首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
双阳离子有机膨润土对菲的吸附性能及机理研究   总被引:19,自引:1,他引:18  
用长碳链季铵盐溴化十六烷基三甲胺(CTMAB)与短碳链阳离子表面活性剂(TMAB)按不同配比改性膨润土。制得一系列双阳离子有机膨润土。研究了双阳离子有机膨润土吸附水中菲的适宜条件、性能及机理,结果表明,双阳离子有机膨润土的层间距、有机碳含晡对菲的吸附性能与改性时表面活性剂的加入量成正相关;菲等温吸附曲线呈线性,是菲在水-双阳离子有机膨润土之间分配作用的结果。  相似文献   

2.
● Dolomite-doped biochar/bentonite was synthesized for phosphate removal. ● DO/BB exhibited a high phosphate adsorption capacity in complex water environments. ● PVC membrane incorporated with DO/BB can capture low concentration phosphate. ● Electrostatic interaction, complexation and precipitation are main mechanisms. The removal of phosphate from wastewater using traditional biological or precipitation methods is a huge challenge. The use of high-performance adsorbents has been shown to address this problem. In this study, a novel composite adsorbent, composed of dolomite-doped biochar and bentonite (DO/BB), was first synthesized via co-pyrolysis. The combination of initial phosphate concentration of 100 mg/L and 1.6 g/L of DO/BB exhibited a high phosphate-adsorption capacity of 62 mg/g with a removal efficiency of 99.8%. It was also stable in complex water environments with various levels of solution pH, coexisting anions, high salinity, and humic acid. With this new composite, the phosphate concentration of the actual domestic sewage decreased from 9 mg/L to less than 1 mg/L, and the total nitrogen and chemical oxygen demand also decreased effectively. Further, the cross-flow treatment using a PVC membrane loaded with DO/BB (PVC-DO/BB), decreased the phosphate concentration from 1 to 0.08 mg/L, suggesting outstanding separation of phosphate pollutants via a combination of adsorption and separation. In addition, the removal of phosphate by the PVC-DO/BB membrane using NaOH solution as an eluent was almost 90% after 5 cycles. The kinetic, isotherm and XPS analysis before and after adsorption suggested that adsorption via a combination of electrostatic interaction, complexation and precipitation contributed to the excellent separation by the as-obtained membranes.  相似文献   

3.
小麦根系菲与磷吸收及转运的相互作用   总被引:1,自引:0,他引:1  
作物根系对多环芳烃(PAHs)与磷吸收及转运之间的相互作用研究对农产品的安全生产和PAHs污染环境植物修复的强化具有重要意义。为此,本文以菲为PAHs的代表,采用水培试验研究了不同磷、菲水平下小麦根系菲、磷吸收及其转运的效果,旨在揭示植物根系吸收PAHs与磷素的相互作用。结果表明,在0~1 200μmol·L~(-1)磷浓度范围内,小麦根系、茎叶菲含量在低磷浓度(10μmol·L~(-1))时最高,分别为36.87 mg·kg~(-1)和2.07 mg·kg~(-1);磷含量总体呈现随磷处理浓度的升高而增大的趋势;成对数据t-检验显示无论加菲与否,根系、茎叶磷含量无显著性差异(P0.05)。磷可促进菲从根部向地上部转运,而菲对磷转运没有显著性影响。在低磷浓度下(10μmol·L~(-1)),随着菲浓度的升高,小麦根系、茎叶菲含量呈现显著升高趋势(P0.05)。磷、菲共存处理介质pH升高幅度大于单一处理。  相似文献   

4.
凋落叶作为森林凋落物的主要组成部分,其溶出的大量有机质也是森林土壤可溶性有机质(DOM)的主要来源之一。研究森林凋落叶溶出DOM对PAHs增溶作用的影响有利于合理预测及评价森林土壤中PAHs的环境行为和生态风险。本研究采集了南亚热带常绿阔叶人工林的4种常见树种--尾叶桉(Eucalyptus urophylla)、木荷(Schima superba)、大叶相思(Acacia auriculiformis)和湿地松(Pinus elliottii)的新近凋落叶为试验材料,研究其DOM含量、组成与性质,对比分析了不同凋落叶DOM对菲的増溶作用及其与DOM性质的相关关系。结果表明,4种凋落叶的可溶性有机碳(DOC)质量分数在C 11.61~36.25 mg·g-1之间,其中尾叶桉的含量最大,湿地松最小。尾叶桉和木荷DOM的主要组分是可溶性糖(SS)和可溶性酚(SP),两者总C量占DOC的比例超过47%,而大叶相思和湿地松中SS和SP两者总量所占比例均低于30%。另外,4种凋落叶DOM的质量分数(以C计)与其电导率的线性关系图中有明显转折点,说明它们均具有表面活性剂的性质。凋落叶DOM在临界胶束浓度(CMC)之上对菲具有不同程度的増溶作用,其与菲的结合系数(logKDOC)的大小顺序为尾叶桉(3.05 L·kg-1)>木荷(3.02 L·kg-1)>大叶相思(2.79 L·kg-1)>湿地松(2.54 L·kg-1),这表明尾叶桉和木荷DOM的增溶作用明显高于大叶相思和湿地松DOM。经分析表明,logKDOC与各DOM在254、280 nm处的特征紫外吸光度值(SUV-A254、SUV-A280)及其SS、SP的相对含量均呈显著正相关(p<0.01),与A240/A420、A254/A400比值呈显著负相关(p<0.01),说明DOM的芳香化程度越高,分子量越大, SS与SP所占比例越高,其对菲的増溶效果越明显。  相似文献   

5.
Al3+-bentonite clay (Alum-bent) was prepared by ion exchange of base cations on the matrices of bentonite clay. Intercalation of bentonite clay with Al3+ was performed in batch experiments. Parameters optimized include time, dosage, and Al3+ concentration. Physicochemical characterization of raw and modified bentonite clay was done by X-ray fluorescence, X-ray diffraction, energy dispersive X-ray spectrometry attached to scanning electron microscopy, Brunauer–Emmett–Teller analysis, cation exchange capacity (CEC) by ammonium acetate method, and pHpzc by solid addition method. Chemical constituents of water were determined by atomic absorption spectrometry (AAS), ion selective electrode (Crison 6955 Fluoride selective electrode) and a Crison multimeter probe. For fluoride removal, the effect of contact time, adsorbent dosage, adsorbate concentration, and pH were evaluated in batch procedures. The adsorption capacity of fluoride by modified bentonite clay was observed to be 5.7 mg g?1 at (26 ± 2) °C room temperature. Maximum adsorption of fluoride was optimum at 30 min, 1 g of dosage, 60 mg L?1 of adsorbate concentration, pH 2–12, and 1:100 solid/liquid (S/L) ratios. Kinetic studies revealed that fluoride adsorption fitted well to pseudo-second-order model than pseudo first order. Adsorption data fitted well to both the Langmuir and Freundlich adsorption isotherms, hence, confirming monolayer and multilayer adsorption. Alum-bent showed good stability in removing fluoride from ground water to below the prescribed limit as stipulated by World Health Organization. As such, it can be concluded that Alum-bent is a potential defluoridation adsorbent which can be applied in fabrication of point of use devices for defluoridation of fluoride-rich water in rural areas of South Africa and other developing countries. Based on that, this comparative study proves that Alum-bent is a promising adsorbent with a high adsorption capacity for fluoride and can be a substitute for conventional defluoridation methods.  相似文献   

6.
This study evaluated the feasibility of integrating amorphous magnesite and bentonite clay (composite) as an alternative technology for removing arsenic from industrial effluents. The removal of arsenic from industrial effluents by using magnesite–bentonite clay composite was carried out in batch mode. The effects of equilibration time, adsorbent dosage, adsorbate concentration, and pH on removal of arsenic were investigated. The experiments demonstrated that ≈100% arsenic removal is optimum at 30 minutes of agitation, 2 g of adsorbent dosage (2 g: 100 mL, S/L ratio), and 20 mg L?1 of arsenic concentration. The adsorption data fitted well to both Langmuir and Freundlich adsorption models, hence proving monolayer and multilayer adsorption. The kinetic studies revealed that the data fitted better to a pseudo-second-order reaction than to a pseudo-first-order reaction, hence proving chemisorption. At optimized conditions, the composite was able to remove arsenic to below World Health Organization water quality guidelines, hence depicting that the composite is effective and efficient in removing arsenic from contaminated water. Based on that, this comparative study proves that the composite is a promising adsorbent with high adsorption capacity for arsenic and can be a suitable substitute for the conventional treatment methods.  相似文献   

7.
● A new adsorption-membrane separation strategy is used for phosphate removal. ● PVC/Zr-BT shows a selective adsorption ability to low-concentration phosphate. ● Low concentration of P below 0.05 mg/L was achieved in actual wastewater treatment. ● Algal biomass production served as a demonstration of phosphorus recycling. Enhanced phosphorus treatment and recovery has been continuously pursued due to the stringent wastewater discharge regulations and a phosphate supply shortage. Here, a new adsorption-membrane separation strategy was developed for rational reutilization of phosphate from sea cucumber aquaculture wastewater using a Zr-modified-bentonite filled polyvinyl chloride membrane. The as-obtained polyvinyl chloride/Zr-modified-bentonite membrane was highly permeability (940 L/(m2·h)), 1–2 times higher than those reported in other studies, and its adsorption capacity was high (20.6 mg/g) when the phosphate concentration in water was low (5 mg/L). It remained stable under various conditions, such as different pH, initial phosphate concentrations, and the presence of different ions after 24 h of adsorption in a cross-flow filtration system. The total phosphorus and phosphate removal rate reached 91.5% and 95.9%, respectively, after the membrane was used to treat sea cucumber aquaculture wastewater for 24 h and no other water quality parameters had been changed. After the purification process, the utilization of the membrane as a new source of phosphorus in the phosphorus-free f/2 medium experiments indicated the high cultivability of economic microalgae Phaeodactylum tricornutum FACHB-863 and 1.2 times more chlorophyll a was present than in f/2 medium. The biomass and lipid content of the microalgae in the two different media were similar. The innovative polyvinyl chloride/Zr-modified-bentonite membrane used for phosphorus removal and recovery is an important instrument to establish the groundwork for both the treatment of low concentration phosphate from wastewater as well as the reuse of enriched phosphorus in required fields.  相似文献   

8.
Some organic compounds are major water pollutants. They can be toxic or carcinogenic even at low concentrations. Current technologies, however, fail to remove these contaminants to parts per billion (ppb) levels. Here we report on the removal of organic pollutants from water using cross-linked nanoporous polymers that have been copolymerized with previously functionalized carbon nanotubes. These novel polymers can remove model organic species such as p-nitrophenol by as much as 99% from a 10 mg/L spiked water sample compared to granular activated carbon and native cyclodextrin polymer that removed only 47 and 58%, respectively. These polymers have also demonstrated the ability to remove trichloroethylene (10 mg/L spiked sample) to non-detectable levels (detection limit <0.01 ppb) compared to 55 and 70% for activated carbon and native cyclodextrin polymers, respectively.  相似文献   

9.
采用絮凝-光催化氧化工艺成功地处理了实际染料废水;研究了COD光催化降解动力学。COD和BOD5浓度分别为2169mg/L、295mg/L的染料废水,经絮凝-光催化处理后,出水COD和BOD5分别为214mg/L、18.5mg/L,去除率分别为90.1%、93.7%。向光催化体系中加入H2O2,可促进COD与BOD5的去除。该工艺可处理高浓度染料废水。  相似文献   

10.
Dumpsite leachate contains different hazardous substances, some of which threaten the environment. In this study, municipal solid waste, dumpsite leachate and topsoil from seven different dumpsites in Lagos and Ibadan, Nigeria were analysed using standard methods. The parameters analysed in the composite leachate samples collected are pH, solids, alkalinity, chloride, nitrate, sulfate, phosphate, biochemical oxygen demand, chemical oxygen demand turbidity, heavy metals (e.g. Zn, Pb, Co, Ni, Cd) and some persistent organic pollutants (e.g. polyaromatic hydrocarbons [PAHs] and polychlorinated biphenyls [PCBs]). Total organic carbon, heavy metals (e.g. Zn, Pb, Co, Ni, Cd) and organic pollutants (e.g. PAHs, PCBs) were analysed in the dumpsite topsoil and the control samples. The samples for heavy metal determination were digested using concentrated nitric acid and the digestate was analysed using atomic absorption spectrometry, whereas organic pollutants were extracted using cold extraction and quantified by gas chromatography-mass spectrometry (GC-MS). The study revealed that dumpsites in Ibadan have ~90% domestic and 10% industrial waste, whereas the figures for Lagos are 80% and 20%, respectively. In the leachate samples, concentrations of PAHs and PCBs ranged from 0.85 to 1.47 mg/L and 0.01 to 0.08 mg/L, respectively; the values were 0.94–2.79 mg/kg and 10.0–412 μg/kg in the topsoil. If not properly managed, dumpsite leachate can seep into groundwater and surface water via run-off, and can have adverse effects on human health and the entire ecosystem.  相似文献   

11.
Phenanthrene is a persistent organic pollutant frequently found in aquatic environments. This paper aimed to assess the acute effects (96 h) of phenanthrene on Chinese mitten crab (Eriocheir sinensis), a key economic aquatic animal in China. An acute semi-static toxic test was carried out to expose E. sinensis to water-borne phenanthrene with different concentrations (1.00, 1.63, 2.65, 4.31 and 7.00 mg L-1) for 96 hours. Mortality and toxic reactions were used as effect criteria. Furthermore, the oxidative stress relative biomarkers (activities of CAT, SOD, GST and content of MDA in hepatopancreas and gills) were measured for E. sinensis exposed to four lower concentrations of phenanthrene (1.00, 1.63, 2.65 and 4.31 mg L-1). The median lethal concentration (LC50) for 24,48 and 96 hour phenanthrene exposure was 16.7, 2.96 and 2.14 mg L-1, respectively; and the safe concentration (SC) of phenanthrene on E. sinensis was 0.214 mg L-1. Phenanthrene significantly increased the activity of CAT in hepatopancreas and gills, and showed a significant dose-effect relationship in hepatopancreas. Bell-shape response patterns were found in the activities of GST and SOD in the hepatopancreas and gills, with significant increases of hepatopancreas GST at 1.00 and 1.63 mg L-1 (P < 0.05), and a significant decrease at 4.31mg L-1 (P < 0.05). Phenanthrene significantly increased the contents of gills MDA at 2.65mg L-1 and hepatopancreas MDA at all four concentrations of phenanthrene. Phenanthrene, especially of high concentration, is highly toxic on E. sinensis, causing lipid peroxidative damage and even acute mortality. Meanwhile, E. sinensis can adapt to lower concentrations of phenanthrene by increasing the activities of SOD, CAT and GST. Because the CAT and GST activities of the gill and hepatopancreas are very sensitive to the presence of high-concentration phenanthrene, they can be used as highly sensitive biomarkers for phenanthrene polluted water.  相似文献   

12.
With the increase of water hardness from 60 to 720?mg/L CaCO3, total alkalinity from 32 to 376?mg/L CaCO3, pH from 7.6 to 7.9 and chloride from 28 to 350?mg/L, 96?h LC50 on the basis of total lead increased from 8.2 to 1291?mg/L for Cyprinus carpio and 5.3 to 865?mg/L for Catla catla, when soil sediments were included these values were further raised to 1356 and 874?mg/L, respectively. The dissolved lead LC50 values in all the treatments of soil and water was consistent with fixed amount of dissolved lead (1.04–1.78?mg/L) being needed for median lethal toxicity. Total lead toxicity also decreased with increase in pH from 6.3 to 11.3. 96?h LC50 values increased for common carp 15 to 631?mg/L and for catla, 8 to 355?mg/L. But dissolved lead toxicity was found to increase with the increase of pH from 6.3 to 11.3 for both common carp (LC50, 3.53 to 0.24?mg/L) and catla (LC50, 2.21 to 0.09?mg/L). Removal of dissolved Pb with increasing carbonate content, particulate matter and pH due to adsorption, precipitation or coprecipitation reaction, reduced the dissolved lead concentration and thus the total lead toxicity. Increase in toxicity of lead with increase of exposure time was the biological response of longer contact time and decrease in dissolved lead toxicity with decrease in pH was due to increase H+ ion competition.  相似文献   

13.
This study investigated the toxicity extent of phenanthrene and pyrene to two cultivars (CM-72 and Gairdner) of barley (Hordeum vulgare). Germination of barley seeds was evaluated in 69-d aged soil, separately spiked with phenanthrene at extractable concentrations of 0.95, 6.3, 59, and 300 mg kg?1 (dry soil) and pyrene at 1.0, 9.0, 73, and 400 mg kg?1 (dry soil). Although germination was not inhibited, significant (P < 0.05) reduction in root and shoot length occurred at concentrations of phenanthrene ≥6.3 mg kg?1 and pyrene ≥9.0 mg kg?1 after both 72 and 240 h. Fresh and dry biomass of both cultivars reduced with increasing concentrations of both polycyclic aromatic hydrocarbons (PAHs). Barley cultivar CM-72 was more sensitive than Gairdner, and it can be considered suitable for toxicity assessment of PAH-contaminated soils.  相似文献   

14.
Since the ammonia in the effluent of the traditional water purification process could not meet the supply demand, the advanced treatment of a high concentration of NH4 +-N micro-polluted source water by biological activated carbon filter (BACF) was tested. The filter was operated in the downflow manner and the results showed that the removing rate of NH4 +-N was related to the influent concentration of NH4 +-N. Its removing rate could be higher than 95% when influent concentration was under 1.0 mg/L. It could also decrease with the increasing influent concentration when the NH4 +-N concentration was in the range from 1.5 to 4.9 mg/L and the dissolved oxygen (DO) in the influent was under 10 mg/L, and the minimum removing rate could be 30%. The key factor of restricting nitrification in BACF was the influent DO. When the influent NH4 +-N concentration was high, the DO in water was almost depleted entirely by the nitrifying and hetetrophic bacteria in the depth of 0.4 m filter and the filter layer was divided into aerobic and anoxic zones. The nitrification and degradation of organic matters existed in the aerobic zone, while the denitrification occurred in the anoxic zone. Due to the limited carbon source, the denitrification could not be carried out properly, which led to the accumulation of the denitrification intermediates such as NO2 ?. In addition to the denitrification bacteria, the nitrification and the heterotrophic bacteria existed in the anoxic zone.  相似文献   

15.
Field and laboratory experiments were conducted to study the loss of particles from agricultural fields, and the role of suspended particles in carrying pesticides in surface runoff and drainage water. Propiconazole, a widely used fungicide was applied to experimental fields located at Askim, SE-Norway. Samples from surface runoff and drainage water were collected and analyzed for sediment mass, pesticides, particulate and dissolved organic carbon through a whole year. The surface soil and the runoff material were characterized by its particle size distribution, organic carbon content in size fractions and its ability to bind propiconazole. The results show that (1) particle runoff mostly occurred during the rainfall event shortly after harrowing in autumn. The highest particle concentration observed in the surface runoff water was 4600 mg l–1, and in the drainage water 1130 mg l–1; (2) the erosion of surface soil is size selective. The runoff sediment contained finer particle/aggregates rich in organic matter compared to its original surface soil; (3) the distribution coefficient (K d) of propiconazole was significantly higher in the runoff sediment than in the parent soil. According to our calculation, particle-bound propiconazole can represent up to 23% of the total amount of propiconazole in a water sample with a sediment concentration of 7600 mg l–1, which will significantly influence the transport behavior of the pesticide.  相似文献   

16.
采用室内半静态双箱动力学模型实验,研究了菲和镉单一及复合污染条件下在毛蚶(Anadara subcrenata)体内的生物富集,通过对富集与释放过程中毛蚶体内菲和Cd的富集量进行非线性曲线拟合,获得了菲和Cd单一及复合污染条件下在毛蚶体内的吸收速率常数k1、释放速率常数k2、生物富集因子BCF、生物半衰期B1/2和平衡状态下最大富集量CA max等动力学参数。实验结果表明,菲和Cd在实验前期富集速率较高,8 d以后富集速率减缓,释放阶段与富集阶段相似。毛蚶对菲的BCF值为37.80,远大于Cd的BCF值13.12,且生物半衰期时间更长,菲更容易在生物体内富集。菲和Cd联合暴露条件下,在毛蚶体内的CA max和BCF值均大于单一作用,说明二者同时暴露时,毛蚶对菲和镉的吸收富集均有所增强。实验模型拟合度较好,输出值和实测值之间无显著性差异,拟合方程和拟合参数可信。  相似文献   

17.
The influence of bioturbation caused by common carp fry was treated in 24 transparent polythene jars (5?L each) in the laboratory and in outdoor vats (150?L), increasing the fertilizer value of phosphate rock in eight treatment combinations in triplicate. Input of water soluble reactive phosphate (SRP) was determined to quantify the effects of bioturbation, fish excrements and soil. The level of SRP in water was always lowest in the control series. Introduction of common carp fry resulted in a net increase of 0.009–0.010?mg phosphate g?1day?1 of SRP attributable to the effect of fish excrement. Bioturbation caused by common carp resulted in as high as a 64.8 to 90% influx of phosphate from bottom soil in the presence of phosphate rock but only about 6.3 to 7.2% in the absence of phosphate rock. The bioturbation that occurred in this treatment resulted in a significant release of phosphorous into the overlying water from an apatite source. The results confirm the environment friendly application of phosphate rock in fish-farming ponds at low cost.  相似文献   

18.
从石油污染土壤中分离到一株菲降解菌2F5-2.根据该菌株生理生化特征和16S rDNA序列相似性分析,将其初步鉴定为鞘氨醇杆菌属(Sphingobium sp.).该菌株在10 h内对100 mg/L的菲的降解率为100%.降解菲的最适温度为30℃,最适pH为7.对降解途径的初步研究显示,该菌株通过水杨酸途径降解菲.克隆了编码芳香烃双加氧酶α亚基的基因phdA,它与菌株Sphingomonas sp.P2、Sphingobium yanoikuyae B1、Sphingomonas sp.ZP1中phdA的同源性分别为97.9%、98%和100%,表明该基因具有保守性.图6参16  相似文献   

19.
• Lanthanum modified bentonite (LMB) can effectively absorb phosphorus (P). • Water treatment plant sludge (WTPS) capping is effective for controlling P release. •Aluminum-based P-inactivation agent (Al-PIA) is an efficient P control material. •The P adsorbed by WTPS and Al-PIA is mainly in the form of NAIP. We determined the effects of quartz sand (QS), water treatment plant sludge (WTPS), aluminum-based P-inactivation agent (Al-PIA), and lanthanum-modified bentonite (LMB) thin-layer capping on controlling phosphorus and nitrogen release from the sediment, using a static simulation experiment. The sediment in the experiment was sampled from Yundang Lagoon (Xiamen, Fujian Province, China), which is a eutrophic waterbody. The total phosphorus (TP), ammonium nitrogen (NH4+-N), and total organic carbon (TOC) levels in the overlying water were measured at regular intervals, and the changes of different P forms in WTPS, Al-PIA, and sediment of each system were analyzed before and after the test. The average TP reduction rates of LMB, Al-PIA, WTPS, and QS were 94.82, 92.14, 86.88, and 10.68%, respectively, when the release strength of sediment TP was 2.26–9.19 mg/(m2·d) and the capping strength of the materials was 2 kg/m2. Thin-layer capping of LMB, WTPS, and Al-PIA could effectively control P release from the sediment (P<0.05). However, thin-layer capping of LMB, Al-PIA, and QS did not significantly reduce the release of ammonium N and organic matter (P > 0.05). Based on our results, LMB, Al-PIA, and WTPS thin-layer capping promoted the migration and transformation of easily released P in sediment. The P adsorbed by WTPS and Al-PIA mainly occurred in the form of NAIP.  相似文献   

20.
The kinetic parameters and the purification rates of the hybrid cell Foaz in soybean processing wastewater (SPW) were measured through a shaking reaction and in two automatic regulated control stable fermentation systems (ARCSFS). The maximum specific growth rate of Foaz was 0.576 h‐1, higher than that of one of its parental strains Rhodobacter sphaeroides P9479 and lower than that of another parental strain Saccharomyces cerevisiae Y9407. The BOD5 removal rate of Foaz in the No. 1 system was 61.3%, higher than those of both its parental strains when the influent BOD5 concentration was 4600 mg/L. The results of this study suggest that the hybrid Foaz has a better capacity of the degradation of organic pollutants in SPW than its parental strains and it may be applicable to the treatment of high concentration organic wastewater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号