首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 494 毫秒
1.
杭州市郊区表层土壤中多环芳烃的风险分析   总被引:1,自引:0,他引:1  
采集杭州市郊区表层土壤中多环芳烃的样品,用色谱-质谱技术对多环芳烃化合物进行定量分析。美国环保总署推荐优先控制的16种多环芳烃单体质量分数在1.49~87.43 ng.g-1之间,萘、芴、苊等低分子量芳烃质量分数相对较低;、茚并[1,2,3-cd]芘、苯并[ghi]苝等高分子量芳烃质量分数相对较高,其中苯并[ghi]苝质量分数最高。对照荷兰的土壤标准,杭州市郊区表层土壤中的荧蒽、、茚并[1,2,3-cd]芘、苯并[ghi]苝超标比较严重,超标率100%;多环芳烃的Bap等效毒性当量是荷兰规定目标值的2倍;因此,杭州市郊区表层土壤中存在一定的潜在风险。多环芳烃Ant/(Phe+Ant)、BaA/(Chr+BaA)、Flua/(Pyr+Flua)等参数表明,多环芳烃主要来源于燃烧源,且以机动车尾气为主;BeP/(BeP+BaP)比值偏高,可能与土壤中的多环芳烃主要来源于大气沉降有关。  相似文献   

2.
Polycyclic aromatic hydrocarbons (PAHs) concentrations were analysed in the organic film on the glass surfaces of different functional areas in central Shanghai. Concentration levels of total PAHs in the organic film ranged from 1,348.5 to 4,007.9 ng m?2. The concentration of PAHs was lowest in parks and green spaces (1,348.5 ng m?2) and highest in traffic zones (4,007.9 ng m?2). A concentration gradient of total PAHs was observed as follows: traffic zones > commercial areas > cultural and educational areas > parks and green spaces. The distribution of PAHs was characterised by 3–4 ring PAHs in the study areas. The most abundant PAHs were phenanthrene (20.5 %), fluorene (16.7 %), pyrene (12.4 %) and chrysene (Chry) (11.2 %). The mass of the bulk film was composed of organic and inorganic compounds and ranged from 246 to 1,288 mg m?2. The bulk film thickness varied from 144 to 757 nm in the different functional areas. The ratios of An/178 and Fl/202 and principal component analysis suggested that PAHs came mainly from the mixed sources of fossil fuel, coal and incomplete combustion of biomass. Benzo[a]anthracene (BaA)/Chry is not suitable for use as a tracer for the transmission process of PAHs because of the rapid depletion of BaA in the organic film by photooxidation during daylight hours. The concentration of benzo[a]pyrene equivalent (BaPeq) varied from 21 to 701 ng g?1, and the major carcinogenic contributors of the 16 PAHs were BaP, DahA, B[b/k]F and InP, accounting for 83 % of BaPeq.  相似文献   

3.
烃类污染物在大气气溶胶源解析方面的应用   总被引:2,自引:0,他引:2  
分析了国内外的资料,并结合几年来对北京地区的研究成果,讨论了饱和烃、多环芳烃等有机污染物在源解析方面的应用。利用饱和烃进行源解析主要依靠正构烷烃的分布特征和主峰碳、CPI、OEP等参数,以及姥鲛烷和植烷的Pr/Ph、Pr/C17、Ph/C18比值;甾烷及萜烷等环状化合物,性质非常稳定,可以作为化石燃料燃烧的有机示踪物。通常情况下,不同来源的多环芳烃,Ant/Phe、Flua/Pyr、BaA/Chr等比值有一定的差别;因此这些比值也可以作为重要的诊断参数。  相似文献   

4.
Study on the occurrence, sources and potential human health risk of polycyclic aromatic hydrocarbons in farmland soils around reservoirs is of great significance for the people drinking water security. In the present study, representative farmland soil samples around main reservoirs of Jilin Province, China, were investigated for 16 PAHs. The total concentrations of 16 priority PAHs in 32 farmland soil samples ranged from 602.12 to 1271.87 ng/g, with an arithmetic average of 877.23 ng/g, and the sum of seven carcinogenic PAH concentrations ranged from 30.07 to 710.02 ng/g, with a mean value of 229.04 ng/g. The 3-ring and 4-ring PAHs were major exist and account for 45.78 and 32.03%, respectively. Non-cancer and cancer risk of pollutants were calculated, and the results indicate that the complex PAHs in farmland soils were not considered to pose significant health effects. The isomer ratios Fla/(Fla + Pyr) and BaA/(BaA + Chr) show that the PAHs in soils were generally derived from biomass and coal combustion.  相似文献   

5.
U.S. laws require that contaminant bioaccumulation potential be evaluated before dredged material can be recycled. Simple fugacity models, e.g. organic contaminant aqueous partition coefficient (K oc)-derived theoretical bioaccumulation potential, are commonly used to estimate the partitioning of hydrophobic organic contaminants between sediment organic matter and organism lipid. K oc-derived models, with or without the addition of a soot carbon term, did not accurately or consistently predict total polycyclic aromatic hydrocarbons (PAHs) and polychlorobiphenyls partitioning of eight sediments from ongoing dredging operations onto C18-coated filter paper. These models also failed to predict the partitioning of individual PAHs from these eight sediments. These data underscore the trade-offs between the ease of using simple models and the uncertainty of predicted partitioning values.  相似文献   

6.
Surface soils affected by forest fires from Igbanko mangrove forest in Nigeria were analyzed for 16 EPA priority polycyclic aromatic hydrocarbons (PAHs) using gas chromatography–mass spectrometry (GC–MS). The total PAHs concentrations in the soils ranged from 63 to 188?µg?kg?1 dry weight (average: 108?µg?kg?1). The three predominant PAHs in the soils were naphthalene (Na), fluoranthene (Flu), and benzo(b)fluoranthene (BbF). Compared to the control sample (19?µg?kg?1), elevated PAHs concentrations were observed in the soils, an indication of some level of PAHs contamination. PAHs source diagnostic ratios of Flu/(Flu?+?Pyr) and Ant/(Ant?+?Phe) indicated that the PAHs have a pyrogenic origin which may have resulted from combustion of grass, wood, or coal. An assessment based on Canadian soil quality guidelines indicated that the studied locations do not pose any serious adverse risk on human health.  相似文献   

7.
Polluted soils of former coking plants are characterized by multiple organic contributions, e.g. coal tar, coal, coke, soot, and natural organic matter, that can either be sources of polycyclic aromatic hydrocarbons (PAHs) or act as sorption surfaces for pollutants. The contamination level is usually based on the quantification of 16 PAHs but it does not provide any information on PAH sources. We studied the aliphatic fractions of 25 soil samples from a former coking plant site by microscopy and gas chromatography-mass spectrometry (GC-MS). The microscopic investigation allowed to identify four main organic contributions: coal tar, coal, coke, and natural organic matter. These isolated sources were analyzed and considered as reference materials. Although the PAH distributions were very similar in the 25 contaminated soils, alkanes and hopanes distributions were representative from various contributions characterizing the relative enrichment in coal, coal tars, or natural organic matter. Two principal component analyses based on n-alkanes and hopanes showed that three molecular indices, the carbon preference index, the low molecular weight/high molecular weight n-alkanes ratio, and the 18α(H)-22,29,30-trisnorhopane/(18α(H)-22,29,30-trisnorhopane+17α(H)-22,29,30-trisnorhopane) ratio allow to classify polluted soils according to various organic contributions.  相似文献   

8.

This study presents a comprehensive characterization of occurrence and levels of 16 polycyclic aromatic hydrocarbons (PAHs) in arable soils used for conventional and organic production in northern and central part of Serbia as well as cross-border region with Hungary. Furthermore, this study includes a characterization of PAH sources and carcinogenic/non-carcinogenic human health risk for PAHs accumulated in analysed arable soils. The total concentration of 16 PAHs varied between 55 and 4584 µg kg?1 in agricultural soil used for conventional production and between 90 and 523 µg kg?1 in agricultural soil used for organic production. High molecular weight (HMW) PAHs were dominant compounds with similar contribution in both soil types (86% and 80% in conventional and in organic soil, respectively). Principal component analysis and diagnostic ratios of selected PAHs were used for identification of PAH sources in the analysed soils. Additionally, positive matrix factorization was applied for quantitative assessment. The results indicated that the major sources of PAHs were vehicle emissions, biomass and wood combustion, accounting for?~?93% of PAHs. Exposure of farmers assessed through carcinogenic (TCR) and non-carcinogenic (THQ) risk did not exceed the acceptable threshold (TCR?<?10–6 and THQ?<?1). Oral ingestion was the main exposure route which accounted for 57% of TCR and 80% of THQ. It was followed by dermal contact. This investigation gives a valuable data insight into the PAHs presence in arable soils and reveals the absence of environmental and health risk. It also acknowledges the importance of comprehensive monitoring of these persistent pollutants.

  相似文献   

9.
Volatile organic compounds (VOCs) were measured at six sites in Beijing in August, 2004. Up to 148 VOC species, including C3 to C12 alkanes, C3 to C11 alkenes, C6 to C12 aromatics, and halogenated hydrocarbons, were quantified. Although the concentrations differed at the sites, the chemical compositions were similar, except for the Tongzhou site where aromatics were significantly high in the air. Based on the source profiles measured from previous studies, the source apportionment of ambient VOCs was preformed by deploying the chemical mass balance (CMB) model. The results show that urban VOCs are predominant from mobile source emissions, which contribute more than 50% of the VOCs (in mass concentrations) to ambient air at most sites. Other important sources are gasoline evaporation, painting, and solvents. The exception is at the Tongzhou site where vehicle exhaust, painting, and solvents have about equal contribution, around 35% of the ambient VOC concentration. As the receptor model is not valid for deriving the sources of reactive species, such as isoprene and 1,3-butadiene, other methodologies need to be further explored.  相似文献   

10.
This contribution characterises the sources and distribution of polycyclic aromatic hydrocarbons (PAHs) in sediments of the Basque coast (Bay of Biscay). Different source characterisation approaches (i.e. GIS assisted-chemometrics, PAH diagnostic ratios and analyses of composition profiles) were used in combination to successfully identify the factors determining the origin and distribution of PAHs. Urban/industrial combustion processes were identified as the main PAH source. However, the analysis of PAH composition patterns and diagnostic ratios identified secondary natural and petrogenic PAH sources on small spatial scales. The median ∑18PAH concentration ranged from 66 μg kg?1 (d.w.) to 7021 μg kg?1 (d.w.). The Ibaizabal estuary, which supports most of the anthropogenic pressure in the region (i.e. urban development, industrialisation, commercial and recreational harbours), also showed the highest PAH concentrations. On the shelf, human activities, hydrodynamic conditions and geomorphological features led to spatial differences in the PAH concentrations among sectors: the offshore and west sectors were characterised by higher concentrations, while the lowest values were found in the mid and east sectors. The results enhance the knowledge on PAH-related contamination processes and could be used to support the environmental assessment process required under current European marine legislation.  相似文献   

11.
Urban fractionation of polycyclic aromatic hydrocarbons from Dalian soils   总被引:2,自引:0,他引:2  
This report evidences the fractionation of polycyclic aromatic hydrocarbons (PAHs) from urban to rural areas, and a higher contribution of coal and wood combustion in rural areas. PAHs are persistent semi-volatile organic pollutants in the environment. PAHs originate from the incompleted combustion of fossil fuel and biomass. Cities are usually considered as primary sources of PAHs. Due to different types and loads of fuel consumption in various functional areas of a city, the levels and composition profiles of PAHs are expected to be different. We, therefore, studied the mechanisms ruling PAH distributions in soils from a major Chinese city. Seventeen soil samples were collected in urban traffic areas, residential and park areas, suburban areas and rural areas of Dalian, northeastern China. PAHs were analyzed using a high-performance liquid chromatography. The composition profiles and seasonal variation of PAHs were investigated. Results show that the proportions of low-weight molecular PAHs to total PAHs increased with urban-suburban-rural gradient. This trend is explained by the “urban fractionation” of PAHs. Furthermore, the spring/autumn ratios of PAH concentrations were higher than 1. Specifically, the spring/autumn ratio was 1.79 for two ring PAHs, 1.42 for three ring PAHs, and lower than 1.20 for five and six ring PAHs. The spring/autumn ratios of phenanthrene were higher than 1 and increased with increasing distance from the urban areas. The results imply that the contribution of coal and wood combustion PAHs increases with the urban-suburban-rural gradient.  相似文献   

12.
A river-dredging project has been undertaken in Nantou, Taiwan. A large number of diesel vehicles carrying gravel and sand shuttle back and forth on the main roads. Ten stations along major thoroughfares were selected as the exposure sites for testing, while a small village located about 9 km from a main traffic route was selected as the control site. Levels of household dust loading at the exposure sites (60.3 mg/m2) were significantly higher than those at the control site (38.2 mg/m2). The loading (μg/m2) of t-PAHs (total polycyclic aromatic hydrocarbons) in the household dust at the exposure sites was significantly higher (P < 0.05) than was the case at the control site. The diagnostic ratios of PAHs showed that diesel emissions were the dominant source of PAHs at the exposure sites. The lack of a significant correlation between the concentrations of Fe and t-PAHs suggested that the t-PAHs in household dust might come from diverse sources. However, a significant correlation (P = 0.003) between the concentrations of Mo and t-PAHs implied that the most of the t-PAHs in the household dust might have resulted from diesel emissions. The lifetime cancer risks of BaPeq from household dust exposure were markedly higher than those resulting from inhalation exposure.  相似文献   

13.
Surface sediments of rivers can exhibit spatial and temporal variations in contaminant concentrations that may significantly affect risk evaluations. As to pollution control and remediation of watershed, large-scale and further background data on PAHs in China were required urgently. Spatial distribution and compositional characteristics of 16 polycyclic aromatic hydrocarbons (PAHs) in surface sediments from Haihe River Basin were investigated. A method based on effects range (ER) was used to assess ecosystem risk of ∑PAHs (the total of 16 PAH) sensitively and accurately. The results indicated that ∑PAHs content levels ranged from 257 to 16901 μg·kg−1 dry weight. The lower rings predominated in the samples, and 2-, 3-, 4-, 5- and 6-ring PAHs accounted for 12%, 21%, 30%, 30%, and 7% respectively in total PAHs. The ratio of Fl / (Fl+ Py) uniformly distributed in the interval 0.20–0.80, indicating that it may be affected by petroleum origin, oil combustion, biomass and coal combustion jointly. ∑PAHs in Cetian (S6), Dongwushi (S19), Handan (S20), Aixinzhuang (S21) and Tianjin (S37) exceeded effects range low (ERL), in which biologic effects were in a medium level with an adverse effect on biologic organisms. Thus, it is necessary to strengthen the PAHs monitoring and research of the Haihe River Basin.  相似文献   

14.
北京地区表层土壤中多环芳烃的分布特征及污染源分析   总被引:6,自引:0,他引:6  
根据北京地区不同环境功能区62个样品的分析结果,讨论了研究区表层土壤中多环芳烃的分布特征及污染源类型。结果表明:(1)研究区表层土壤中检测到的多环芳烃主要包括萘、苊、菲、惹烯、三芴、荧蒽、芘、、苯并蒽、苯并[b]荧蒽、苯并[k]荧蒽、苯并[e]芘、苯并[a]芘、苝、二苯并[a,h]蒽、茚并[1,2,3–cd]芘、苯并[g,h,i]苝及其同系物;(2)不同环境功能区表层土壤中多环芳烃的组成及质量分数均存在一定的差别,16种优先控制的多环芳烃质量分数为175.1~10 344 ng.g-1,其中城市中心区表层土壤中多环芳烃的质量分数最高,交通干线附近、工矿企业附近表层土壤中PAHs的质量分数较高,林地、果园和农田表层土壤中PAHs的质量分数较低;(3)表层土壤中PAHs既有来源于石油源,也有来源于化石燃料燃烧产物的,但不同功能区二者贡献存在差别,其中农业用地(林地、果园、农田)中PAHs主要来源于石油源(或部分来源于土壤母岩中的有机质),城区、交通干线附近及工矿企业附近表层土壤中PAHs污染源以化石燃料燃烧产物输入为主。  相似文献   

15.
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the urban atmosphere and the atmospheric pollutants to be identified as the most suspected carcinogens. In early measurements of urban PAH concentrations in Tehran area, the correlation between concentrations of different species indicated that automobiles were the predominant source of emission of PAHs in this city. From the diagnostic ratios, the results indicated that PAHs in the ambient air in Tehran originate primarily from diesel and gasoline engines, but contribution of the related diesel emission is apparently higher, or dominant, at the sampling sites and therefore considered as the major emission of PAHs in the ambient air.  相似文献   

16.
PAHs could be transported to Tibetan Plateau in accompany with atmospheric circulation. The forest regions were found be an important sink for PAHs, while their distributions and migrations in forest are still uncertain. In this study, soil profile samples were collected in southeastern Tibet and the concentrations, distributions, and migration of PAHs in forest region were investigated. The PAHs levels in the forest soils were at the low end of remote sites, ranged from 27.4 to 120.3 ng g?1 on a dry weight based. Due to low ambient temperature and high organic carbon content, enrichment of PAHs was found in higher altitude on north side. According to the soil profiles, the vertical distributions of PAHs in organic layers were mainly influenced by pedogenesis, while the vertical distributions in mineral layers were dominated by downward leaching effect. Enrich factor (EF) of PAHs was estimated, and the values in organic layers were positively correlated with the octanol–air partition coefficients (K OA), but EFs in mineral layers decreased with the K OA values. PAHs in the surface soils on the north side of forest were relatively stable, while the migration of PAHs on the south sides and other clearing sites was more active. The leaching rates of PAHs in clearing site ranged between 1.42 and 29.3%. The results from this study are valuable on the characterization of PAHs in Tibetan Plateau.  相似文献   

17.
Sources of organic matter (OM) in lower Narmada and Tapi river-estuaries were examined using organic carbon to nitrogen ratio (Corg/N), stable carbon isotope ratio (δ13Corg) and lignin phenol biomarkers. The signature of lower Corg (av. 0.50%) and higher δ13Corg (av. –20.3‰) in Narmada and, higher Corg (av. 0.85%) and lower δ13Corg (av. –22.8‰) in Tapi highlight the difference in OM characteristics of both systems, nevertheless they flow adjacent to each other. The OM in Tapi was predominated by fresh plant tissues, as indicated by higher Λ8?=?1.2–3.2?mg/100?mg Corg, lower Ad/Alv?=?0.22–0.46 and lower LPVI?=?17–23. The plant OM present in the sediments of Narmada was previously degraded and mixed with soil. The OM contribution from algae was restricted to estuarine stations in both the rivers, which was ~50% in Narmada and ~35% in Tapi. The contribution of OM from fresh vascular plant was higher (20% to 63%) in Tapi than Narmada (2% to 35%). This study illustrated the benefits of using lignin phenols along with Corg/N and δ13Corg to identify the potential OM sources in two large river–estuary systems of India, which highlighted the complex interaction of natural and anthropogenic processes acted on the terrestrial OM compositions.  相似文献   

18.
The concentrations of 16 priority polycyclic aromatic hydrocarbons (PAHs) in four size fractions (<2, 2–20, 20–200, >200 μm) in soils at different depth from a heavily contaminated crude benzol production facility of a coking plant were determined using GC–MS. Vertically, elevated total PAHs concentrations were observed in the soils at 3.0–4.5 m (layer B) and 6.0–7.5 m (layer C), relatively lower at 1.5–3.0 m (layer A) and 10.5–12.0 m (layer D). At all sampling sites, the silt (2–20 μm) contained the highest PAHs concentration (ranged from 726 to 2,711 mg/kg). Despite the substantial change in PAHs concentrations in soils with different particle sizes and lithologies, PAHs composition was similarly dominated by 2–3 ring species (86.5–98.3 %), including acenaphthene, fluorene, and phenanthrene. For the contribution of PAHs mass in each fraction to the bulk soil, the 20–200 μm size fraction had the greatest accumulation of PAHs in loamy sand layers at 1.0–7.5 m, increasing with depth; while in deeper sand layer at 10.5–12.0 m, the >200 μm size fraction showed highest percentages and contributed 81 % of total PAHs mass. For individual PAH distribution, the 2–3 ring PAHs were highly concentrated in the small size fraction (<2 and 2–20 μm); the 4–6 ring PAHs showed the highest concentrations in the 2–20 μm size fraction, increasing with depth. The distribution of PAHs was primarily determined by the sorption on soil organic matter and the characteristics of PAHs. This research should have significant contribution to PAH migration study and remediation design for PAHs-contaminated sites.  相似文献   

19.
The spatial and temporal distributions of polycyclic aromatic hydrocarbons (PAHs) in the Songhua River, Harbin, China, were investigated. Seventy-seven samples, 42 water and 35 sediment samples, were collected in April and October of 2007 and January of 2008. The concentrations of total PAHs in water ranged from 163.54 to 2,746.25 ng/L with the average value of 934.62 ng/L, which were predominated by 2- and 3-ring PAHs. The concentrations of total 16 PAHs in sediment ranged from 68.25 to 654.15 ng/g dw with the average value of 234.15 ng/g dw, which were predominated by 4-, 5- and 6-ring PAHs. Statistical analysis of the PAH concentrations shown that the highest concentrations of the total PAHs were found during rainy season (October of 2007) and the lowest during snowy season (January of 2008). Ratios of specific PAH compounds, including fluoranthene/(fluoranthene + pyrene) (Flu/(Flu + Pyr)) and phenanthrene/(phenanthrene + anthracene) (An/(Ant + PhA)), were calculated to evaluate the possible sources of PAH contaminations. These ratios reflected pyrolytic inputs of PAHs in Songhua River water and a mixed pattern of pyrolytic and petrogenic inputs of PAHs in the Songhua River sediments. Ecotoxicological risk levels calculated for PAHs suggested that there were individual PAHs, which can less frequently cause biological impairment in some samples, but no samples had constituents that may frequently cause biological impairment. Total toxic benzo[a]pyrene equivalent of ΣcPAHs varied from 10.03 to 29.7 ng/g dw and from 0.36 to 1.92 ng/g dw for total toxic tetrachlorodibenzo-p-dioxin equivalent. The level of PAHs indicated a low toxicological risk to this area.  相似文献   

20.

Polycyclic aromatic hydrocarbons (PAHs), organochlorine pesticides (OCPs) and phenolic compounds (PCs) are persistent organic compounds. Contamination of these potentially toxic organic pollutants in soils and sediments is most studied environmental compartments. In recent past, studies were carried out on PAHs, OCPs and PCs in various soils and sediments in India. But, this is the first study on these pollutants in soils and sediments from an urbanized river flood plain area in Delhi, India. During 2018, a total of fifty-four samples including twenty-seven each of soil and sediment were collected and analyzed for thirteen priority PAHs, four OCPs and six PCs. The detected concentration of ∑PAHs, ∑OCPs and ∑PCs in soils ranged between 473 and 1132, 13 and 41, and 639 and 2112 µg/kg, respectively, while their concentrations in sediments ranged between 1685 and 4010, 4.2 and 47, and 553 and 20,983 µg/kg, respectively. PAHs with 4-aromatic rings were the dominant compounds, accounting for 51 and 76% of total PAHs in soils and sediments, respectively. The contribution of seven carcinogen PAHs (7CPAHs) in soils and sediments accounted for 43% and 61%, respectively, to ∑PAHs. Among OCPs, p, p’-DDT was the dominant compound in soils, while α-HCH was found to be dominated in sediments. The concentrations of ∑CPs (chlorophenols) were dominated over ∑NPs (nitrophenols) in both the matrices. Various diagnostic tools were applied for the identification of their possible sources in soil and sediments. The observed concentrations of PAHs, OCPs and PCs were more or less comparable with the recently reports from various locations around the world including India. Soil quality guidelines and consensus-based sediment quality guidelines were applied for the assessment of ecotoxicological health effect.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号