首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
鼎湖山粗死木质残体生物量特征   总被引:5,自引:0,他引:5  
对鼎湖山季风常绿阔叶林1 hm2永久性样地内粗死木质残体(Coarse woody debris,简称CWD)的生物量、存在形式及分解状态进行研究.结果表明:1)鼎湖山季风常绿阔叶林CWD的生物量为42.09 t hm-2,其中倒木和枯立木分别为32.81 t hm-2、9.28 t hm-2,所占比例分别为77.9%、22.1%.1999~2010年间CWD年均输入量为1.68 t hm-2a-1.2)CWD主要优势树种为锥栗(Castanopsis chinensis)、黄杞(Engelhardtia roxburghiana)和荷木(Schima superba),所占比例分别为54.0%、15.1%和13.9%.3)CWD径级主要分布在30 cm以下,但对CWD生物量贡献最大的径级在30 cm以上.4)CWD的分解状态主要为中度分解状态,占CWD总生物量的61.2%.研究还表明,鼎湖山季风常绿阔叶林的CWD生物量呈逐年增加趋势.图2表3参17  相似文献   

2.
小陇山林区主要森林群落凋落物及死木质残体储量   总被引:5,自引:0,他引:5  
采用固定面积样方取样法研究了小陇山林区锐齿栎和油松天然林死木质残体及凋落物的总储量.结果表明:小陇山林区锐齿栎天然林粗死木质残体(Coarse woody debris,简称CWD)和细小木质残体(Fine woody debris,简称FWD)储量分别为29 350.92 kg hm-2和2 298.41 kg hm-2,分别为油松天然林的3.8和1.3倍.油松林CWD组成中枯立木占到85.65%,倒木只占14.35%,而锐齿栎天然林枯立木和倒木所占的比例基本为1.从CWD的径级结构上来说,锐齿栎林内以大径级CWD为主(≥20 cm),占样地CWD总储量的60.81%,天然油松林以小径级(20 cm≥小径级≥10 cm)CWD为主,大、小径级分别占CWD储量的55.33%和44.67%.油松林内凋落物储量为30 472.31 kg hm-2,是天然锐齿栎凋落物储量8 902.29 kg hm-2的3倍以上.凋落物和死木质残体储量的不同是锐齿栎天然林和油松天然林种群结构、林分更新和群落内部竞争状况及凋落物分解状况差异所导致的结果.  相似文献   

3.
川西高山森林生态系统林下生物量及其随林窗的变化特征   总被引:1,自引:0,他引:1  
作为森林生态系统的重要组成部分,林下植被及其残体的分布受到林冠层的影响,但迄今有关林窗对林下植被和残体生物量的影响尚无研究报道.于2013 年8 月2 日至20 日,以海拔3 600 m 的川西岷江冷杉原始林林下植被为研究对象,根据区域内的坡向和林分组成等因素设置3 个100 m×100 m 的典型样地,调查其生物量及其随林窗的变化特征.在每个样地内选择3 个大林窗,在林窗、林缘和林下分别设置3 个20 m×20 m 的样方,调查粗木质残体长度或高度、大小头直径、枯立木记录胸径、腐烂等级等;在林窗、林缘和林下分别设置3 个5 m×5 m 的样方,采用“收获法”收集样方内直径在2.5-10 cm之间的细木质残体和灌木生物量;在林窗、林缘和林下分别设置3 个1 m×1 m 的样方来调查凋落物储量和草本生物量;在1m×1 m 的样方内随机选择1 个20 cm×20 cm 的小样方来调查地被植物生物量.结果表明,(1)川西高山森林生态系统总生物量为72.75 t·hm^-2,其中林下生物量为67.92 t·hm^-2,占生态系统生物量的95.17%.活体植被以灌木为主,其生物量为9.81t·hm^-2;残体部分以粗木质残体为主,其储量为53.00 t·hm^-2;(2)林窗对灌木、草本、地被植物的影响各不相同,且不同物种的灌木生物量表现出不同的分布规律;草本生物量表现出明显的“边缘效应”,在林缘显著高于林下;林窗和林缘的地被植物生物量相对较低;(3)粗木质残体储量从林下到林窗呈现减小的趋势,但总体储量仍然较大,林窗和林缘的细木质残体储量高于林下.这些结果为认识高山森林生态系统林下生物量及其格局,以及林窗在森林生态系统的重要作用提供了基础理论依据.  相似文献   

4.
高山森林粗木质残体腐殖化是促进生态系统土壤发育和碳吸存的主要途径之一,并可能受到腐烂等级和木质残体类型的影响,但一直缺乏必要的关注。因此,在2013年8月,以青藏高原东缘海拔3 600 m左右的高山森林中具有代表性的岷江冷杉(Abies faxoniana)原始林为研究对象,根据区域内坡度和物种组成设置3个100 m×100 m的典型样地,在研究样地内随机选取5个腐烂等级的岷江冷杉粗木质残体,每个腐烂等级3株,4种粗木质残体,共计60株,调查和研究区域内不同腐烂等级倒木、枯立木、根桩和大枯枝等主要类型粗木质残体的腐殖化特征。结果表明:枯立木、大枯枝和倒木腐殖质碳、胡敏酸碳和富里酸碳含量随腐烂等级增加而增大,而根桩腐殖质碳、胡敏酸碳和富里酸碳含量随腐烂等级增加而减小,并且枯立木在各个分解阶段腐殖质碳、胡敏酸碳和富里酸碳含量均保持较高水平。同时,枯立木、大枯枝和倒木的腐殖化度随腐烂等级增加呈增大趋势,根桩腐殖化度却随着腐烂等级增加而减小,其腐殖化度分别为52.93%~85.88%、49.2%~73.68%、54.94%~67.21%和53.41%~68.68%。枯立木腐殖化度明显高于其他3种类型粗木质残体,且在腐殖化后期(腐烂Ⅳ级或Ⅴ级)腐殖化度最大。这对进一步认识高山森林生态系统植物-土壤互作过程具有重要意义。  相似文献   

5.
选取福建西北部地区多群落类型组成的常绿阔叶混交林为研究对象,通过典型样地调查法,对生态系统各个层次进行取样调查,采用“相对生长法”计算乔木层生物量,灌木层、草本层和凋落物层采用全部收获法测得其生物量,对土壤层的调查采用剖面法加土钻法,代表性样品碳含量的测定采用重铬酸钾-外加热容量法。在此基础上,分析了该地区不同林龄常绿阔叶林生态系统碳储量及其格局特征,结果表明,(1)闽西北地区常绿阔叶林生态系统平均碳储量为260.63 t·hm-2。在每个发育阶段,各层片对整个生态系统碳储量的贡献率相对稳定,空间分布格局特征相似。幼龄林、中龄林、近熟林、成过熟林生态系统的碳储量分别为192.14、221.15、317.11和312.12 t·hm-2,基本表现出随林龄增加而逐渐增大的趋势。(2)乔木层、灌木层、草本层、凋落物层的平均碳质量分数分别为48.5%、46.9%、41.2%、44.0%,每个层片中,各器官的碳含量差异不大,乔木层、灌木层及草本层的碳质量分数表现出随层片高度降低而减小的趋势。土壤碳质量分数由表层到底层逐渐减小。0~10、10~20 cm土层碳质量分数均显著大于其余三个土层。(3)生物量碳储量在每个层片随着龄组不同,表现出不同的变化趋势。乔木层碳储量大小排序为近熟林﹥成过熟林﹥中龄林﹥幼龄林,灌木层与草本层在不同发育阶段的碳储量,均表现出以下规律:从幼龄林到中龄林不断增长,在中龄林达到最大值后,又随发育的进行显现出不断下降的趋势。随着地表凋落物现存量的不断增加,其碳储量也表现出幼龄林﹥中龄林﹥近熟林﹥成过熟林的趋势。土壤的平均碳储量为134.986 t·hm-2,随着林分发育,表现为成过熟林﹥近熟林﹥中龄林﹥幼龄林。  相似文献   

6.
普遍存在于森林地表的粗木质残体(Coarse woody debris,CWD)是森林生态系统的重要组成部分.金属元素不断在CWD中积累—释放—转移,是认识植物-土壤金属元素循环的关键纽带.因此以长江上游高山峡谷区暗针叶林不同类型不同腐烂等级CWD为研究对象,调查其金属元素含量及贮量特征.结果表明:CWD类型和腐烂等级显著影响金属元素含量.CWD中生物必需非重金属元素(K、Ca、Na和Mg)含量分别介于0.29-2.56、2.41-8.13、0.56-1.65和0.34-1.03 g/kg之间,生物必需重金属元素(Cu、Mn和Zn)含量分别介于1.71-6.00、0.03-1.01和0.06-0.73 g/kg之间,非生物必需重金属元素含量(Cr、Cd和Pb)分别介于3.74-34.54、0.07-3.60和0.73-36.10 mg/kg之间.高山峡谷区暗针叶林CWD生物必需非重金属(K、Ca、Na和Mg)总贮量分别为43.77、220.63、40.78和31.37 kg/hm~2,生物必需重金属元素(Cu、Mn和Zn)总贮量分别为0.12、16.11和9.91 kg/hm~2,非生物必需重金属元素(Cr、Cd和Pb)总贮量分别为0.10、0.16和0.72 kg/hm~2.不同类型CWD金属元素贮量表现为倒木根桩大枯枝枯立木,且不同金属元素在相同类型CWD不同腐烂等级之间基本具有相对一致的变化趋势.可见,CWD是高山峡谷区暗针叶林金属元素重要贮存场所之一,其降解过程中金属元素的释放可能是生态系统元素循环的重要途径.  相似文献   

7.
林地植被和枯枝落叶层共同发挥着森林生态系统所特有的水文生态功能。对大兴安岭兴安落叶松(Larix gmelinii(Rupr.)Kuzen.)中龄林、近熟林、成熟林、过熟林四种林下枯落物及土壤进行野外实地取样和室内样品处理进行分析,结果表明:兴安落叶松林下枯落物层表现为随林龄增加总存储量增加,变化在18.02~21.65 t·hm-2,半分解层的存储量为未分解层的4.8~5.9倍,其中近熟林枯落物半分解层蓄积量所占比例最大为85.3%。不同林龄枯落物最大持水量和最大持水率均表现为半分解层大于未分解层,且以过熟林最大。最大持水量为过熟林近熟林成熟林中龄林,变动在40.13~75.60 t·hm-2之间,最大持水率为过熟林近熟林中龄林成熟林,变动在5.94%~7.93%之间。不同林龄枯落物有效拦蓄率差异很大,变化在30.18%~422.98%,林龄越大,分解程度越大,有效拦蓄越强,总体未分解层均小于半分解层。有效拦蓄能力也有差异,过熟林表现为最强,总有效拦蓄量达70.57 t·hm-2,相当于拦蓄7.26 mm的降雨,不论从最大持水量、最大持水率还是有效拦蓄量过熟林一致表现为最强。不同林龄枯落物持水过程,在浸泡0.5 h内吸水速率最大,4 h之后减小,8 h时持水量基本达稳定,在整个持水过程中半分解层持水能力均高于未分解层。不同林龄土壤透水性、通气性均比较好。10~20 cm土层表现为随林龄增加而减小,变化在0.48~0.88 g·cm-3;20~40 cm土层则表现为随林龄增加而增加,变化在1.03~1.41 g·cm-3之间;各层土壤毛管孔隙度均表现为中龄林近熟林成熟林过熟林。各土层持水性能无论是毛管持水量、最小持水量还是最大持水量都表现为中龄林最大,随林龄增加而减小的趋势,并且持水能力浅层均较深层的大。中龄林在10~20 cm土层分别达是162.16、122.07和213.00 t·hm-2,20~40 cm土层分别达是77.22、58.13和86.43 t·hm-2;过熟林在10~20 cm土层为100.36、68.43和156.98 t·hm-2,20~40 cm土层只有31.09、24.26和37.83 t·hm-2,不同林龄各层土壤质量含水量、体积含水量也表现出相同的变化规律。该研究可为制定科学合理有效的经营管理方式和砍伐措施提供理论依据。  相似文献   

8.
基于内蒙古赛罕乌拉森林生态系统定位研究站山杨(Populus davidiana Dode)天然次生林幼龄林、中龄林、近熟林、成熟林及过熟林生物量调查,探讨了不同龄组山杨天然次生林单株木、林分、林下植被和枯落物的生物量及群落碳储量的时空变化规律。结果表明:随林龄的增大,山杨天然次生林木和各器官生物量总体呈增加趋势,树干所占比例增加,中龄林增加尤为明显;林下植被层、枯落物层生物量随林龄增大呈增加趋势。群落总碳储量的空间分布序列是:乔木层〉枯落物层〉林下植被层。幼龄林、中龄林、近熟林、成熟林和过熟林群落的碳储量分别为27.146 6、53.545 1、60.889 8、77.915 8、79.135 3t.hm-2,乔木层碳储量分别为22.206 5、47.215 7、52.056 3、68.445 3、68.773 1 t.hm-2,枯落物层和林下植被层碳储量平均值分别为5.814 4、2.172 7 t.hm-2。乔木层、枯落物层和林下植被层碳储量占总量的平均率分别为86.05%、10.39%和3.57%。研究认为山杨天然次生林群落碳储量随林龄增加的变化规律明显,碳汇潜力巨大;中龄林为碳储量增长迅速期,且持续较长一段时间,是林分管理的关键阶段;自然稀疏有利于促进林木生长,林分碳储量并未随林分密度下降而减小。  相似文献   

9.
不同林分密度对尾巨桉生物产量及生产力的影响研究   总被引:3,自引:0,他引:3  
对湘南低山丘岗区密度为600、900和1200株·hm-2的6年生尾巨桉丰产示范林进行了生物量及生产力的测定分析.结果表明:单株生物量随密度的增加而明显减小,低密度林分是高密度林分的4.36倍;林分生物量随密度的增加而减小,低密度林分比高密度林分高出48.26t·hm-2.年均净生物量分别达到14.86,11.42,6.82t·hm-2·a-1.林分各组分的生物量随密度的增大而减小,并出现W干>W根>W枝的规律.林分结构以低密度林分合理,叶面积指数最高,干材生物量达60%以上.在湘南低山丘岗区发展潜力大,可作为短周期纸浆材林培育首选树种.  相似文献   

10.
基于对贡嘎山海螺沟冰川退缩后形成的125 a的原生演替序列上不同森林群落类型的调查,以空间代替时间的方法,选取了7个典型样地(S0~S6),分别代表冰川退缩后第0、17、35、49、56、85和125年后的演替群落,探讨了不同演替阶段生态系统各组分生物量变化规律及分配特征。结果表明,群落生物量与演替阶段和乔木层优势种的组成密切相关。乔木层生物量与活植物体总生物量均随演替的进行呈显著的指数增长的趋势,分别从10.195 Mg·hm~(-2)增至366.122Mg·hm~(-2),从9.162 Mg·hm~(-2)增至332.461 Mg·hm~(-2);不同演替阶段乔木层生物量在各个层次分配中占绝对优势(89.871%),其他各层所占比例较小,总趋势为:灌木层地被层草本层,林下各层生物量分配受到群落环境影响较大。粗木质物残体量和年叶凋落物量也随着演替的进行不断积累,其中粗木质物残体量在针阔混交林阶段(S5)达到最高,年叶凋落物量则随演替的进行呈显著的指数增加的趋势。演替前60年(S0~S4),柳树(Salix rehderana)、沙棘(Hippophae rhamnoides)和冬瓜杨(Populus purdomii)等落叶阔叶树种对乔木层生物量贡献最大,演替后60年(S5~S6),乔木层生物量则主要来自冷杉(Abies fabri)和云杉(Picea brachytyla)等针叶树种(93.070%);乔木层生物量的器官分配以树干所占比例最高,为56.388%~72.658%,枝和根的比例次之,叶所占比例则最小。经过了125 a的演替,海螺沟冰川退缩区生态系统植被生物量已达到成熟林水平,生态系统结构与功能相对稳定,植被演替发展至顶级群落。  相似文献   

11.
长苞铁杉林林隙自然干扰规律   总被引:9,自引:0,他引:9  
从林隙的大小结构、形成方式及形成木的数量特征等几个方面 ,对长苞铁杉纯林及混交林林隙干扰状况进行了对比研究 .结果表明 :纯林冠空隙 (CG)平均面积为 16 .4 6m2 ,扩展空隙 (EG)平均面积为 96 .98m2 ,混交林CG、EG平均面积分别为 6 9.75m2 和 2 32 .93m2 ;在长苞铁杉纯林中 ,林隙主要以枯立木形成为主 ,占总形成木的一半以上 ,且以单株形成木和多株形成木综合形成 ,形成木径级主要集中在 2 0~ 4 0cm之间 ;混交林林隙以干基折断为主 ,且多由双形成木形成 ,由双形成木形成的林隙占林隙总数的 4 4 % ,形成木以 30~ 4 0cm径级的占最大比例 ,占形成木总数的 4 3.2 4 % ;纯林及混交林形成木高度都主要集中在 2 0~ 30m之间 ;形成木物种组成的比例大小基本上与其主林层树种所占的比例相对应 ;纯林林隙大多处于林隙发育的前、中期而混交林林隙则多集中在林隙发育的中后期 .图 3表 5参 19  相似文献   

12.
对中亚热带被冰雪灾害破坏的杉木林地的杉木损害程度及其林地养分分布变化进行了调查,冻雨在杉木枝叶上形成冰柱,造成大量的林木折冠,林木折断的树干部位随胸径的增加而显著升高。树木残体的干质量达25987.6kg·hm-2,树干、枝、叶和皮分别占44%、27%、22%和7%。树木残体中叶、干、枝和皮的N、P和K储量分别占其N、P和K总储量的62%、18%、13%和7%。杉木林地的N、P、K3种养分的积累量为63294.5kg·hm-2,杉木残体的养分仅占杉木林地的0.23%,凋落物层的养分占0.09%,而土壤养分所占比例高达99.68%。3种养分数量在各组分中均为N〉K〉P。雨雪冰冻灾害造成的杉木折干增加了土壤肥力。林冠残体分解引起的养分含量下降,林冠破坏后几乎没有凋落物归还土壤,华南地区频降大雨造成的速效养分流失将使土壤变得贫瘠。  相似文献   

13.
通过在江苏省东台市黄海原种场的田间试验,研究了施用造纸干粉和糠醛渣对滨海盐碱地土壤微生物活性与玉米(Zea mays)生长及籽粒全氮含量的影响。与对照相比,施加造纸干粉和糠醛渣后土壤pH值均显著降低(P0.05),土壤微生物代谢活性则显著升高(P0.05);此外,施糠醛渣处理土壤微生物物种均一度(McIntosh)指数显著升高(P0.05),而土壤脲酶活性亦由对照的过高水平(0.50 mg·g-1·d-1)降至0.33 mg·g-1·d-1(P0.05)。施加造纸干粉后,植株地上部和地下部生物量比对照分别提高29%和13%,籽粒产量由1 119 kg·hm-2提高到1 515 kg·hm-2;施加糠醛渣后,植株地上部和地下部生物量比对照分别提高60%和65%(P0.05),籽粒产量则提高到2 371 kg·hm-2,且籽粒全氮含量由对照的过高水平(22.43 mg·g-1)降至18.26 mg·g-1(P0.05)。综上所述,施用造纸干粉和糠醛渣均可缓解盐碱胁迫对玉米生长的影响,同时能提高土壤微生物代谢活性,并且施用糠醛渣对土壤生物性状和玉米籽粒品质的调理效果优于造纸干粉。  相似文献   

14.
为做好梵净山国家级自然保护区森林植被保护,摸清自然保护区森林植被资源家底,采用2016年第四次森林资源规划设计调查数据及变更至2019年的森林资源数据,计算和分析保护区内森林植被生物量、净生产量、碳储量。梵净山8种森林类型的总生物量为443.72×104t,总碳储量为219.80×104t,总生长量为29.75×104t·a?1,总凋落量为18.65×104t·a?1,总净生产量为48.40×104t·a?1,总生物量、总碳储量较大的是栎林,较小的是铁杉林,桦木林、阔叶混交林、马尾松林、软阔林、杉木林和硬阔林居中;平均碳密度为48.86 t·hm?2,依次为:桦木林>阔叶混交林>栎林>硬阔林>软阔林>马尾松林>杉木林>铁杉林;总生长量、年凋落量、净生产量较高的是栎林、硬阔林,较低的是马尾松林、阔叶混交林和铁杉林,3种森林类型合计比例不到10%;在龄组中的分配依次为:中龄林>近熟林>成熟林>幼龄林>过熟林。在不同海拔中,梵净山森林植被生物量、碳储量、生长量、凋落量和净生产量主要分布在海拔1201—1800 m,其分布比例分别为50.39%、50.38%、49.21%、50.08%和49.54%;在不同坡向中,梵净山森林植被生物量、碳储量、生长量、凋落量和净生产量主要分布在南坡和北坡,二者合计比例大于60%。  相似文献   

15.
准确评估区域尺度下森林生态系统固碳能力和趋势,对实现森林可持续经营和固碳增汇具有重要意义。基于全国第四次(1989—1993年)、第五次(1994—1998年)、第六次(1999—2003年)和第七次(2004—2008年) 4次全国森林资源清查数据,结合生物量估算模型和植被含碳系数,研究长江流域森林植被碳储量、碳密度分布特征及动态变化。结果表明,1989—2008年长江流域森林植被碳储量由1 345. 30 Tg增加到1 924. 98 Tg,年均增长率为2. 15%,比全国年均增长率高0. 29百分点,表明该流域森林植被碳汇功能不断增强。长江流域森林植被平均碳密度分别为42. 25、40. 34、41. 00和41. 42 Mg·hm-2。从森林龄组来看,长江流域森林植被碳储量主要集中于幼、中龄林和近熟林,这3者对林分碳汇的贡献超过85%,且幼、中龄林和近熟林碳密度远低于成熟林和过熟林,表明流域森林植被碳汇潜力巨大。从森林起源来看,流域内森林植被碳储量主要分布于天然林,占同期森林植被碳储量的78%以上,但人工林碳储能力不断提高,人工林碳储量占同期森林植被碳储量的比例也呈增加趋势,且碳密度明显低于天然林,表明人工林将在该流域森林植被碳汇功能中扮演重要角色。长江中上游是流域内森林植被碳储量主要贡献区,占全流域森林植被碳储量的96%以上。  相似文献   

16.
老龄林是重要的森林碳库,研究老龄林碳储量长期变化对评价老龄林碳源和碳汇功能和量化区域尺度森林生态系统碳循环具有重要的意义。基于云南省迪庆自治州森林资源规划设计调查数据、样地数据和迪庆州造林、采伐、灾害等统计数据,运用林业碳收支模型(CBM-CFS3)模拟并预测了2005—2020年云南省迪庆州区域尺度云杉(Picea likiangensis)老龄林(过熟林)的生物量、死亡有机质(包括枯落物、枯死木和土壤有机碳)以及生态系统碳储量及其动态变化。结果表明,干扰情景下,2005—2020年迪庆州云杉老龄林的生物量、死亡有机质和生态系统碳储量范围分别为3.98~4.73 Tg、5.41~7.28 Tg和9.44~12.01 Tg,且均呈逐渐增长趋势。模拟期间,云杉老龄林的生物量碳密度和生态系统碳密度均呈减少趋势,其中生物量碳密度平均值为106.40 Mg·hm~(-2),生态系统碳密度平均值为255.56 Mg·hm~(-2);死亡有机质碳库碳密度呈增加趋势,平均值为149.16 Mg·hm~(-2)。研究结果显示,迪庆州云杉老龄林生态系统碳储量动态受林分生长、成熟林为过熟林和干扰三方面影响;其中自然生长导致生态系统碳储量增加0.51 Tg,成熟林进阶导致生态系统碳储量增加2.75 Tg,而采伐干扰造成生态系统碳储量损失1.14 Tg。建议未来森林经营中将老龄林每年采伐总面积控制在1.9×10~3 hm2·a~(-1)以内,以保证老龄林生态系统碳储量趋于稳定,避免老龄林转变为碳源。  相似文献   

17.
采用群落生态学和植物化学监测的研究方法,对广州市南沙海岸滩头近6 a生防护林群落的生物量、高温胁迫光合特征、NPP及吸储C、N、S、Pb、Cd、Cu、Hg的生态效应进行了定位观测研究,结果表明:海岸6种防护林群落的生物量的平均达到10.7 t.hm-2、NPP达到2.5 t·hm-2·a-1、生长要素表现为速生性生长特征。各种海防林群落的年均吸储空间CO2、NO2、SO2质量分别为4.2 t.hm-2、27.1 kg·hm-2和3.4 kg·hm-2,吸储Pb、Cd、Cu分别为13.2、4.4、0.1 g·hm-2,其生态环境功能已经初步凸显,可有效地减少这些元素在地表和土壤积累、迁移或随地表径流输出至生活环境的危害,对于海岸环境区域是非常有益的。雨季高温(气温t≥35.5℃)胁迫下,海岸路网林群落的优势种群净光合速率日均达到9.8μmol·m-2·s-1且乡土树种高于引进树种,高山榕(Ficus altissima)的日最高净光合速率达到14.3μmol·m-2·s-1,较羊蹄甲(Bauhinia blakeana)高0.4μmol·m-2·s-1、较塞楝(Kaya senegaiensis)高2.2μmol·m-2·s-1,优势树种适宜海岸滩头立地、高温胁迫的光合生理特点,是其速生长的原因之一。  相似文献   

18.
相对准确地计量地带性森林碳库大小是估算区域森林碳汇潜力的前提。选择我国南亚热带地区受生态公益林保护近三四十年的3种常绿阔叶次生林:鹿角锥(Castanopsislamontii)+木荷(Schimasuperba)次生林(简称为LJZ)、华润楠(Machiluschinensis)+小红栲(C.carlesii)+黄杞(Engelhardtiaroxburghiana)次生林(简称为HRN)、罗浮栲(C.faberi)+木荷+黎蒴(C.fissa)次生林(简称为LFK),开展完整的植被生物量和土壤碳库调查,并对其碳库结构进行分析。结果表明,(1)鹿角锥+木荷林、华润楠+小红栲+黄杞林、罗浮栲+木荷+黎蒴林植被总生物量分别为235.0、231.0、261.9 t·hm~(-2),0~100cm土壤碳库分别为126.6、148.1、104.6 t·hm~(-2);采用0.45植物含碳率计算生物量碳库,则整个生态系统碳库分别为232.4、252.1、222.5 t·hm-2。(2)3种次生林总生物量的组成中,乔木层生物量比例最大,介于87%~93%,接下来为枯死木生物量比例,灌木层、草本层、凋落物层和细根(≤2 mm)的生物量比例大多在1%~2%之间。(3)3种林型乔木层生物量胸径级分布存在差异,其中,鹿角锥+木荷林和罗浮栲+木荷+黎蒴林近似正态分布,最大比例胸径级为15~20 cm,分别占总生物量的30%和36%。华润楠+小红栲+黄杞林则表现为随胸径级增加比例增大的趋势,其最大比例胸径级为35 cm以上,占总生物量的37%。(4)3种林型乔木层生物量不同组分比例大小顺序一致,即树干树根树枝树叶,且同一组分在不同林型所占比例相差较小,树干、树枝、树叶和树根比例分别约为46%、19%、3%和32%。(5)参照南亚热带顶极演替阶段季风常绿阔叶林,该研究的3种次生林碳汇潜力主要在植被固碳上,而土壤固碳潜力有限。该研究全面地计量了我国南亚热带地区3种不同群落组成的常绿阔叶次生林碳库现状,这对评估该地区较大面积的仍受干扰的次生林、低效改造林和新造乡土树种混交林等低效森林未来几十年的固碳潜力具有重要参考价值。  相似文献   

19.
2014年在大田试验条件下,以水稻品种苏101为供试材料,设置超高产生产技术、常规生产技术和减肥生产技术3个处理组合,采用静态暗箱-气相色谱法,开展了不同栽培技术下水稻生长季田间甲烷(CH4)和氧化亚氮(N2O)排放的原位监测试验,研究不同栽培技术对稻季CH4和N2O排放的影响及其温室效应,以期为稻麦两熟农田温室气体减排提供对策。结果表明:(1)不同栽培技术下水稻生长季CH4排放通量总体均呈先升高后降低的变化趋势,CH4排放峰值出现在水稻生育前期,移栽至有效分蘖临界叶龄期CH4累积排放量占全生育期排放总量的比例为79.1%~84.5%,而N2O主要在水稻生育中期搁田的时候排放量较大;(2)不同栽培技术对稻季CH4和N2O排放有显著影响,CH4季节排放总量表现为超高产生产技术(423.68 kg·hm-2)减肥生产技术(407.51 kg·hm-2)常规生产技术(195.96 kg·hm-2),N2O季节排放总量表现为常规生产技术(3.88 kg·hm-2)超高产生产技术(2.96 kg·hm-2)减肥生产技术(2.72 kg·hm-2);(3)超高产生产技术稻季排放CH4和N2O产生的增温潜势最高(CO2 11 473.6 kg·hm-2),显著高于其他处理,比常规生产技术(CO2 6 055.7 kg·hm-2)增加89%,比减肥生产技术(CO2 10 998.4 kg·hm-2)增加4.3%;(4)超高产生产技术在增加水稻产量的同时也增加了太湖地区水稻生长季的温室效应,但是其单位产量的全球增温潜势低于同样实施秸秆还田的减肥生产技术。  相似文献   

20.
森林溪流非木质残体的特征直接关系到流域源头水质环境以及森林生态系统碳及养分等物质的输出格局.为了解岷江上游水源源头高山森林生态系统溪流非木质残体的储量特征,于2013 年8 月高山森林溪流水量最大的季节,在研究区域海拔3 600 m 典型高山森林范围内,沿主河道两岸调查每条森林溪流的非木质残体储量,共找到18 条森林溪流汇入主河道,根据实地采样的可操作性和典型性,选择其中12 条溪流详细调查非木质残体储量,每条森林溪流从尽头到源头每隔10 m 设置一个长度为1 m,溪流实际宽度的样方(源头作为最后一个样方).将样方内所有非木质残体全部采集,低温保存,迅速带回实验室,分别按照树皮、树叶和直径小于1 cm 树枝分离,65 ℃烘干至恒重,测定各组分现存量.然后,将样品粉碎过筛,采用重铬酸钾氧化法测定凋落物有机碳含量,以不同组分现存量与其碳含量计算各组分的碳储量.结果表明:(1)该区域森林溪流非木质残体总现存量和总碳储量分别为657.25 kg 和262.96 kg,单位面积现存量和碳储量为439.70 g·m^-2 和175.92g·m^-2;(2)各溪流中直径小于1 cm 树枝占非木质残体总现存量和总碳储量的69.76%和73.41%,其次为树叶,树皮比例最小且不足10%;(3)尽管溪流长度、面积和流量与非木质残体各组分单位面积现存量和碳储量均无显著相关关系,但显著影响溪流非木质残体总现存量和总碳储量及其在各组分的分配比例;(4)相对于树皮,凋落树叶现存量和碳储量所占比例在流量较小溪流中相对较大.这些结果为深入认识高山森林流域水环境及其在森林生态系统中的重要作用提供新的思路和一定的科学依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号