generated dust aerosol were measured, showing that the enrichment factors (EFs) of PAHs were affected by soil texture, PAH contamination level, molecular weight of PAH species and aerosol sizes. The PAHs with higher EFs (6.24–123.35 in dust PM2.5; 7.02–47.65 in dust PM10) usually had high molecular weights with more than four aromatic rings. In addition, the positive correlation between EFs of PAHs and the total OCaerosol content of dust aerosol in different particle sizes was also statistically significant (r = 0.440, P < 0.05). This work provides insights into the relationship between atmospheric PAHs and the contaminated soils and the transfer process of PAHs through the soil-air interface.  相似文献   

2.
● Established a quantification method of pollutant emission standard. ● Predicted the SO2 emission intensity of single coking enterprises in China. ● Evaluated the influence of pollutant discharge standard on prediction accuracy. ● Analyzed the SO2 emissions of Chinese provincial and municipal coking enterprises. Industrial emissions are the main source of atmospheric pollutants in China. Accurate and reasonable prediction of the emission of atmospheric pollutants from single enterprise can determine the exact source of atmospheric pollutants and control atmospheric pollution precisely. Based on China’s coking enterprises in 2020, we proposed a quantitative method for pollutant emission standards and introduced the quantification results of pollutant emission standards (QRPES) into the construction of support vector regression (SVR) and random forest regression (RFR) prediction methods for SO2 emission of coking enterprises in China. The results show that, affected by the types of coke ovens and regions, China’s current coking enterprises have implemented a total of 21 emission standards, with marked differences. After adding QRPES, it was found that the root mean squared error (RMSE) of SVR and RFR decreased from 0.055 kt/a and 0.059 kt/a to 0.045 kt/a and 0.039 kt/a, and theR2 increased from 0.890 and 0.881 to 0.926 and 0.945, respectively. This shows that the QRPES can greatly improve the prediction accuracy, and the SO2 emissions of each enterprise are highly correlated with the strictness of standards. The predicted result shows that 45% of SO2 emissions from Chinese coking enterprises are concentrated in Shanxi, Shaanxi and Hebei provinces in central China. The method created in this paper fills in the blank of forecasting method of air pollutant emission intensity of single enterprise and is of great help to the accurate control of air pollutants.  相似文献   

3.
● Converting xylose to caproate under a low temperature of 20 °C by MCF was verified. ● Final concentration of caproate from xylose in a batch reactor reached 1.6 g/L. ● Changing the substrate to ethanol did not notably increase the caproate production. ● Four genera, including Bifidobacterium , were revealed as caproate producers. ● The FAB pathway and incomplete RBO pathway were revealed via metagenomic analysis. Mixed culture fermentation (MCF) is challenged by the unqualified activity of enriched bacteria and unwanted methane dissolution under low temperatures. In this work, caproate production from xylose was investigated by MCF at a low temperature (20 °C). The results showed that a 9 d long hydraulic retention time (HRT) in a continuously stirred tank reactor was necessary for caproate production (~0.3 g/L, equal to 0.6 g COD/L) from xylose (10 g/L). The caproate concentration in the batch mode was further increased to 1.6 g/L. However, changing the substrate to ethanol did not promote caproate production, resulting in ~1.0 g/L after 45 d of operation. Four genera, Bifidobacterium, Caproiciproducens, Actinomyces, and Clostridium_sensu_stricto_12, were identified as the enriched caproate-producing bacteria. The enzymes in the fatty acid biosynthesis (FAB) pathway for caproate production were identified via metagenomic analysis. The enzymes for the conversion of (Cn+2)-2,3-Dehydroxyacyl-CoA to (Cn+2)-Acyl-CoA (i.e., EC 1.3.1.8 and EC 1.3.1.38) in the reverse β-oxidation (RBO) pathway were not identified. These results could extend the understanding of low-temperature caproate production.  相似文献   

4.
● A series of Cu-ZSM-5 catalysts were tested for DMF selective catalytic oxidation. ● Cu-6 nm samples showed the best catalytic activity and N2 selectivity. ● Redox properties and chemisorbed oxygen impact on DMF catalytic oxidation. ● Isolated Cu2+ species and weak acidity have effects on the generation of N2. N, N-Dimethylformamide (DMF), a nitrogen-containing volatile organic compound (NVOC) with high emissions from the spray industry, has attracted increasing attention. In this study, Cu-ZSM-5 catalysts with different CuO particle sizes of 3, 6, 9 and 12 nm were synthesized and tested for DMF selective catalytic oxidation. The crystal structure and physicochemical properties of the catalyst were studied by various characterization methods. The catalytic activity increases with increasing CuO particle size, and complete conversion can be achieved at 300–350 °C. The Cu-12 nm catalyst has the highest catalytic activity and can achieve complete conversion at 300 °C. The Cu-6 nm sample has the highest N2 selectivity at lower temperatures, reaching 95% at 300 °C. The activity of the catalysts is determined by the surface CuO cluster species, the bulk CuO species and the chemisorbed surface oxygen species. The high N2 selectivity of the catalyst is attributed to the ratio of isolated Cu2+ and bulk CuO species, and weak acidity is beneficial to the formation of N2. The results in this work will provide a new design of NVOC catalytic oxidation catalysts.  相似文献   

5.
● Advances, challenges, and opportunities for catalytic water pollutant reduction. ● Cases of Pd-based catalysts for nitrate, chlorate, and perchlorate reduction. ● New functionalities developed by screening and design of catalytic metal sites. ● Facile catalyst preparation approaches for convenient catalyst optimization. ● Rational design and non-decorative effort are essential for future work. In this paper, we discuss the previous advances, current challenges, and future opportunities for the research of catalytic reduction of water pollutants. We present five case studies on the development of palladium-based catalysts for nitrate, chlorate, and perchlorate reduction with hydrogen gas under ambient conditions. We emphasize the realization of new functionalities through the screening and design of catalytic metal sites, including (i) platinum group metal (PGM) nanoparticles, (ii) the secondary metals for improving the reaction rate and product selectivity of nitrate reduction, (iii) oxygen-atom-transfer metal oxides for chlorate and perchlorate reduction, and (iv) ligand-enhanced coordination complexes for substantial activity enhancement. We also highlight the facile catalyst preparation approach that brought significant convenience to catalyst optimization. Based on our own studies, we then discuss directions of the catalyst research effort that are not immediately necessary or desirable, including (1) systematic study on the downstream aspects of under-developed catalysts, (2) random integration with hot concepts without a clear rationale, and (3) excessive and decorative experiments. We further address some general concerns regarding using H2 and PGMs in the catalytic system. Finally, we recommend future catalyst development in both “fundamental” and “applied” aspects. The purpose of this perspective is to remove major misconceptions about reductive catalysis research and bring back significant innovations for both scientific advancements and engineering applications to benefit environmental protection.  相似文献   

6.
● A composite aerogel was simply obtained to remove various fluoroquinolones (FQs). ● The structural and textural properties of this composite aerogel are improved. ● Its adsorption capacity was improved at a low content of coexisting Cu2+ or Fe3+ ion. ● Two substructural analogs of FQs are compared to explore the adsorption mechanisms. ● This aerogel after saturated adsorption can be reused directly for Cu2+ adsorption. 3D composite aerogels (CMC-CG) composed of carboxymethyl cellulose and κ-carrageenan were designed and fabricated using the one-pot synthesis technique. The optimized CMC-CG showed a good mechanical property and a high swelling ratio due to its superior textural properties with a proper chemically cross-linked interpenetrating network structure. CMC-CG was utilized for the removal of various fluoroquinolones (FQs) from water and exhibited high adsorption performance because of effective electrostatic attraction and hydrogen bonding interactions. Ciprofloxacin (CIP), a popular FQ, was used as the representative. The optimized CMC-CG had a theoretically maximal CIP uptake of approximately 1.271 mmol/g at the pH of 5.0. The adsorption capacity of CMC-CG was improved in the presence of some cations, Cu2+ and Fe3+ ions, at a low concentration through the bridging effect but was reduced at a high concentration. The investigation of adsorption mechanisms, based on the adsorption kinetics, isotherms and thermodynamic study, Fourier transform infrared spectrometry and X-ray photoelectron spectroscopy analyses before and after adsorption, and changes in the adsorption performance of CMC-CG toward two molecular probes, further indicated that electrostatic attraction was the dominant interaction rather than hydrogen bonding in this adsorption. CMC-CG after saturated adsorption of CIP could be easily regenerated using a dilute NaCl aqueous solution and reused efficiently. Moreover, the disused aerogel could still be reused as a new adsorbent for effective adsorption of Cu2+ ion. Overall, this study suggested the promising applications of this composite aerogel as an eco-friendly, cost-effective, and recyclable adsorbent for the efficient removal of FQs from water.  相似文献   

7.
● Effect of composting approaches on dissolved organic matter (DOM). ● Effect of composting conditions on the properties of DOM. ● Character indexes of DOM varied in composting. ● The size, hydrophobicity, humification, and electron transfer capacity increased. ● The hydrophilicity, protein-like materials, and aliphatic components reduced. As the most motive organic fraction in composting, dissolved organic matter (DOM) can contribute to the transfer and dispersal of pollutants and facilitate the global carbon cycle in aquatic ecosystems. However, it is still unclear how composting approaches and conditions influence the properties of compost-derived DOM. Further details on the shift of DOM character indexes are required. In this study, the change in properties of compost-derived DOM at different composting approaches and the effect of composting conditions on the DOM characteristics are summarized. Thereafter, the change in DOM character indexes’ in composting was comprehensively reviewed. Along with composting, the elements and spectral properties (chromophoric DOM (CDOM) and fluorescent DOM (FDOM)) were altered, size and hydrophobicity increased, and aromatic-C and electron transfer capacity were promoted. Finally, some prospects to improve this study were put forward. This paper should facilitate the people who have an interest in tracing the fate of DOM in composting.  相似文献   

8.
● Increased DAAO offsets 3/4 of the decrease of DAAP in 2013–2020. ● DAAO increases are mainly due to O3 concentration increase and population aging. ● Health benefit from PM2.5 reduction after 2017 is larger than that before 2017. ● Reducing PM2.5 concentration by 1% results in 0.6% reduction of DAAP. ● Reducing O3 concentration by 1% results in 2% reduction of DAAO. PM2.5 concentration declined significantly nationwide, while O3 concentration increased in most regions in China in 2013–2020. Recent evidences proved that peak season O3 is related to increased death risk from non-accidental and respiratory diseases. Based on these new evidences, we estimate excess deaths associated with long-term exposure to ambient PM2.5 and O3 in China following the counterfactual analytic framework from Global Burden Disease. Excess deaths from non-accidental diseases associated with long-term exposure to ambient O3 in China reaches to 579 (95% confidential interval (CI): 93, 990) thousand in 2020, which has been significantly underestimated in previous studies. In addition, the increased excess deaths associated with long-term O3 exposure (234 (95% CI: 177, 282) thousand) in 2013–2020 offset three quarters of the avoided excess deaths (302 (95% CI: 244, 366) thousand) mainly due to PM2.5 exposure reduction. In key regions (the North China Plain, the Yangtze River Delta and the Fen-Wei Plain), the former is even larger than the latter, particularly in 2017–2020. Health benefit of PM2.5 concentration reduction offsets the adverse effects of population growth and aging on excess deaths attributed to PM2.5 exposure. Increase of excess deaths associated with O3 exposure is mainly due to the strong increase of O3 concentration, followed by population aging. Considering the faster population aging process in the future, collaborative control, and faster reduction of PM2.5 and O3 are needed to reduce the associated excess deaths.  相似文献   

9.
● TiO2/ZSM-11 was prepared by a facile solid state dispersion method. ● Mechanism for photocatalytic degradation of dyes was investigated. ● Both experimental and MD simulations were conducted. ● Chemisorption instead of electrostatic interaction played a critical role. Photocatalytic degradation is a promising way to eliminate dye contaminants. In this work, a series of TiO2/ZSM-11 (TZ) nanocomposites were prepared using a facile solid state dispersion method. Methyl orange (MO), methylene blue (MB), and rhodamine B (RhB) were intentionally chosen as target substrates in the photocatalytic degradation reactions. Compared to pristine TiO2, negative effect was observed on MO degradation while promoted kinetics were collected on MB and RhB over TZ composites. Moreover, a much higher photocatalytic rate was interestingly achieved on RhB than MB, which indicated that a new factor has to be included other than the widely accepted electrostatic interaction mechanism to fully understand the selective photodegradation reactions. Systematic characterizations showed that TiO2 and ZSM-11 physically mixed and maintained both the whole framework and local structure without chemical interaction. The different trends observed in surface area and the photo-absorption ability of TZ composites with reaction performance further excluded both as the promotion mechanism. Instead, adsorption energies predicted by molecular dynamics simulations suggested that differences in the adsorption strength played a critical role. This work provided a deep mechanistic understanding of the selective photocatalytic degradation of dyes reactions, which helps to rationally design highly efficient photocatalysts.  相似文献   

10.
p- CNB and IBP were selected, to explore factors determining ozonation outcomes. ● •OH contributed only 50 % to IBP removal, compared to the 90 % for p -CNB removal. ● IBP achieved fewer TOC removal and more by-product types and quantities. ● A longer ring-opening distance existed during the degradation of IBP. ● Multiple positions on both branches of IBP were attacked, consuming more oxidants. For aromatic monomer compounds (AMCs), ozonation outcomes were usually predicted by the substituents of the benzene ring based on the electron inductive effect. However, the predicted results were occasionally unreliable for complex substituents, and other factors caused concern. In this study, p-chloronitrobenzene (p-CNB) and ibuprofen (IBP) were selected for ozonation. According to the electron inductive theory, p-CNB should be less oxidizable, but the opposite was true. The higher rates of p-CNB were due to various sources of assistance. First, the hydroxyl radical (•OH) contributed 90 % to p-CNB removal at pH 7.0, while its contribution to IBP removal was 50 %. Other contributions came from molecular O3 oxidation. Second, p-CNB achieved 40 % of the total organic carbon (TOC) removal and fewer by-product types and quantities, when compared to the results for IBP. Third, the oxidation of p-CNB started with hydroxyl substitution reactions on the benzene ring; then, the ring opened. However, IBP was initially oxidized mainly on the butane branched chain, with a chain-shortening process occurring before the ring opened. Finally, the degradation pathway of p-CNB was single and consumed fewer oxidants. However, both branches of IBP were attacked simultaneously, and three degradation pathways that relied on more oxidants were proposed. All of these factors were determinants of the rapid removal of p-CNB.  相似文献   

11.
● We review the framework of discovering emerging pollutants through an omics approach. ● High-resolution MS can digitalize atmospheric samples to full-component data. ● Chemical features and databases can help to translate untargeted data to compounds. ● Biological effect-directed untargeted analyses consider both existence and toxicity. Ambient air pollution, containing numerous known and hitherto unknown compounds, is a major risk factor for public health. The discovery of harmful components is the prerequisite for pollution control; however, this raises a great challenge on recognizing previously unknown species. Here we systematically review the analytical techniques on air pollution in the framework of an omics approach, with a brief introduction on sample preparation and analysis, and in more detail, compounds prioritization and identification. Through high-resolution mass spectrometry (HRMS, typically coupled with chromatography), the complicated environmental matrix can be digitalized into “full-component” data. A key step to discover emerging compounds is the prioritization of compounds from massive data. Chemical fingerprints, suspect lists and biological effects are the most vital untargeted strategies for comprehensively screening critical and hazardous substances. Afterward, compressed data of compounds can be identified at various confidence levels according to exact mass and the derived molecular formula, MS libraries, and authentic standards. Such an omics approach on full-component data provides a paradigm for discovering emerging air pollutants; nonetheless, new technological advancements of instruments and databases are warranted for further tracking the environmental behaviors, hence to evaluate the health risk of key pollutants.  相似文献   

12.
● Collaborative treatment of plastics and OS was established to improve oil quality. ● PE addition successfully improved OS pyrolysis process by deploying H/Ceff ratio. ● Higher H/Ceff ratio promoted cracking to obtain more gas and light oil fractions. ● The degradation of PE and OS was promoted each other under their temperature range. Pyrolysis is an effective method to treat oily sludge (OS) due to its balance between oil recovery and nonhazardous disposal. However, tank bottom OS contains a high content of heavy fractions, which creates obstacles for pyrolysis due to the high activation energy. The incomplete cracking of macromolecules and secondary polymerization decreases the oil quality and causes coking during the operation process. This study introduced polyethylene (PE) into OS to deploy the H/Ceff ratio of feedstocks for pyrolysis. A strong interaction between OS and PE during copyrolysis could be observed from the TG/DTG curves. PE tightly participated in OS degradation, while OS also promoted PE degradation at high temperature. Apparent pits were generated in solid residues from copyrolysis, which was attributed to the uniform and violent gas release. In addition to HCN, other nitrogenous and sulphurous pollutants were inhibited. Accordingly, more gas products were attained after PE addition with more value-added compositions of alkanes and alkenes. Although the oil yield decreased after PE addition, the oil products from copyrolysis possessed higher heating values and higher contents of light fractions with short chains as well as paraffins. Consequently, copyrolysis of OS and PE significantly improved the pyrolysis process and resulted in high oil quality.  相似文献   

13.
● SMX promotes hydrogen production from dark anaerobic sludge fermentation. ● SMX significantly enhances the hydrolysis and acidification processes. ● SMX suppresses the methanogenesis process in order to reduce hydrogen consumption. ● SMX enhances the relative abundance of hydrogen-VFAs producers. ● SMX brings possible environmental risks due to the enrichment of ARGs. The impact of antibiotics on the environmental protection and sludge treatment fields has been widely studied. The recovery of hydrogen from waste activated sludge (WAS) has become an issue of great interest. Nevertheless, few studies have focused on the impact of antibiotics present in WAS on hydrogen production during dark anaerobic fermentation. To explore the mechanisms, sulfamethoxazole (SMX) was chosen as a representative antibiotic to evaluate how SMX influenced hydrogen production during dark anaerobic fermentation of WAS. The results demonstrated SMX promoted hydrogen production. With increasing additions of SMX from 0 to 500 mg/kg TSS, the cumulative hydrogen production elevated from 8.07 ± 0.37 to 11.89 ± 0.19 mL/g VSS. A modified Gompertz model further verified that both the maximum potential of hydrogen production (Pm) and the maximum rate of hydrogen production (Rm) were promoted. SMX did not affected sludge solubilization, but promoted hydrolysis and acidification processes to produce more hydrogen. Moreover, the methanogenesis process was inhibited so that hydrogen consumption was reduced. Microbial community analysis further demonstrated that the introduction of SMX improved the abundance of hydrolysis bacteria and hydrogen-volatile fatty acids (VFAs) producers. SMX synergistically influenced hydrolysis, acidification and acetogenesis to facilitate the hydrogen production.  相似文献   

14.
● Haze formation in China is highly correlated with iron and steel industry. ● VOCs generated in sinter process were neglected under current emission standard. ● Co-elimination removal of sinter flue gas complex pollutants are timely needed. Recent years have witnessed significant improvement in China’s air quality. Strict environmental protection measures have led to significant decreases in sulfur dioxide (SO2), nitrogen oxides (NOx), and particulate matter (PM) emissions since 2013. But there is no denying that the air quality in 135 cities is inferior to reaching the Ambient Air Quality Standards (GB 30952012) in 2020. In terms of temporal, geographic, and historical aspects, we have analyzed the potential connections between China’s air quality and the iron and steel industry. The non-target volatile organic compounds (VOCs) emissions from iron and steel industry, especially from the iron ore sinter process, may be an underappreciated index imposing a negative effect on the surrounding areas of China. Therefore, we appeal the authorities to pay more attention on VOCs emission from the iron and steel industry and establish new environmental standards. And different iron steel flue gas pollutants will be eliminated concurrently with the promotion and application of new technology.  相似文献   

15.
● Properties and performance relationship of CSBT photocatalyst were investigated. ● Properties of CSBT were controlled by simply manipulating glycerol content. ● Performance was linked to semiconducting and physicochemical properties. ● CSBT (W:G ratio 9:1) had better performance with lower energy consumption. ● Phenols were reduced by 48.30% at a cost of $2.4127 per unit volume of effluent. Understanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel approach. The effect of different water-to-glycerol ratios (W:G = 1:0, 9:1, 2:1, and 1:1) on the semiconducting and physicochemical properties of CSBT was investigated. The effectiveness of CSBT in removing phenolic compounds (PHCs) from real agro-industrial wastewater was studied. The CSBT synthesized with a W:G ratio of 9:1 has optimized properties for enhanced removal of PHCs. It has a distinct core-shell structure and an appropriate amount of Ti3+ cations (11.18%), which play a crucial role in enhancing the performance of CSBT. When exposed to visible light, the CSBT performed better: 48.30% of PHCs were removed after 180 min, compared to only 21.95% for TiO2 without core-shell structure. The CSBT consumed only 45.5235 kWh/m3 of electrical energy per order of magnitude and cost $2.4127 per unit volume of treated agro-industrial wastewater. Under the conditions tested, the CSBT demonstrated exceptional stability and reusability. The CSBT showed promising results in the treatment of phenols-containing agro-industrial wastewater.  相似文献   

16.
● Bimetallic oxide composite catalyst was designed for the urea-based SCR process. ● Surface chemical state and typical microstructure of catalyst was determined. ● Reaction route was improved based on intermediates and active site identification. ● TiO2@Al2O3 presents an obvious promotion for urea hydrolysis. As a promising option to provide gaseous NH3 for SCR system, catalytic urea hydrolysis has aroused great attention, and improving surface area and activity of catalysis are the crucial issues to be solved for efficient urea hydrolysis. Therefore, a composite metal oxide (TiO2@Al2O3) catalyst was prepared by a simple hydrothermal method, with mesoporous alumina (γ-Al2O3) as substrate. The results verify the mesoporous structure and submicron cluster of TiO2@Al2O3, with exposed crystal faces of (101) and (400) for TiO2 and γ-Al2O3, respectively. The electronegativity difference of Ti4+ and Al3+ changes the charge distribution scheme around the interface, which provides abundant acid/base sites to boost the urea hydrolysis. Consequently, for an optimal proportioning with nano TiO2 content at 10 wt.%, the hydrolysis efficiency can reach up to 35.2 % at 100 °C in 2 h, increasing by ~7.1 % than that of the blank experiment. 13C NMR spectrum measurements provide the impossible intermediate species during urea hydrolysis. Theoretical calculations are performed to clarify the efficient H2O decomposition at the interface of TiO2@Al2O3. The result offers a favorable technology for energy-efficiency urea hydrolysis.  相似文献   

17.
● Dredged river sediment was proved as a ceramic precursor rather than a solid waste. ● Cd was stabilized in Cd-Al-Si-O phases at low temperatures via sediment addition. ● < 5% of Cd was leached out from sintered products even after a prolonged time. ● A strategy was proposed to simultaneously reuse wastes and stabilize heavy metals. Cd-bearing solid wastes are considered to be a serious threat to the environment, and effective strategies for their treatment are urgently needed. Ceramic sintering has been considered as a promising method for efficiently incorporating heavy metal-containing solid wastes into various ceramic products. Mineral-rich dredged river sediment, especially Al and Si-containing oxides, can be treated as alternative ceramic precursors rather than being disposed of as solid wastes. To examine the feasibility of using waste sediment for Cd stabilization and the phase transition mechanisms, this study conducted a sintering scheme for the mixtures of CdO and dredged river sediment with different (Al+Si):Cd mole ratios. Detailed investigations have been performed on phases transformation, Cd incorporation mechanisms, elemental distribution, and leaching behaviors of the sintered products. Results showed that Cd incorporation and transformation in the sintered products were influenced by the mole ratio of (Al+Si):Cd. Among the high-Cd series ((Al+Si):Cd = 6:1), CdSiO3, Cd2SiO4, CdAl2(SiO4)2 and Cd2Al2Si2O9 were predominant Cd-containing product phases, while Cd2Al2Si2O9 was replaced by CdAl4O7 when the mole ratio of (Al+Si):Cd was 12:1 (low-Cd series). Cd was efficiently stabilized in both reaction series after being sintered at ≥ 900 °C, with < 5% leached ratio even after a prolonged leaching time, indicating excellent long-term Cd stabilization. This study demonstrated that both Cd-containing phases and the amorphous Al-/Si-containing matrices all played critical roles in Cd stabilization. A promising strategy can be proposed to simultaneously reuse the solid waste as ceramic precursors and stabilize heavy metals in the ceramic products.  相似文献   

18.
● Monthly hospitalization expenses are sensitive to increases in PM2.5 exposure. ● The increased PM2.5 causes patients with CHD and LRI to stay longer in the hospital. ● The impact of PM2.5 on total expenses for stroke is greater in southern China. ● Males may be more sensitive to air pollution than females. Air pollution has been a severe issue in China. Exposure to PM2.5 has adverse health effects and causes economic losses. This study investigated the economic impact of exposure to PM2.5 pollution using monthly city-level data covering 88.5 million urban employees in 2016 and 2017. This study mainly focused on three expenditure indicators to measure the economic impact considering lower respiratory infections (LRIs), coronary heart disease (CHD), and stroke. The results show that a 10 µg/m3 increase in PM2.5 would cause total monthly expenses of LRIs, CHD, and stroke to increase by 0.226%, 0.237%, and 0.374%, respectively. We also found that LRI, CHD, and stroke hospital admissions increased significantly by 10%, 8.42%, and 5.64%, respectively. Furthermore, the total hospital stays of LRIs, CHDs, and strokes increased by 2.49%, 2. 51%, and 1.64%, respectively. Our findings also suggest heterogeneous impacts of PM2.5 exposures by sex and across regions, but no statistical evidence shows significant differences between the older and younger adult subgroups. Our results provide several policy implications for reducing unequal public health expenditures in overpolluted countries.  相似文献   

19.
● Catalytic combustion in fluidized bed realizes efficient heat and mass transfer. ● Catalytic combustion in fluidized bed reduces the lean combustion limits. ● Catalytic combustion and flame combustion can be coupled. ● The diffusion/kinetics limited reaction model is suitable for catalytic combustion. A micro fluidized bed reactor was used to study the self-sustaining catalytic combustion of carbon monoxide (CO). The Cu1−xCexOy catalyst, as well as the pure CuO and CeO2, are used to investigate the contributing mechanism of different active sites including dispersed CuO and Cu–Ce solid solutions. The ignition temperature (Ti) of CO over these catalysts at a flow rate of 2000 mL/min followed the order: 74 °C (Cu0.5Ce0.5Oy) < 75 °C (Cu0.25Ce0.75Oy) < 84 °C (Cu0.75Ce0.25Oy) < 105 °C (CuO) < 500 °C (CeO2). Furthermore, the lean combustion limits (equivalence ratio ϕ) over these catalysts under the flow rates of 750–3000 mL/min (through fixed, bubbling, and fluidized bed) were also measured, which are Cu0.5Ce0.5Oy < Cu0.25Ce0.75Oy < Cu0.75Ce0.25Oy < CuO < CeO2. The fluidized bed was simulated using the Eulerian two-fluid model (TFM) coupled with a diffusion/kinetic-limited reaction model to evaluate the influence of operation conditions on the self-sustained combustion of CO. The predicted maximum temperature agreed with the experimental measurements, demonstrating the validity of the kinetic model and simulation parameters. The results of catalytic combustion with increasing CO concentrations suggest that the catalytic combustion reaction could co-exist with the flamed combustion. When a high concentration of CO is used, a blue-purple flame caused by CO combustion appears in the upper part of the fluidized bed, indicating that the range of CO-containing exhaust gas purification could be expanded to a larger range using the fluidized-bed catalytic combustion technique.  相似文献   

20.
● MnO x /Ti flow-through anode was coupled with the biofilm-attached cathode in ECBR. ● ECBR was able to enhance the azo dye removal and reduce the energy consumption. ● MnIV=O generated on the electrified MnO x /Ti anode catalyzed the azo dye oxidation. ● Aerobic heterotrophic bacteria on the cathode degraded azo dye intermediate products. ● Biodegradation of intermediate products was stimulated under the electric field. Dyeing wastewater treatment remains a challenge. Although effective, the in-series process using electrochemical oxidation as the pre- or post-treatment of biodegradation is long. This study proposes a compact dual-chamber electrocatalytic biofilm reactor (ECBR) to complete azo dye decolorization and mineralization in a single unit via anodic oxidation on a MnOx/Ti flow-through anode followed by cathodic biodegradation on carbon felts. Compared with the electrocatalytic reactor with a stainless-steel cathode (ECR-SS) and the biofilm reactor (BR), the ECBR increased the chemical oxygen demand (COD) removal efficiency by 24 % and 31 % (600 mg/L Acid Orange 7 as the feed, current of 6 mA), respectively. The COD removal efficiency of the ECBR was even higher than the sum of those of ECR-SS and BR. The ECBR also reduced the energy consumption (3.07 kWh/kg COD) by approximately half compared with ECR-SS. The advantages of the ECBR in azo dye removal were attributed to the synergistic effect of the MnOx/Ti flow-through anode and cathodic biofilms. Catalyzed by MnIV=O generated on the MnOx/Ti anode under a low applied current, azo dyes were oxidized and decolored. The intermediate products with improved biodegradability were further mineralized by the cathodic aerobic heterotrophic bacteria (non-electrochemically active) under the stimulation of the applied current. Taking advantage of the mutual interactions among the electricity, anode, and bacteria, this study provides a novel and compact process for the effective and energy-efficient treatment of azo dye wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号