首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
刘洁  杨妍  韩兰芳  孙可 《环境化学》2021,40(1):174-184
生物质炭在碳封存和土壤改良等方面的应用潜力取决于其在土壤中的微生物矿化稳定性.明确生物质炭在土壤中微生物矿化稳定性是推进生物质炭在土壤固碳、改良等领域应用的关键.基于生物质炭在土壤中的微生物矿化稳定性研究进展,本文系统总结了不同类型生物质炭的微生物矿化速率和在土壤中的平均驻留时间,探讨了不同因素(生物质炭特性、土壤特性和外源不稳定有机质的添加等)对生物质炭微生物矿化稳定性的影响,阐述了生物分解过程中生物质炭的性质变化及其与土壤微生物/有机质/矿物质的交互作用,简述了生物质炭中内源矿物质和外源土壤矿物质对其矿化稳定性的影响机理.最后,总结现有研究的不足,并提出今后的研究重点.  相似文献   

2.
秸秆生物质炭土地利用的环境效益研究   总被引:12,自引:0,他引:12  
花莉  张成  马宏瑞  余旺 《生态环境》2010,19(10):2489-2492
农田土壤有机碳矿化释放CO2是农业温室气体排放的重要途径,促进土壤碳截获对于减缓全球温室效应具有重要意义。生物质炭具有改良土壤性质、促进土壤团聚体的形成、对土壤微生物生态具有调控作用等特性。因此,生物质炭对增强土壤碳截获能力及减少土壤CO2气体排放可能具有重要作用。采用实验室盆栽的方式,以黑麦草为目标植物,对农业秸秆生物质炭土地利用的环境效益进行了研究。实验结果表明:农业秸秆制生物质炭应用于农田土壤能产生多方面的环境效益。与对照相比,添加1%~4%生物质炭处理的土壤活性有机质质量分数均增加了25%以上,土壤呼吸度降低了23%~50%,同时,添加生物质炭对植物的生长也有促进作用。添加4%秸秆炭的处理的黑麦草生物量增加了68%。此外,秸秆生物质炭的添加对土壤中的养分具有较好的持留功能,与比照相比,添加生物质炭处理的土壤淋出液中氮和磷质量浓度显著降低,说明生物质炭能够有效减少水冲刷造成的氮磷流失,降低农业面源污染。  相似文献   

3.
生物质炭施加对新成水稻土碳组分及其分解的影响   总被引:1,自引:0,他引:1  
将玉米芯热解炭化的生物质炭施加于长江沉积物新成土上发育的稻田土壤中,1 a后采集土壤并进行土壤碳分组及土壤培养;基于生物质炭与土壤的碳同位素丰度差异,量化生物质炭来源的有机质在土壤组分中的分布,分析施用生物质炭对土壤碳组分及其培养过程中分解动态的影响。结果表明,施用生物质炭可显著增加各级团聚体的有机碳含量,大部分(76%~90%)生物质炭以游离态形式存在于大团聚体(250μm)和微团聚体(50~250μm)外,少部分与微团聚体或20μm土壤矿质较紧密地结合。添加的生物质炭未促进土壤团聚体的形成。土壤中生物质炭自身的分解很弱,但不同程度地促进了原有土壤碳的分解。该试验初步证实,生物质炭单独施用未明显促进新成土上发育的稻田土壤有机碳的稳定,反之短期内可能加速土壤原有有机碳的分解。  相似文献   

4.
为了研究水分条件如何左右生物质炭添加对湿地土壤微生物群落结构的影响,通过对室内培养240和720 d的添加生物质炭的土壤进行采样,分析了75%田间持水量、干湿交替和淹水3种水分条件下添加芦苇秸秆生物质炭(裂解温度分别为350和600℃)的湿地土壤微生物磷脂脂肪酸(PLFAs)量。结果表明,除75%田间持水量条件下培养240 d,生物质炭添加提高土壤微生物PLFAs总量和各类群微生物PLFAs量以外,75%田间持水量条件下培养720 d以及干湿交替和淹水条件下培养240和720 d,生物质炭添加均降低土壤微生物PLFAs总量和各类群PLFAs量,其中,干湿交替条件下土壤微生物PLFAs量下降幅度最大;培养240 d后添加裂解温度为350℃生物质炭的土壤微生物PLFAs总量及各类群微生物PLFAs量总体上高于添加裂解温度为600℃生物质炭的土壤。不同于未添加生物质炭的土壤,除75%田间持水量条件下的土壤放线菌以外,培养240 d后添加生物质炭的土壤微生物PLFAs总量和土壤其他类群微生物PLFAs量均高于培养720 d;除革兰阴性菌(G~-)外,总体上添加生物质炭的土壤微生物PLFAs量在干湿交替条件下最低,而在淹水条件下最高。75%田间持水量条件下,生物质炭添加提高土壤微生物丰富度指数(H)和均匀度指数(J),降低了优势度指数(D),而淹水条件下,培养240 d后生物质炭添加降低H和J指数,提高D指数,但干湿交替条件下生物质炭添加对土壤微生物多样性指数的影响没有明显规律性。冗余分析(RDA)和相关性分析结果表明,速效磷含量、硝态氮含量和pH与土壤微生物群落结构存在显著相关性,且相同水分条件下土壤微生物群落结构更为相似。研究认为添加生物质炭可通过自身性质和改变土壤理化性质来影响土壤微生物群落结构,而土壤水分条件和培养时间是左右生物质炭添加对微生物群落结构影响的重要因子。生物质炭添加仅促进75%田间持水量条件下培养240 d的土壤微生物生长,其他处理下生物质炭添加抑制大多数类群微生物生长或无影响。  相似文献   

5.
外源性碳氮添加对北方半干旱草原土壤有机质矿化的影响   总被引:1,自引:0,他引:1  
除了全球气候变化的直接影响,由其引起的土壤外源性碳(C)、氮(N)输入可通过激发效应深刻影响半干旱草原土壤有机碳(SOC)动态。为探究外源性C、N输入对内蒙古半干旱草原生态系统原有土壤有机质(SOM)矿化过程的影响,采用13C标记技术,通过室内培养实验将浓度为3 mg·kg-1的葡萄糖(G)、0.3 mg·kg-1的铵态氮(AM)或硝态氮(NT),以单独或C、N组合的形式(G;AM;NT;G+AM;G+NT)添加到半干旱草原土壤中,探究外源添加物对土壤C矿化的影响。以21℃培养土壤18d并测量土壤C-CO_2释放量。结果表明,单独添加葡萄糖C源(G)显著促进了土壤累积C-CO_2释放量(P0.05),并在第4天达到最大,为未添加外源物土壤累积释放量的2.04倍。而单独添加AM或NT对SOM矿化具有抑制作用(P0.05),其累积C-CO_2释放量分别为未添加N源土壤的82%和77%。同时添加碳源和氮源(G+AM或G+NT),土壤累积C-CO_2释放量显著大于只添加G的土壤,且累积C-CO_2释放量表现为G+NTG+AM(P0.05);并且在培养的第4天添加G+NT达到最大的激发效应即未添加外源物土壤累积C-CO_2释放量的3.13倍;同时添加C源和N源不仅对土壤SOM矿化产生显著激发效应(P0.05),在培养过程中还表现出增强的激发效应(正叠加效应),即同时添加C、N的激发效应显著大于只添加C源的激发效应(P0.05)。因此,在半干旱草原土壤中,微生物的生长和代谢主要受可利用性碳C限制,外源性C、N输入激活了处于休眠状态的土壤微生物,从而加速了SOM的分解。  相似文献   

6.
黄土台塬不同土地利用方式下土壤有机碳分解特性   总被引:1,自引:0,他引:1  
为了探讨土地利用方式对土壤有机碳分解的影响,以黄土台塬的乔木林地、灌木林地、天然草地和耕地等不同植被类型土壤为研究对象,对土壤有机碳矿化分解特征进行分析。结果表明,不同土地利用方式下土壤有机碳含量、有机碳密度、土壤可矿化碳含量和有机碳矿化速率均表现为天然草地和灌木林地较高,耕地最低;而土壤有机碳矿化率和呼吸速率表现为耕地和乔灌混交林地较高,灌木林地和天然草地较低。在土壤孵化的1 575 h内,不同土地利用方式下土壤矿化过程均可划分为4个阶段:0.5~5 h(第1阶段)、5~111 h(第2阶段)、111~399 h(第3阶段)和399~1 575 h(第4阶段);前399 h是可矿化碳排放的主要时段,前111 h是土壤可矿化碳排放速率最大且排放速率下降速度最快的主要时段;总体上,土壤可矿化碳累积排放量随培养时间的延长呈增加趋势,可矿化碳累积排放速率则逐渐降低。土壤有机碳矿化速率随土层深度的增加而递减。土壤有机碳矿化分解速率与有机碳总量有关,土壤呼吸与有机碳总量、矿化碳总量相关性不显著(P>0.05)。  相似文献   

7.
生物炭对土壤微生物的影响研究进展   总被引:1,自引:0,他引:1  
生物炭是有机材料在厌氧条件下热解而成的产物。近年来,生物炭因在碳固定、土壤改良和作物产量提高等方面具有较大的应用潜力而引起国内外学者的广泛关注。作为一类新型的土壤改良剂,它能提高土壤有机碳含量及阳离子交换量(CEC),改善土壤保肥持水性能,有益于土壤微生物活动,同时还可吸附抑制对土壤微生物生长有毒的化感物质,为土壤微生物提供有利的栖息场所。但生物炭的效应与生物炭的特性、用量、土壤类型及肥力有关。笔者从生物炭对土壤微生物的影响及其作用机制出发,概述了不同生物质材料及热解温度对生物炭理化性质的影响及生物炭对土壤微生物丰度、群落结构和活性影响的研究进展。未来应重点从生物炭的特性、生物炭与微生物交互作用及生物炭的环境修复等方面深入研究,客观评价生物炭对土壤微生物的作用。  相似文献   

8.
为探明土壤有机碳矿化对热带森林恢复演替的响应,以西双版纳热带森林不同恢复阶段(白背桐Mallotus paniculatus群落、崖豆藤Mellettia leptobotrya群落、高檐蒲桃Syzygium oblatum群落)为对象,采用室内培养法研究不同恢复阶段热带森林土壤有机碳矿化的时空动态特征,结合方差分析、相关分析及主成分分析,探讨热带森林恢复过程中土壤微生物及理化性质变化对有机碳矿化速率的影响。结果表明:恢复阶段、季节和土层对土壤碳矿化速率具有显著影响,且三者间存在显著的交互效应;热带森林恢复显著影响土壤有机碳矿化(P0.01),土壤有机碳矿化速率大小顺序为:高檐蒲桃群落(19.09mg·kg~(-1)·d~(-1))崖豆藤群落(16.93 mg·kg~(-1)·d~(-1))白背桐群落(15.35 mg·kg~(-1)·d~(-1));不同恢复阶段热带森林土壤有机碳矿化速率月份变化趋势基本一致,均表现为6月9月3月12月;不同恢复阶段热带森林土壤有机碳矿化速率均沿土层呈逐渐降低的变化趋势;热带森林恢复过程中土壤微生物生物量碳与易氧化有机碳的变化是影响土壤碳矿化的主控因子,而土壤有机质、全氮、水解氮、铵氮、硝氮对土壤有机碳矿化的贡献次之。西双版纳热带森林恢复演替主要通过影响土壤微生物生物量碳及土壤易氧化有机碳的含量而调控有机碳矿化的时空动态。  相似文献   

9.
冰暴、台风等极端气候事件严重干扰了森林生态系统,导致大量落叶、断枝、断干等非正常凋落物产生,将对土壤碳库产生激发效应,然而目前对这种现象的研究仍十分匮乏。以马尾松(Pinus massoniana)、黧蒴锥(Castanopsis fissa)、浙江润楠(Machilus chekiangensis)3种南亚热带常见树种为研究对象,利用~(13)C标记植株并采集其新鲜叶片添加至土壤表面,进行了为期110 d的室内培养实验,培养中分别测量了CO2排放量、~(13)C丰度值以及培养前后土壤碳库的变化。结果表明,不同树种的非正常凋落物的碳排放模式相似,均表现为前期快速升高,之后波动下降,后期稳定在较低水平。其中91.39%—94.04%的碳排放过程发生在前中期(0—45d)。110d的培养过程中,非正常凋落物分解产生的碳有67.86%—95.31%以C–CO_2的形式排放到大气当中。非正常凋落物输入对土壤有机碳的激发效应主要分为3个阶段。培养前期(0—7d)3种非正常凋落物输入均引起了土壤碳强烈的负激发效应且在短期内达到峰值,峰值分别为-50.05、-117.72、-124.08;培养中期(7—35 d)负激发效应强度逐步下降,表现为先快速下降后速率转慢;培养后期(35—110 d)碳激发效应较为平稳,不同树种之间有所差异,黧蒴锥、浙江润楠的碳激发效应逐渐转为正向,而马尾松维持负激发效应并缓慢下降至消失。经过110 d的培养,马尾松、黧蒴锥的0—5 cm层土壤有机碳显著高于对照组(P0.05),黧蒴锥的0—5、5—10 cm层土壤的~(13)C同位素值显著高于对照组(P0.05)。各处理组与对照组之间全氮、有效氮差异均不显著(P0.05)。非正常凋落物输入在短期内对表层土壤有机碳含量影响显著而对深层土壤没有影响,其分解产生的碳大部分以C–CO_2的形式排放到大气当中。  相似文献   

10.
土地利用方式对中亚热带红壤碳矿化及其激发效应的影响   总被引:1,自引:0,他引:1  
土地利用方式的变化对陆地生态系统碳贮量及固碳效应均具有重要影响,土地利用方式对土壤碳周转的影响是当前全球变化生态学的重要研究内容之一.以中国科学院千烟洲红壤丘陵综合开发生态站的试验样地为研究对象,选取了当地广泛分布的农田(水稻田)、果园(柑橘园)和马尾松林样地,通过添加葡萄糖和3个温度(5、15和25℃)的培养处理,探讨了不同土地利用方式对土壤碳矿化及其激发效应的影响.结果表明:土地利用方式、葡萄糖添加、培养温度对土壤碳矿化量具有显著影响,且不同因素间存在显著的交互效应.土壤碳矿化量表现为红壤性水稻土果园红壤马尾松林红壤(P0.001).添加葡萄糖后土壤碳矿化表现出显著的激发效应,红壤性水稻土和果园红壤的激发效应显著大于马尾松林红壤;此外,培养温度对激发效应具有显著的影响.在培养前7天,果园红壤和马尾松林红壤的激发效应随温度升高而升高(25℃时最大),而红壤性水稻土的激发效应在15℃时最大;随着培养时间的延长,在培养后期,果园红壤的激发效应随温度的升高而降低,红壤性水稻土和马尾松林红壤的激发效应在15℃时最大.因此,不同土地利用方式对土壤碳矿化及其激发效应的影响具有较大的差异,可能是解释中亚热带地区土壤碳收支及其碳贮量变化的重要机理之一.  相似文献   

11.
长期施肥对红壤性水稻土活性碳的影响   总被引:14,自引:1,他引:14  
在23年的长期田间定位试验区,研究了不同施肥对红壤性水稻土活性碳的影响。结果表明,在不施肥(CK)、无机肥(NPK)、有机肥(猪粪 紫云英绿肥)(OM)和无机肥与有机肥配施(NPKM)处理中,土壤微生物量碳含量、潜在可矿化碳含量和可溶性有机碳含量均随土层深度的增加而降低;不同施肥处理土壤微生物量碳含量、潜在可矿化碳含量和可溶性有机碳含量从高到低顺序都为:NPKM>OM>NPK>CK,长期施用肥料,特别是施有机肥与无机肥配施能提高土壤微生物量碳、潜在可矿化碳和可溶性有机碳含量,从而保持和提高土壤碳库质量。同施肥处理A层的土壤活性碳占土壤有机碳的比率显著大于P层;同施肥处理同发生层各土壤活性碳占土壤有机碳比率从高到低的顺序为:潜在可矿化碳的比率(R2)>微生物量碳的比率(R1)>可溶性有机碳的比率(R3);同施肥处理同发生层土壤活性碳占土壤有机碳比率R1、R2、R3大小顺序都为:NPKM>OM>NPK>CK。除P层微生物量碳和可溶性有机碳之间外,土壤有机碳总量与各活性碳之间以及各类活性碳之间相关性均达到极显著水平。  相似文献   

12.
利用棉花长期连作定位试验田,探究秸秆还田下棉田土壤呼吸日变化和季节变化以及碳排放随着连作年限增加的变化特征,揭示长期连作棉田碳排放量与不同土层土壤有机碳和微生物量碳含量的关系,为衡量和评价长期连作及秸秆还田的生态效应提供理论依据。试验田设有连作5 a、10 a、15 a、20 a、25 a和30 a的棉花秸秆连年还田小区,采用LI-8100土壤碳通量测定仪测定棉田土壤呼吸速率的日变化和季节变化,根据棉花生育期的天数和土壤呼吸速率计算出棉花各个生育期的土壤碳排放量,并分析了土壤碳排放与有机碳和微生物量碳含量的关系。研究结果表明,秸秆还田不同连作年限棉田土壤呼吸速率日变化和季节变化差异表现为随着连作年限的增加整体上呈现增加的变化趋势,30 a最大,5 a最小;不同连作年限棉田土壤呼吸速率日变化均表现相同的规律,呈现单峰曲线,在15:00达到峰值,最小值均在凌晨05:00出现;不同连作年限棉田土壤呼吸速率随着季节的变化呈现先升高后下降的趋势,7月下旬土壤呼吸速率最高,30 a土壤呼吸速率比5、10、15、20、25 a增加4.96%、4.33%、1.98%、2.52%、1.31%。随着连作年限增加棉花各个生育期及全生育期土壤碳排放量整体上呈现逐渐增加的变化趋势,相同连作年限棉花不同生育期土壤碳排放量差异表现为铃期苗期花期蕾期絮期,铃期土壤碳排放量最高,不同连作年限棉田铃期碳排放量占全生育期总碳排放量的25.48%~25.60%。长期连作及秸秆还田棉田土壤碳排放量与0~20 cm土层土壤总有机碳含量及两个土层微生物量碳含量呈显著的线性相关关系(P0.05),与20~40 cm土层土壤总有机碳含量呈极显著的线性相关关系(P0.01),土壤碳排放与有机碳的线性相关性高于与微生物量碳的线性相关性,土壤碳排放与20~40 cm土层土壤有机碳及微生物量碳的线性相关性高于与0~20 cm土层的线性相关性。这表明秸秆还田下不同连作年限棉田土壤呼吸速率表现出明显的日变化和季节变化规律,并且随着秸秆还田年限的增加土壤碳排放量具有增加的趋势。  相似文献   

13.
秸秆还田条件下农田系统碳循环研究进展   总被引:9,自引:0,他引:9  
秸秆还田是农田生态系统的固碳减排的一种措施,现已成为国内外学者研究的热点。本文在分析农田系统碳循环流通的基础上,将系统划分为土壤、植物和大气3个子系统,对秸秆还田条件下各个子系统中碳的流动变化情况进行讨论。在土壤子系统中,秸秆还田对土壤有机碳(SOC)、土壤矿化碳、土壤微生物碳(MBC)的变化都有作用。秸秆还田的初期可能会降低微生物利用碳源的能力,影响群落物种分布的均匀度,致使作物对碳、氮利用率下降;然而,长期的效应仍会增加土壤微生物的多样性和活性。研究亦认为秸秆还田特别是与有机肥配合使用,能够提高土壤有机碳的含量;对土壤有机碳矿化具有明显促进作用,但是对土壤原有的有机碳矿化影响尚不清楚。秸秆还田在植物子系统中的影响主要集中在植物光合碳变化。已有的研究表明秸秆还田对作物光合作用的影响表现为正效应;然而根际碳流通的变化尚不清楚。在大气子系统中,秸秆还田能够增强旱地耕作土壤的呼吸作用,促进CO2的排放;而淹水条件下,秸秆还田使土壤有机碳矿化受到了明显抑制,对CO2没有明显影响。与此类似,淹水条件促进CH4排放,排水良好可以减少CH4的释放。事实上对CH4的排放而言,水份的影响可能比秸秆还田所产生的影响更大。笔者认为秸秆还田后土壤有机碳流通变化机理,及根际碳的流通变化影响仍有待进一步解析。其次,农业机械使用所产生的 CO2气体在研究秸秆还田模式时也应被考虑在内。除此之外,秸秆还田这种减排措施(CO2)的减排潜力、适宜应用的区域、可能的协同作用和一些限制及不利因素还没有得到确切的评估,实施过程中应考虑社会和经济层面上的因素。  相似文献   

14.
生物炭对土壤生境及植物生长影响的研究进展   总被引:27,自引:0,他引:27  
生物炭是指由含碳量丰富的生物质在无氧或限氧的条件下低温热解而得到的一种细粒度、多孔性的碳质材料。近年来,生物炭作为一类新型环境功能材料引起广泛关注,其在土壤改良、温室气体减排以及受污染环境修复等方面都展现出应用潜力,已成为当前的研究热点。综述了生物炭对土壤生境以及植物生长方面的影响机制,并指出未来研究的主要方向。国内外最新的研究表明:生物炭的高孔隙度和表面面积,可以增加砂性土壤的田间持水量,但这种增加效应是有限度的;生物炭的碱性属性使其能够提高酸性土壤的pH值,这对喜碱作物的生长具有积极意义;生物炭能够抑制土壤氮磷养分淋失,提高肥料利用率;生物炭的添加会增加土壤微生物量,改变土壤微生物群落结构组成和土壤酶活性;生物炭的添加改善了土壤性质、养分状况以及土壤微生物性质,进而促进了植物生长。但生物炭对土壤生境和植物生长的影响效应要取决于土壤肥力和性质、植物种类、以及生物炭的特性和施用量等因素。因此,必须根据不同土壤的主要障碍因子,选择合适的生物炭,以期得到较好的土壤改良效果。今后应加强生物炭在林地土壤改良以及林木生长方面的研究与应用,进一步探索生物炭在土壤中发生的生物和化学反应机理,并且要对生物炭的施用效果进行野外长期定位研究。  相似文献   

15.
不同形态氮输入对湿地生态系统碳循环影响的研究进展   总被引:1,自引:0,他引:1  
人类活动导致湿地生态系统氮负荷明显增加,引起生态系统碳循环过程发生诸多变化。外源氮输入对湿地生态系统土壤碳库稳定性的影响已成为当今国际研究的前沿问题之一。文章综述了不同形态氮素对湿地植物固碳潜势、土壤自养与异养呼吸速率的影响、土壤甲烷排放及不同形态氮与全球变暖对土壤有机碳及其组分矿化速率的交互作用的研究进展。研究表明,(1)植物对不同形态氮素的选择性吸收,会影响植物叶片的光合速率,改变植物的固碳潜势,影响植物根系的自养呼吸速率;同时,会影响凋落物归还量,改变植物对土壤的有机碳输入;此外,还可能影响凋落物的质量(如C/N),改变凋落物的分解速率,影响土壤异养呼吸速率。(2)各种形态氮输入对土壤p H产生不同的影响,改变土壤微生物及酶活性,影响有机碳的分解及土壤异养呼吸速率。(3)土壤有机碳组分对各种形态氮素的不同响应,也会改变土壤有机碳的矿化速率。(4)植物对不同形态氮素的选择性吸收,及各种形态氮输入对土壤p H产生的不同影响,会影响土壤中可利用C、N源的供应,改变土壤的酸碱环境及氧化还原电位,影响土壤CH4排放。(5)大气氮沉降与全球变暖同时影响土壤碳循环过程,但不同形态氮素与全球变暖对湿地土壤碳循环过程的交互作用研究仍较少见。迄今为止,氮沉降对湿地土壤碳库稳定性的影响效应仍存在很大的不确定性,仅有少量研究区分氮素形态对土壤碳库稳定性的影响,而关于湿地生态系统的研究鲜有报道。今后应着重区分不同形态氮素对湿地土壤碳库稳定性的影响机理研究,以便深入了解氮沉降与湿地土壤碳库稳定性之间的关系。  相似文献   

16.
以意大利的FACE(Free atmospheric CO2 enrichment)长期定位试验区和大气环境控制装置为研究对象,用化学分步酸提法将土壤有机质分离为活性库、慢库和惰性库,并培养测定土壤有机氮的矿化率,研究人工模拟大气CO2富集、施氮肥及植株类型对土壤有机质库及激发效应的影响.第一茬(POP FACE)试验产生了激发效应.但第二茬(Euro FACE)试验CO2处理区的总碳增加最显著高于对照处理区.即激发效应终止.主成分分析显示,有效氮的矿化水平已成为有机质降解的制约因素.据此推断,试验区巾活性碳和有效氮控制的激发效应阶段转变为氮利用受限所引起的碳积累阶段.CO2富集对N矿化率、慢库和惰性库均无显著性影响.研究结果表明,土壤的激发效应不仅受有机碳的活性库制约,氮的矿化率也是影响其发生的关键因子之一.  相似文献   

17.
大气氮沉降是全球变化的主要因素之一。硝态氮、氨态氮是大气氮沉降的两种主要氮素形态,且两者在大气氮沉降中的比例具有较大的空间变异性。目前,多数研究侧重于探讨氮输入量与土壤碳循环过程之间的关系,很少有研究关注不同氮素形态对沼泽湿地土壤有机碳矿化的影响。以东北地区多年冻土区及季节冻土区泥炭沼泽为例,利用室内模拟实验,在100%土壤最大持水量条件下,将土样于15℃好氧培养60 d,研究不同形态氮输入对泥炭沼泽土壤有机碳矿化的影响。结果表明,多年冻土区和季节冻土区泥炭沼泽0~30 cm深度的土壤有机碳贮量分别为17.60、13.06 kg·m-2。多年冻土区泥炭沼泽土壤有机碳的累积矿化量显著大于季节冻土区(P0.001)。同一泥炭沼泽中,表土(0~15 cm)有机碳累积矿化量显著大于下层(15~30 cm;P0.001)。氨态氮抑制土壤有机碳矿化,使多年冻土区泥炭沼泽土壤有机碳累积矿化量下降12.08%~14.90%,季节冻土区下降7.28%~12.57%,而硝态氮及硝酸氨对土壤有机碳矿化无显著影响。此外,氮素形态、土壤深度及泥炭沼泽类型对土壤有机碳矿化有显著的交互作用(P0.05)。因此,区分不同氮素形态对土壤碳排放的影响是非常有必要,有利于深入了解大气氮沉降对泥炭沼泽土壤碳库稳定性的影响。  相似文献   

18.
为深入理解根系分泌物对森林凋落物分解的影响,通过20 d的室内培养实验,在土壤中添加4种不同浓度的人工模拟根系分泌物中活性有机碳复合物(每克土壤添加0、0.3、0.6和1.2 mg碳),研究活性有机碳输入对凋落叶分解和微生物群落的影响.结果显示,一定浓度模拟根系分泌物碳输入(每克土壤添加0.6、1.2 mg碳)可引起凋落叶表面微生物数量特别是真菌数量的相对增加,并且明显改变凋落叶分解过程中微生物群落的种类组成,激活一些快速生长的真菌,促进微生物代谢活力,使分解率提高了19.0%-26.2%.根系分泌物碳添加、取样时间及其二者的交互作用均对凋落叶表面β-葡萄糖苷酶和β-N-乙酰葡糖氨糖苷酶的活性产生显著影响,随着分解时间的推进,0.6 mg和1.2 mg碳添加处理能显著提高这两种酶的活性.根系分泌物碳添加对凋落叶表面古菌硝化功能基因amoA和细菌硝化功能基因amoA的数量均无显著影响,但在分解20 d取样,0.6 mg碳添加处理能明显提高固氮功能基因nifH和反硝化功能基因nosZ的数量.本研究表明一定浓度根系分泌物输入能够改变微生物群落组成与数量,并提高微生物胞外酶活性,加速凋落物分解,且激发效应的启动由底物添加的碳含量和活跃的微生物群落相互作用决定.(图5表4参36)  相似文献   

19.
不同母岩区马尾松人工林土壤酶活性及微生物学性质研究   总被引:2,自引:0,他引:2  
红壤丘陵区马尾松人工林对土壤性质有重要影响。研究马尾松长期种植对该区主要母岩(花岗岩、第四纪红黏土和红砂岩)发育土壤酶活性及微生物学性质的影响。微生物性质结果显示,土壤微生物生物量碳氮在花岗岩区较高,但有机碳在第四纪红黏土区矿化相对强烈;0~20 cm土层,花岗岩区和红砂岩区土壤有机碳相对趋向累积,而20~40 cm土层,第四纪红黏土区土壤有机碳相对累积;花岗岩区林地土壤微生物群落相对稳定,且0~20 cm层土壤微生物群落真菌较多。转化酶活性和脲酶活性在花岗岩和第四纪红黏土区较高;酸性磷酸酶活性在第四纪红黏土区显著较高;各母岩区土壤多酚氧化酶活性无显著性差异;过氧化氢酶活性在花岗岩区显著较高;因此,在马尾松与土壤长期作用下,花岗岩区土壤微生物群落稳定性,生化强度较高,相对适宜马尾松林种植。  相似文献   

20.
生物炭施入土壤的固碳潜力已引起了世界范围的关注,研究生物炭对土壤碳矿化的影响机制对深入理解土壤-生物炭的固碳机理有重要科学意义。选取我国红壤丘陵区广泛分布的典型树种马尾松(Pinus massoniana)和杉木(Cunninghamia lanceolata)为原料制备生物炭,在控制培养条件下,生物炭按照1%、2%和5%的质量比加入土壤,研究生物炭对该区典型瘠薄土壤碳矿化的影响。培养过程中定期测定CO_2碳释放量(CO_2-C),培养结束后测定土壤微生物生物量、p H等性质。结果表明,生物炭促进了CO_2-C累积释放量,其中5%的生物炭效果最明显。采用First-order模型拟合相对碳总量(生物炭碳+土壤碳)的CO_2-C累积释放量,结果表明,该值随着生物炭施用量增加而降低,最高值出现在无生物炭的土壤对照处理。当施用量为5%时,生物炭可显著促进土壤碳总量释放;但施用量为2%时,生物炭对土壤碳释放的影响不明显。此外,土壤硝态氮和铵态氮含量均随生物炭施用量增加而降低。两种生物炭均提高了土壤微生物生物量碳含量且最高值均出现在施用5%的处理(分别为53.93±9.87和43.45±3.44 mg·kg~(-1));两种生物炭按5%比例施用时,可显著提高土壤微生物生物量氮,但施用其他比例时土壤微生物生物量氮变化不明显。因此,对采用林业废弃物生物炭改良红壤丘陵区的土壤而言,应采取较低量的施用策略,在达到土壤-生物炭固碳目标的同时亦可避免短期内的土壤碳损失。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号