首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Extracts of 39 species of Caribbean gorgonians were tested for antimicrobial activity against 15 strains of marine bacteria. The bacteria consisted of three opportunistic pathogens, Vibrio parahaemolyticus, Leucothrix mucor, and Aerococcus viridans, and 12 strains isolated from either healthy or decayed gorgonians. Overall, only 15% (79 out of 544) of the tests resulted in antibacterial activity with 33% (13 out of 39) of the gorgonians inhibiting only one bacterial strain and 23% (9 out of 39) showing no activity. The extracts of four Pseudopterogorgia species showed relatively high levels of activity, inhibiting 43 to 86% of the bacterial strains. The potency of the active Pseudopterogorgia species was variable, however, and three additional Pseudopterogorgia species were inactive against all bacterial strains. With the exception of one sensitive strain, Vibrio species were resistant to gorgonian metabolites. Our results indicate that organic extracts of most Caribbean gorgonians do not possess potent, broad-spectrum antibacterial activity inhibitory to the growth of opportunistic marine pathogens and bacteria associated with healthy and decayed gorgonian surfaces. These findings suggest that the inhibition of bacterial growth is not the primary ecological function of gorgonian secondary metabolites and that bacteria may not be important selective agents in the evolution of gorgonian secondary chemistry.  相似文献   

2.
Various marine habitats sustain variety of bio-sources of ecological and biotech potentials. Pharmaceutical potential compound Cyclosporine A was reported from marine fungus Microdochium nivale associated with Porteresia coarctata, a marine salt marsh grass from mangrove environment distributed along the Central West Coast (CWC) of India. This study involves association of M. nivale with P. coarctata plant, fermentation conditions, purification of Cyclosporine A, chemical characterization etc. Its antifungal inhibition and MIC (Minimum inhibitory concentration) against Aspergillus strains (A. niger, A. japonicus, A. fresenii), yeasts and dermatophytes (Candida sp., Cryptococcus neoformans, Trichophyton mentagrophytes, T. tonsurans, T. violaceum, Microsporium gypsum and Fusarium sp.) were evaluated. However, the MIC against A. japonicus, C. neoformans, Candida sp. and T. tonsurans were confirmed to be as low as 12.5-25 mg disc(-1). The antifungal properties of Cyclosporine A against Aspergillus species, yeast and dermatophytes revealed that CyclosporineAwould be a potential compound for life threatening diseases caused by above fungi in both human and animals. Furthermore, we have reported herewith another source of Cyclosporin Aderived from filamentous fungus, M. nivale. occurring in marine environment.  相似文献   

3.
Marine ornamental fishes are exceedingly valuable due to their high demand in domestic and international markets. There is a growing global interest to rear the fishes in captivity. But problem due to bacteria and fungi are the major hitch in captive condition. Since, the use of antibiotics is banned, an attempt was made to ascertain in vitro assay of the neem leaves extract against the bacterial pathogens isolated from infected fishes. Bacterial strains isolated from infected regions of the clown fishes Amphiprion sebae and A. ocellaris were identified as Aeromonas hydrophila, Enterobacter sp., E. coli, Pseudomonas aeruginosa, Proteus sp., Streptococcus sp., Vibrio cholerae, V. alginolyticus, V. parahaemolyticus and Yersinia enterocolitica. Ethanol and methanol extracts were highly inhibitory to the bacterial isolates when compared to other solvents. Ethanol extracts exhibited low minimum inhibitory concentration (75-250 microg ml(-1)) as compared to other extracts. The present finding revealed that the neem leaf extract significantly reduces the bacterial pathogens and their infection in marine ornamental fishes.  相似文献   

4.
This study was conducted to evaluate the antimicrobial activities of common seaweeds from the coast of South Korea against the etiologic agents of acne vulgaris. Fifty-seven species of seaweed were screened for potential antimicrobial activity. Methanol extracts of 13 species (22.8%) showed inhibitory effects against Propionibacterium acnes. The aqueous extracts of only two species (3.5%) showed antimicrobial activity. When tested with the agar disk diffusion method, Ecklonia cava, E. kurome, Ishige sinicola, and Symphyocladia latiuscula had the strongest inhibitory effects. However, these four seaweed extracts showed no antibacterial activity against Staphylococcus epidermidis at 5 mg disk-1. The minimum inhibitory concentration (MIC) values of E. cava and E. kurome were both 0.31 mg ml-1 and the MIC values of l. sinicola and S. latiuscula were 0.26 and 0.21 mg ml-1, respectively. Among whole plants of E. cava and E. kurome, extracts of the pinnate blade had the highest inhibitory activity on bacterial growth. In cytotoxicity assays, methanol extracts of E. cava, E. kurome, and I. sinicola showed no effect on cell viability at concentrations of 200 microg ml-1. However, the methanol extracts of S. latiuscula reduced cell viability rates to 50% at the same concentration. Additionally, methanol extracts of E. cava, E. kurome, and I. sinicola potently inhibited the in vitro production of nitric oxide. These results suggest that the methanol extracts from these three species may be useful in the development of therapeutic agents for acne vulgaris. Further investigations to determine the bioactive compound are in progress.  相似文献   

5.
● All 1,4-naphthoquinone hybrids exhibited significant antimicrobial activity. ● Presence of a hydroxyl group on aromatic B-ring of juglone was crucial for activity. ● Juglone can cause DNA damage by producing ROS and downregulation of RecA. ● Juglone has the potential to become a disinfectant. The diverse and large-scale application of disinfectants posed potential health risks and caused ecological damage during the 2019-nCoV pandemic, thereby increasing the demands for the development of disinfectants based on natural products, with low health risks and low aquatic toxicity. In the present study, a few natural naphthoquinones and their derivatives bearing the 1,4-naphthoquinone skeleton were synthesized, and their antibacterial activity against selected bacterial strains was evaluated. In vitro antibacterial activities of the compounds were investigated against Escherichia coli and Staphylococcus aureus. Under the minimum inhibitory concentration (MIC) of ≤ 0.125 μmol/L for juglone (1a), 5,8-dimethoxy-1,4-naphthoquinone (1f), and 7-methyl-5-acetoxy-1,4-naphthoquinone (3c), a strong antibacterial activity against S. aureus was observed. All 1,4-naphthoquinone derivatives exhibited a strong antibacterial activity, with MIC values ranging between 15.625 and 500 μmol/L and EC50 values ranging between 10.56 and 248.42 μmol/L. Most of the synthesized compounds exhibited strong antibacterial activities against S. aureus. Among these compounds, juglone (1a) showed the strongest antibacterial activity. The results from mechanistic investigations indicated that juglone, a natural naphthoquinone, caused cell death by inducing reactive oxygen species production in bacterial cells, leading to DNA damage. In addition, juglone could reduce the self-repair ability of bacterial DNA by inhibiting RecA expression. In addition to having a potent antibacterial activity, juglone exhibited low cytotoxicity in cell-based investigations. In conclusion, juglone is a strong antibacterial agent with low toxicity, indicating that its application as a bactericidal agent may be associated with low health risks and aquatic toxicity.  相似文献   

6.
Antimicrobial activity of Red Sea corals   总被引:1,自引:0,他引:1  
Scleractinian corals and alcyonacean soft corals are the two most dominant groups of benthic marine organisms inhabiting the coral reefs of the Gulf of Eilat, northern Red Sea. Antimicrobial assays performed with extracts of six dominant Red Sea stony corals and six dominant soft corals against marine bacteria isolated from the seawater surrounding the corals revealed considerable variability in antimicrobial activity. The results demonstrated that, while the majority (83%) of Red Sea alcyonacean soft corals exhibited appreciable antimicrobial activity against marine bacteria isolated from the seawater surrounding the corals, the stony corals had little or no antimicrobial activity. From the active soft coral species examined, Xenia macrospiculata exhibited the highest and most potent antimicrobial activity. Bioassay-directed fractionation indicated that the antimicrobial activity was due to the presence of a range of compounds of different polarities. One of these antibiotic compounds was isolated and identified as desoxyhavannahine, with a minimum inhibitory concentration (MIC) of 48 μg ml−1 against a marine bacterium. The results of the current study suggest that soft and hard corals have developed different means to combat potential microbial infections. Alcyonacean soft corals use chemical defense through the production of antibiotic compounds to combat microbial attack, whereas stony corals seem to rely on other means.  相似文献   

7.
The potency of free-living and animal-associated marine bacteria to produce antimicrobial substances has been studied in 491 strains isolated from northern and southern parts of the Pacific Ocean. A total of 26% (126 out of 491) of the strains examined produced antimicrobial compounds against 11 test bacterial strains (TBS) including the fish pathogens Aeromonas hydrophila and Vibrio anquillarum. Antimicrobial substances (AS) produced by marine bacteria were especially active against Staphylococcus epidermidis, Proteus vulgaris, Enterococcus faecalis, and Candida albicans. Twelve strains, isolated from different sources, were chosen as promising candidates, producing a number of AS. Production of AS varied within 24 to 72 h, increasing in a culture medium based on natural sea water with Br-ions, and after attachment to polymeric surfaces. In order to study the influence of adsorption, selected strains with a high potential for antimicrobial production were cultivated on polymeric surfaces with different hydrophobicities and chemical functionalities. These parameters of the surface hydrophobicity (measured by means of water contact angles) and chemical functionality of the surfaces were manipulated using the photo- and thermochemistry of a polymeric system (diazo-naphto-quinone/novolak) commonly used as a photoresistant material in semiconducto-manufacturing. The highest antimicrobial activities occurred on hydrophilic surfaces (standard exposed photoresistant films), whereas the number of attached cells was greater on hydrophobic surfaces, characterized as unexposed resistant films. These results suggest that the chemical nature of induced hydrophilicity may also be a major factor in controlling antimicrobial activity of adsorbed bacteria. Received: 5 March 1997 / Accepted: 24 August 1997  相似文献   

8.
Larval settlement in the marine polychaete Hydroides elegans (Haswell) is induced by certain bacteria in marine biofilms. The exact nature of the settlement cue that larvae of H. elegans receive from these bacteria remains unknown. In this study, we revealed some properties of the bacterially derived larval settlement cue by investigating the larval settlement inductive activity of two bacterial strains after various treatments. These two bacterial strains, Roseobacter sp. and an α-subclass Proteobacteria, are highly inductive to larval settlement of H. elegans. The larvae responded similarly to Roseobacter and Proteobacteria in all the larval settlement bioassays, suggesting that the larval settlement-inducing substances produced by these bacteria may share common characteristics. First of all, the larvae did not settle in the seawater conditioned by the bacteria attached as a film or by the bacteria that were freely suspended in seawater. The results suggest that the putative larval settlement cue is not released into seawater and, therefore, should be associated with the surface of the bacteria. Secondly, formaldehyde treatment entirely eliminated the larval settlement induction activity of the bacterial films, and streptomycin treatment reduced the percentage of larval settlement on the bacterial films in a concentration-dependent manner. Since both treatments can kill bacteria with little damage to the surface chemistry of bacterial cells, the decline in larval settlement is suggested be due to a reduction of the viable bacterial population in the bacterial films. In fact, the reduction of larval settlement in the streptomycin treatments coincided with the decrease in viable bacterial populations in broth cultures containing respective concentrations of streptomycin. These results suggest that the viability of Roseobacter and Proteobacteria is important to their settlement induction effect. Since the larval settlement induction activity of the bacterial strains appears to correlate with their viability, we suggest that the putative larval settlement cue is derived from a metabolic pathway in the bacteria and that the cue is exported to and concentrated at the extracellular polymer matrix of the bacterial cell, at which the larvae establish contact with the bacteria. The larval settlement cue may be highly susceptible to degradation so that a metabolically active bacterial film is needed to maintain the putative cue at a concentration that surpasses the threshold for induction of larval settlement. Received: 14 October 1998 / Accepted: 5 September 2000  相似文献   

9.
Extracts from marine sponges collected along the French coast of Mediterranean in 1983 have been tested for antibacterial and antifungal activities. The distribution of antimicrobial activities against five classes of microorganisms (5 Gram-positive and 5 Gram-negative terrestrial bacteria, 10 marine bacteria, 15 human pathogenic fungi and 5 phytopathogenic fungi) among 28 species of marine demosponges is reported. Antibacterial activity against Gram-positive bacteria (77%) is much more frequent than against Gram-negative bacteria (53%). Activity against marine bacteria and yeast is less frequent (32%). Those sponges which contain a large quantily of symbiotic bacteria display a weak antifungal activity.  相似文献   

10.
Ethyl acetate, chloroform, butanol, and methanol extracts from the aerial part of Peganum harmala were tested for antibacterial, antioxidant, and antiviral activities. The antibacterial activity was evaluated by the determination of minimum inhibitory concentration (MIC) using the solid medium technique. Oxacillin, amoxicillin, ticarcillin, cefotaxim, and amphotericin were used as control agents. The antiviral activity was evaluated against human cytomegalovirus (HCMV) strain AD-169 (ATCC Ref. VR 538) and Coxsackie B virus type 3 (CoxB-3) using a cytopathic effect (CPE) reduction assay. The antioxidant activity was evaluated using two tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH) free-radical scavenging and ammonium thiocyanate methods. Among tested extracts; the chloroform extract displayed a higher antibacterial activity against Gram-positive than Gram-negative bacteria. The butanol extract demonstrated the highest antioxidant activity. The methanol extract showed significant antiviral activity against CoxB-3 virus. The chloroform extract may be an important source of bactericidal compounds against Gram-positive bacteria.  相似文献   

11.
海绵体上具有抗肿瘤活性的细菌B2817的分离与鉴定   总被引:2,自引:0,他引:2  
建立了镰刀菌-细胞毒组合筛选模型,并运用该模型对232株从海绵体上分离出的细菌进行筛选,得到4株抗肿瘤活性较好的细菌.经活性检测,发现菌株B2817的发酵液在稀释100倍时对人肝癌细胞SMMC-7721、人鼻咽癌细胞CNE和小鼠肉瘤细胞S180的抑制率分别为92%、90%和95%,而对正常的人肝细胞的抑制率仅为8%.经多相分类学鉴定,发现B2817是弧菌属中一个种,与弧菌属中的产气弧菌Vibriogazogenes亲缘关系最近,但两者在形态、生理生化特征、分子遗传等方面存在很大差异,故认为B2817可能是弧菌属的一株未被认识的新种.图1表3参9  相似文献   

12.
抗生素最小抑制浓度法(MICs)评估环境大肠杆菌抗生素抗性   总被引:1,自引:0,他引:1  
2015年世界卫生组织将抗生素的滥用列为21世纪最大的挑战之一,全球范围内抗生素抗药性的散播已严重威胁人类的健康。如何检测环境中的细菌抗药性,并有效评估抗药性感染的风险,是环境微生物研究的一项重要课题。本文通过改进的培养基微量稀释(broth micro-dilution)法,确定了2个地区(中国成都和美国夏威夷)不同环境来源(天然水系和市政污水)的大肠杆菌的抗生素最小抑制浓度(minimum inhibitory concentrations,MICs)。计算所得的MIC分位数(MIC50和MIC90)、菌体抗性百分比及多抗药性指数(multiple antibiotic resistance indexes,MARIs)显示两地不同环境区划的抗生素抗性存在明显的差异。天然水系(成都锦江)中的抗生素抗性是随时间可变的,与当地的降雨事件相关。环境菌株的抗药性模式通过聚类和非度量多维测度(non-metric multidimensional scaling,NMDS)进行分析。广谱β-内酰胺酶基因筛查显示出抗性基因与抗性表型之间的正相关性。结合现有的两地抗生素的使用数据讨论了两地环境抗生素抗性与当地人类活动及抗生素的使用实践之间的紧密联系。采集环境菌株抗生素MIC数据的实验及数据分析方法实现了环境抗药性的跨时空对比,为规范抗生素的区域性使用提供了指导作用。  相似文献   

13.
Associated bacteria from Stichodactyla haddoni are found maximum in tentacle tissues than the body tissue. There are eight associated bacterial species viz., Alcaligenes sp, Corynebacterium sp, Aeromonas sp, Sporosarcina sp, Renibacterium sp, Camobacterium sp1, Camobacterium sp2 and Salinococcus sp were recorded. The culture extracts from the associated bacterial species showed sensitivity against human bacterial and fungalpathogens. However, the hexane tissue extract of sea anemone showed maximum sensitivity (24 mm dia.) against the fish bacterial pathogen Aeromonas hydrophila than the other chosen pathogens. Comparatively the tissue extracts showed promising antimicrobial sensitivity than the cell free extracts of associated bacteria, and hence, the tissue samples from the sea anemone Stichodactyla haddoni is recommended for further exploration of novel antimicrobial drugs than the associated bacteria.  相似文献   

14.
The formation of chitinases by psychrophilic and psychrotrophic marine Antarctic bacteria and the activity of these extracellular enzymes were investigated under simulated deep-sea conditions. The formation of the chitinases was affected by hydrostatic pressure of 400 bars. However, the extent of pressure inhibition differed with the bacterial strains tested and was considerably less with the extreme psychrophilic bacteria isolated from sediments of greater depth. Growth of these psychrophilic strains had a moderately barophilic character at 400 bars, whereas growth of the psychrotrophic strains was clearly restricted under simulated deep-sea conditions. With regard to the activity of the extracellular chitinases of various bacterial strains, a relatively uniform response was found. All chitinases were highly barotolerant at near neutral pH and were active up to 1000 bars. Low temperatures reduced their activity but not their barotolerance. A low pH of 5.1 diminished the barotolerance of some chitinases. The results suggest that the indigenous deep-sea bacteria are capable of decomposing chitin settled to or produced in the depth of the Antarctic Ocean.  相似文献   

15.
《毒物与环境化学》2012,94(3-6):315-338
Abstract

Numerous studies have been reported on today’s ubiquitous presence of antibiotics in surface waters causing the emergence of multidrug-resistant bacteria. Advanced water treatment procedures aim at the complete prevention and elimination of antibiotics from entering natural water bodies. In this study, photoinduced degradation processes using UVC-irradiation were applied toward selected fluoroquinolone, tetracycline, macrolide, and sulfonamide antibiotics. Photodegradation products were elucidated using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). Rate constants and quantum efficiencies were determined for the active substances and their photo-transformation products. As a measure of ecotoxicity, minimum inhibitory and half-maximal inhibitory concentrations were determined against the Gram-negative bacterium Pseudomonas fluorescens and the Gram-positive Bacillus subtilis in a standard assay format. These values were further recorded as a function of UV exposure time. The irradiation time-dependent increase of minimum inhibitory concentration (MIC) values agreed well with the kinetic models. After 10?min of irradiation, the compound solutions ceased to inhibit bacterial cell growth, indicating removal of the pharmaceutical activity. These findings were found in agreement with quantitative structure–activity relationship analysis. The combination of microbiological activity testing, molecular structure analysis, chemical kinetic investigation, and quantitative structure–activity relationship models proved to be able to predict irradiation times and evaluate potential ecotoxicological hazard of the irradiated drugs.  相似文献   

16.
Abundance, production (measured as thymidine incorporation) and extracellular enzymatic activity in free-living and marine-snow-associated bacteria were measured in the northern Adriatic Sea. Although bacterial density and production were similar in both free-living and marine-snow-associated bacteria, hydrolytic activity (- and -glucosidase and l-aminopeptidase) was significantly higher in marine-snow-associated bacteria, in terms of both absolute and per-cell rates. As concentrations of dissolved total and monomeric carbohydrates and free amino acids in marine snow were very close to those in the ambient water, we suggest that the observed differences between free-living and marine-snow-associated baycteria do not simply reflect catabolic repression of enzyme expression in one of the bacterial components. Whether substrate induction is responsible for the observed higher hydrolase activity in marine-snow bacteria and/or whether there are distinct bacterial species obligatorily associated with marine snow remains unknown.  相似文献   

17.
The present study analyzed the bioactivity of whole body extracts from six solitary and eight colonial ascidian taxa against 20 sympatric bacterial isolates and one sympatric diatom species from the Western Antarctic Peninsula. Ascidians had crude lipophilic and hydrophilic extracts assayed against 20 bacterial strains. The lipophilic extract of one ascidian caused growth inhibition in all bacterial isolates at 3× tissue-level concentrations. The lipophilic and hydrophilic extracts were fractionated into seawater-soluble and insoluble fractions and assayed at three concentrations against a sympatric diatom species. Significant diatom mortality was detected at 3× and 1× concentrations in all but one ascidian taxon. Lipophilic fractions caused higher diatom mortality than hydrophilic extracts. The specificity of secondary metabolites against diatom fouling and the lack of activity against bacteria suggest high selective pressure for chemical defenses against diatom fouling or the potential that bacterial pathogens are controlled by the ascidian immune system.  相似文献   

18.
The culturability of heterotrophic marine bacteria obtained from the surfaces of two species of marine algae (Lobophora variegata andHalimeda copiosa) was assessed by comparing total DAPI-stained cell counts to colony-forming bacterial counts on two agar media. The colony-forming bacterial counts on a low-nutrient medium (LN) consisting of seawater and agar were significantly greater for both algal species than counts obtained on a high-nutrient medium (HN) similar in composition to that typically used for the isolation of heterotrophic marine bacteria. On average, 14 and 58%, respectively, of the total bacteria fromL. variegata andH. copiosa were culturable on LN. These recovery rates far exceed those typically reported for marine bacteria. Of 119 LN strains obtained in pure culture, 55% failed to grow on HN. The yeast extract component of HN (1.5 gl-1) was responsible for the majority of the observed inhibition, suggesting that this nutrient can be highly toxic to marine bacteria. Eighty-nine percent of the strains inhibited by HN were capable of growth when the nutrients in this medium were diluted by a factor of 100 with seawater. Of 66 epiphytic strains, 30 (45%) initially inhibited by HN showed the ability to adapt to this medium after a period of laboratory handling. The initial inability of low-nutrient-adapted bacteria to grow on high-nutrient media may be due to nutrient shock. The results presented here indicate that the culturability of specific populations of marine bacteria can be dramatically improved by the use of low-nutrient media. Further, the importance of developing new medium formulations that eliminate traditional nutrients, some of which are clearly toxic to bacteria, is demonstrated.  相似文献   

19.
Antimicrobial agents in the environment are a cause for concern. Antimicrobial drug residues and their metabolites reach the aquatic and terrestrial environment primarily through wastewater treatment plants (WWTP). In addition to the potential direct negative health and environmental effects, there is potential for the development of antimicrobial-resistant bacteria. Residue levels below the minimum inhibitory concentration for a bacterial species can be important in selection of resistance. There is uncertainty associated with resistance formation during WWTP processing. A meta-analysis study was carried out to analyse the effect of WWTP processing on the levels of antimicrobial-resistant bacteria within bacterial populations. An analysis of publications relating to multiple antimicrobial-resistant (MAR) bacteria (n?=?61), single antimicrobial-resistant (SAR) E. coli (n?=?81) and quinolone/fluoroquinolone-resistant (FR) bacteria (n?=?19) was carried out. The odds-ratio (OR) of MAR (OR?=?1.60, p?<?0.01), SAR (OR?=?1.33, p?<?0.01) and FR (OR?=?1.19, p?<?0.01) bacteria was determined. The results infer that WWTP processing results in an increase in the proportion of resistant bacteria in effluent, even though the overall bacterial population may have reduced (i.e. a reduction in total bacterial numbers but an increase in the percentage of resistant bacteria). The results support the need for further research into the development of antimicrobial-resistant strains and possible selective pressures operating in WWTPs.  相似文献   

20.
Chemical resistance of gorgonian corals against fungal infections   总被引:4,自引:0,他引:4  
The frequency and impact of diseases affecting corals throughout the Caribbean have been increasing but little is known about the factors promoting the emergence and outbreak of disease. A disease caused by a fungal pathogen [Aspergillus sydowii (Thom et Church)] which affects Caribbean sea fan corals provided an opportunity to examine the efficacy of coral crude extracts in disease resistance. Minimum inhibitory concentration (MIC) assays showed that of the 20 common gorgonian species in the Florida Keys, extracts from 15 species had MICs < 15 mg ml−1 against A. sydowii pathogenic to sea fans. Extracts from several species in two gorgonian genera (Pseudoplexaura and Pseudopterogorgia) were among the most active, with MICs < 10 mg ml−1. Gorgonia ventalina L., one of two sea fan species known to be hosts to A. sydowii in the field, had an MIC < 10 mg ml−1, suggesting that complete disease resistance requires more active extracts. For the antifungal compounds to be effective in situ, they must also occur in sufficiently high concentrations in living coral tissue. For example, Pseudopterogorgia americana (Gmelin) had comparatively potent extracts but did not have sufficient concentrations in the tissue to be effective. Conversely, Plexaura homomalla Esper extracts were less potent but occurred in high enough concentrations in the tissue to be effective against A. sydowii. When potency and extract concentration are considered together (i.e. potency × concentration), several other gorgonian corals emerge as likely hosts to A. sydowii. Crude extracts from the most active gorgonian species were also effective against two geographic variants of A. sydowii pathogenic to sea fans, a non-pathogenic terrestrial strain of A. sydowii, and three strains of A. flavus Link known to be human, plant, and insect pathogens (MIC range, 7.5 to > 15 mg ml−1). Although the potency in these assays did not attain a clinically significant level, the potency is comparable to a known antifungal agent, hygromycin B, which had an MIC ≤7.5 mg ml−1 in our assays, highlighting the potential of these gorgonian corals for bioprospecting. Received: 29 May 1999 / Accepted: 22 May 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号