首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mesoporous Fe2O3–Al2O3–CuO catalysts promoted with alkali oxides were synthesized and used in water gas shift reaction (WGSR) at high temperatures for hydrogen purification. These chromium-free catalysts were characterized using nitrogen adsorption/desorption, hydrogen temperature programmed reduction, X-ray diffraction (XRD), and transmission electron microscopy techniques. The synthesized catalysts with narrow single-modal pore size distribution in mesopore region possessed high specific surface area. The catalytic results revealed that except Cs, the addition of other alkali promoters declined the catalytic activity. However, all catalysts showed higher catalytic performance than the conventional commercial catalyst. The results showed an optimum content of Cs promoter (3 wt.%) for the promoted Fe–Al–Cu catalyst (3 wt.% Cs-FAC), which exhibited the highest activity in WGSR at high temperature.  相似文献   

2.
The redox state of carbon sources directly affected the ratio of NADH/NAD+ which was coupled to the hydrogen production by Bacillus sp. FS2011. The addition of the inhibitor of pyruvate dehydrogenase multi-enzyme complex (PDHc)E1 could regulate hydrogen production by FS2011 or pretreated compost in batch cultivation. With the addition of appropriate amount of inhibitor, hydrogen production via the NADH pathway was increased, leading to the higher overall hydrogen production. The maximum hydrogen yields of 307.6 ± 13.21 mL/g by FS2011 with the inhibitor of 80 ppm and 362.1 ± 10.1 mL/g by pretreated compost with the inhibitor of 60 ppm were observed, which were increased by 8.7% and 17.8% compared with the controls, respectively. Meanwhile the production of soluble metabolic byproducts such as butyrate, acetate and so on were decreased, resulting in reducing the difficulty of wastewater treatment.  相似文献   

3.
Understanding the effect of the liquid depth (z) on the acoustic generation of hydrogen is highly required for designing large-scale sonoreactors for hydrogen production because acoustic cavitation is the central event that initiates sonochemical reactions. In this paper, we present a computational analysis of the liquid-depth effect on the generation of H2 from a reactive acoustic bubble trapped in water irradiated with an attenuating sinusoidal ultrasound wave. The computations were made for different operating conditions of frequency (355–1000 kHz), acoustic intensity (1–5 W/cm2), and liquid temperature (10–30°C). The contribution of the acoustic wave attenuation on the overall effect of depth was appreciated for the different conditions. It was found that the acoustic generation of hydrogen diminished hardly with increasing depth up to z = 8 m, and the depth effect was strongly operating parameter-dependent. The sound wave attenuation played a crucial role in quenching H2 yield, particularly at higher z. The reduction of the H2 yield with depth was more pronounced at higher frequency (1000 kHz) and lower temperature (10°C) and acoustic intensity (1 W/cm2). The attenuation of the sound wave may contribute up to 100% in the overall reductive effect of depth toward H2 production rate. This parameter could be imperatively included when studying all aspects of underwater acoustic cavitation.  相似文献   

4.
PEM water electrolysis is one of the most efficient methods for the production of hydrogen because of produced high purity of the gases and environmentally friendly. In the present study, Phosphorus-doped Graphene (PG) was synthesized by thermal annealing of triphenylphosphine (TPP) and graphene oxide (GO). The PG supported palladium (Pd/PG) electrocatalysts were synthesized by chemical reduction method and used as the cathode for hydrogen evolution reaction (HER) electrode. Structural properties and electrochemical performances of the synthesized Pd/PG electrocatalyst were studied by FE-SEM, EDS, ICP, FT-IR, XRD, and Cyclic voltammetry (CV) methods, respectively. The membrane electrode assemblies (MEA’s) were fabricated using Pd/PG as cathode for HER electrode and RuO2 as anode for OER electrode. Also, their electrochemical performances along with the corresponding hydrogen yields were evaluated in single cell PEM water electrolyzer at various experimental conditions such as different current densities from 0.1 to 2.0 A cm?2 and temperatures (28–80°C). The synthesized Pd/PG electrocatalyst was observed a current density of 1 A cm?2 with 1.95 V at 80°C. Further, long-term stability studies were carried out continuously up to 2000 h which showed a reasonable stability. Hence, the synthesized Pd/PG can be used as an alternative to Pt-based electrocatalysts for the HER in PEM water electrolysis.  相似文献   

5.
A 100 W proton exchange membrane fuel cell (PEMFC) system with a sodium borohydride (NaBH4) hydrogen generator was investigated for small unmanned aerial vehicles (UAVs). The performance of a cobalt–phosphorous/nickel foam catalyst was evaluated to determine the change in catalytic activity under real operating conditions. The response time increased owing to oxidation of the metals and accumulation of sodium; however, the catalyst remained active at high reaction temperatures. A NaBH4 hydrogen generator with the catalyst was developed for a 100 W PEMFC system. The hydrogen generation rate was stable for 3 h, and the conversion efficiency was 97.8%. Finally, a 100 W PEMFC system with the NaBH4 hydrogen generator was investigated for small UAVs. The maximum power and energy density of the PEMFC system were 95.96 W and 185.2 Wh/kg, respectively.  相似文献   

6.
In this study, sulfuric acid and potassium hydroxide are used as the electrolytes, separated by proton exchange membrane, to produce hydrogen. The effects of electrolyte concentrations, applied voltage, single or dual cells, and temperature on the hydrogen production rate and energy efficiency are investigated. Experimental results show that the amount of hydrogen production increases with voltage, and the dual electrolytes and cells can yield the best hydrogen production rate and energy efficiency. With 1-M KOH plus 1-M H2SO4 as electrolytes in separated cells, the highest hydrogen production rate is about 0.95 L/hr. Results also show that the rise of electrolyte temperature can significantly increase the hydrogen production rate up to 50%, and the energy efficiency up to 20%. Keeping a low PH value in cathodeand high anode PH value in anode indeed enhances the efficiency of hydrogen production rate.  相似文献   

7.
As a potential hydrocarbon production method, the hydrocracking of soybean biodiesel, using a commercial petroleum hydrocracking catalyst, was studied. Experiments were carried out in a 1,000 mL, high-pressure autoclave for 2–4 hr over the temperature range of 200–280°C under an initial hydrogen pressure of 10 MPa. Hydrocracking of soybean biodiesel produced n-paraffins in the C8–C17 boiling range, which includes both green gasoline and diesel. Both pressure and temperature play important roles in the transformation of soybean biodiesel. Hydrocarbons can be formed above 220°C with a liquid yield of 81.76%. The n-alkanes content of the liquid product reached 32.29% at 280°C, with 88.32% C11–C14 selectivity. In addition, hydrocracking results in many changes of catalyst such as physical properties, morphology, etc. For the used catalyst, the concentrations of Ni and C increased, and the pore channels were significantly reduced.  相似文献   

8.
Vegetation Response to Western Juniper Slash Treatments   总被引:2,自引:0,他引:2  
The expansion of piñon–juniper woodlands the past 100 years in the western United States has resulted in large scale efforts to kill trees and recover sagebrush steppe rangelands. It is important to evaluate vegetation recovery following woodland control to develop best management practices. In this study, we compared two fuel reduction treatments and a cut-and-leave (CUT) treatment used to control western juniper (Juniperus occidentalis spp. occidentalis Hook.) of the northwestern United States. Treatments were; CUT, cut-and-broadcast burn (BURN), and cut-pile-and-burn the pile (PILE). A randomized complete block design was used with five replicates of each treatment located in a curl leaf mahogany (Cercocarpus ledifolius Nutt. ex Torr. & A. Gray)/mountain big sagebrush (Artemisia tridentata Nutt. spp. vaseyana (Rydb.) Beetle)/Idaho fescue (Festuca idahoensis Elmer) association. In 2010, 4 years after tree control the cover of perennial grasses (PG) [Sandberg’s bluegrass (Poa secunda J. Pres) and large bunchgrasses] were about 4 and 5 % less, respectively, in the BURN (7.1 ± 0.6 %) than the PILE (11.4 ± 2.3 %) and CUT (12.4 ± 1.7 %) treatments (P < 0.0015). In 2010, cover of invasive cheatgrass (Bromus tectorum L.) was greater in the BURN (6.3 ± 1.0 %) and was 50 and 100 % greater than PILE and CUT treatments, respectively. However, the increase in perennial bunchgrass density and cover, despite cheatgrass in the BURN treatment, mean it unlikely that cheatgrass will persist as a major understory component. In the CUT treatment mahogany cover increased 12.5 % and density increased in from 172 ± 25 to 404 ± 123 trees/ha. Burning, killed most or all of the adult mahogany, and mahogany recovery consisted of 100 and 67 % seedlings in the PILE and BURN treatments, respectively. After treatment, juniper presence from untreated small trees (<1 m tall; PILE and CUT treatments) and seedling emergence (all treatments) represented 25–33 % of pre-treatment tree density. To maintain recovery of herbaceous, shrub, and mahogany species additional control of reestablished juniper will be necessary.  相似文献   

9.
A comprehensive synthesis of data from empirically based published studies and a widely used stormwater best management practice (BMP) database were used to assess the variability in nitrogen (N) removal performance of urban stormwater ponds, wetlands, and swales and to identify factors that may explain this variability. While the data suggest that BMPs were generally effective on average, removal efficiencies of ammonium (NH4), nitrate (NO3), and total nitrogen (TN) were highly variable ranging from negative (i.e., BMPs acting as sources of N) to 100%. For example, removal of NO3 varied from (median ±1 SD) ?15 ± 49% for dry ponds, 32 ± 120% for wet ponds, 58 ± 210% for wetlands, and 37 ± 29% for swales. Across the same BMP types, TN removal was 27 ± 24%, 40 ± 31%, 61 ± 30%, and 50 ± 29%. NH4 removal was 9 ± 36%, 29 ± 72%, 31 ± 24%, and 45 ± 34%. BMP size, age, and location explained some of the variability. For example, small and shallow ponds and wetlands were more effective than larger, deeper ones in removing N. Despite well‐known intra‐annual variation in N fluxes, most measurements have been made over short time periods using concentrations, not flow‐weighted N fluxes. Urban N export is increasing in some areas as large storms become more frequent. Thus, accounting for the full range of BMP performance under such conditions is crucial. A select number of long‐term flux‐based BMP studies that rigorously measure rainfall, hydrology, and site conditions could improve BMP implementation.  相似文献   

10.
The olive mill waste (OMW) generated from olive oil extraction process constitutes a major environmental concern owing to its high organic and mineral matters and acidic pH. Anaerobic digestion (AD) is a main treatment for reducing the organic matter and toxic substances contained in OMW and generating at the same time, energy in the form of biogas. AD of OMW that contains lignocellulose is limited by the rate of hydrolysis due to their recalcitrant structure. This study is devoted to the effect of Fenton process (FP) pretreatment on olive mill wastewater (OMSW) /olive mill solid waste (OMWW) co-digestion to improve their digestibility and in this way the biogas production. The FP pretreatment was performed in batch mode at 25°C, various H2O2/[Fe2+] ratios (100–1200), catalyst concentration ([Fe2+]) ranging from 0.25 to 2 mM, reaction time varying from 30 to150 min, and different pH (3–11). The best performance was obtained with H2O2/[Fe2+] = 1000, [Fe2+] = 1.5 mM, 120 min, and pH 3. Biochemical methane potential (BMP) tests conducted in batch wise digester and at mesophilic conditions (37 °C) showed that cumulative biogas and methane production were higher without FP treatment, and correspond to 699 and 416 mL/g VS, respectively. However, pre-treated OMSW results into an increase of 24% of methane yield. After 30 days of AD, the methane yield was 63%, 54%, and 48%, respectively, for OMSW treated without iron precipitation, with iron precipitation and untreated OMSW sample.  相似文献   

11.
(CdS)x/(ZnS)1–x nanoparticles were synthesized as a visible light-driven photocatalyst using the stepped microemulsion technique with a series of the ratio factors (x). The photocatalytic test results showed that (CdS)x/(ZnS)1-x with x = 0.8 had the highest photo-reactivity for H2 production from water under visible light. The composite (CdS)0.8/(ZnS)0.2 catalyst had a heterogeneous structure that exhibited a much greater photocatalytic hydrogen production activity than either pure CdS or the homogeneous Cd0.8Zn0.2S solid solution. ZnS deposition also was shown to largely improve the stability of CdS in the heterostructured CdS/ZnS catalyst. Thermal treatment of the catalyst, i.e., annealing (CdS)0.8/(ZnS)0.2 at 723 K, improved the crystallinity of the catalyst and increased its photocatalytic H2 production rate by more than 36 times. Deposition of Ru on the surface of the catalyst particles by in situ photo-deposition further increased the photo-H2 generation rate by 3 times. The photocatalyst of 0.5%Ru/CdS/ZnS achieved the highest H2 production activity, at a rate of 12650 μmol/g-h and with a light to hydrogen energy conversion efficiency of 6.5%.  相似文献   

12.
Kitchen wastes containing high amounts of carbohydrates have potential as low-cost substrates for fermentable sugar production. In this study, enzymatic saccharification of kitchen waste was carried out. Response surface methodology (RSM) was applied to optimize the enzymatic saccharification conditions of kitchen waste. This paper presents analysis of RSM in a predictive model of the combined effects of independent variables (pH, temperature, glucoamylase activity, kitchen waste loading, and hydrolysis time) as the most significant parameters for fermentable sugar production and degree of saccharification. A 100 mL of kitchen waste was hydrolyzed in 250 mL of shake flasks. Quadratic RSM predicted maximum fermentable sugar production of 62.79 g/L and degree of saccharification (59.90%) at the following optimal conditions: pH 5, temperature 60°C, glucoamylase activity of 85 U/mL, and utilized 60 g/L of kitchen waste as a substrate at 10 h hydrolysis time. The verification experiments successfully produced 62.71 ± 0.7 g/L of fermentable sugar with 54.93 ± 0.4% degree of saccharification within 10 h of incubation, indicating that the developed model was successfully used to predict fermentable sugar production at more than 90% accuracy. The sugars produced after hydrolysis of kitchen waste were mainly attributed to monosaccharide: glucose (80%) and fructose (20%). The fermentable sugars obtained were subsequently used as carbon source for bioethanol production by locally isolated yeasts: Saccharomyces cerevisiae, Candida parasilosis, and Lanchancea fermentati. The yeasts were successfully consumed as sugars hydrolysate, and produced the highest ethanol yield ranging from 0.45 to 0.5 g/g and productivity between 0.44 g L–1 h–1 and 0.47 g L–1 h–1 after 24-h incubation, which was equivalent to 82.06–98.19% of conversion based on theoretical yield.  相似文献   

13.
The European Union has set ambitious objectives for the recovery rates of end-of life vehicles (ELVs). The directive 2000/53/CE (DIR, 2000) states that by 1st January 2015 at least 95% of the mass of an ELV must be reused and recovered, of which a maximum of 10% should be in the form of energy.In order to identify the key factors for improving the rate of material reuse, recycling and recovery of ELVs, ACYCLEA (PRAXY group) launched the “OPTIVAL VHU (ELV)” research program in collaboration with INSA Lyon in 2009. Three experimental campaigns were conducted on the industrial site of ACYCLEA to compare different scenarios of deconstruction. The campaigns were done on samples of 90 ELVs. The average mass (MELV) and age were estimated at 989 kg/ELV and 14 years, respectively. This article presents the results concerning the material balances of the successive operations. The contribution of each stage of the treatment (namely (i) depollution, (ii) deconstruction, and (iii) shredding and sorting operations) to the rate of recycling, reuse and recovery was calculated.Results showed firstly that the contribution of the operations of depollution was low (3.6 ± 0.1% of the mass of vehicles). The contribution of the operations of deconstruction was higher and increased logically with the degree of deconstruction. It ranged from 5% of MELV for the minimal level of deconstruction (campaign 1) to almost 10% with the highest level of deconstruction (campaign 3). The specific contribution of the operations of deconstruction to the rate of metal recycling was found to be quite low however, in the range of 2.6–2.8% of MELV, Shredding and post-shredding sorting operations enabled the recovery of the largest amounts of recyclable materials but no significant differences were observed between the overall recovery rates in the three campaigns (results ranged from 67 to 70% of MELV). Differences were observed however, for specific fractions such as the automotive shredder residues whose recovery rate was 16.3 ± 0.7%, 13.0 ± 0.5%, and 12.8 ± 0.2% for campaigns 1, 2 and 3, respectively. A larger production of non-ferromagnetic fraction was also observed in campaign 3, probably due to the extraction of the textiles during the dismantling operations which improved the efficiency of post-shredding sorting operations.The highest overall rate of reuse, recycling and energy recovery obtained in this study with the most rigorous approach was 81.5 ± 0.6% of the average mass of the ELV even with the highest level of deconstruction. It therefore appears that the European regulatory target of 95% would be difficult to achieve in 2015, except with a much greater optimization of the sorting technologies and the development of recycling processes.  相似文献   

14.
Biological hydrogen production was investigated using biomass in palm oil mill effluent (POME) and artificial wastewater containing 10g glucose under anaerobic fermentation in a batch process. Activated POME sludge and different types of composts were collected as sources of inocula for the study. The anaerobic microflora was found to yield significant amounts of hydrogen. The experimental results show that the gas composition contained hydrogen (66–68%) and carbon dioxide (32–34%). Through out the study, methane gas was not observed in the evolved gas. The hydrogen production was accompanied with the formation of acetate and butyrate. Furthermore, the cumulative hydrogen data were fitted to a simple model developed from Gompertz Equation, where the lag phase time, hydrogen production potential and hydrogen production rate at various conditions were quantitatively estimated.  相似文献   

15.
In this study, palm oil mill effluent (POME) was used as an alternative medium for algal biomass and lipid production. The influence of different concentrations of filtered and centrifuged POME in sea water (1, 5, 10 and 15%) on microalgal cell growth and lipid yield were investigated. Both Nannochloropsis oculata and Tetraselmis suecica had enhanced cell growth and lipid accumulation at 10% POME with maximum specific growth rate (0.21 d–1 and 0.20 d–1) and lipid content (39.1 ± 0.73% and 27.0 ± 0.61%), respectively, after 16 days of flask cultivation. The total Saturated Fatty Acid (SFA) (59.24%, 68.74%); Monounsaturated Fatty Acid (MUFA) (15.14%, 12.26%); and Polyunsaturated Fatty Acid (PUFA) (9.07%, 8.88%) were obtained for N. oculata and T. suecica, respectively, at 10% POME. Algal cultivation with POME media also enhanced the removal of Chemical Oxygen Demand (COD) (93.6–95%), Biological Oxygen Demand (BOD) (96–97%), Total Organic Compound (TOC) (71–75%), Total Nitrogen (TN) (78.8–90.8%) and oil and grease (92–94.9%) from POME.  相似文献   

16.
Fenton oxidation pretreatment was investigated for enhancement of biodegradability of wastewater sludge (WWS) which was subsequently used as substrate for the production of value- added products. The Response surface method with fractional factorial and central composite designs was applied to determine the effects of Fenton parameters on solubilization and biodegradability of sludge and the optimization of the Fenton process. Maximum solubilization and biodegradability were obtained as 70% and 74%, respectively at the optimal conditions: 0.01 ml H2O2/g SS, 150 [H2O2]0/[Fe2+]0, 25 g/L TS, at 25 °C and 60 min duration. Further, these optimal conditions were tested for the production of a value added product, Bacillus thuringiensis (Bt) which is being used as a biopesticide in the agriculture and forestry sector. It was observed that Bt growth using Fenton oxidized sludge as a substrate was improved with a maximum total cell count of 1.63 × 109 CFU ml?1 and 96% sporulation after 48 h of fermentation. The results were also tested against ultrasonication treatment and the total cell count was found to be 4.08 × 108 CFU ml?1 with a sporulation of 90%. Hence, classic Fenton oxidation was demonstrated to be a rather more promising chemical pre-treatment for Bt - based biopesticide production using WWS when compared to ultrasonication as a physical pre-treatment.  相似文献   

17.
The potential of the epigeic earthworm Eisenia fetida to stabilize sludge␣(generated from a distillation unit of the sugar industry) mixed with cow dung, in different proportions i.e. 20% (T1), 40% (T2), 60% (T3) and 80% (T4) has been studied under laboratory conditions for 90 days. The␣ready vermicompost was evaluated for its’ different physico-chemical parameters using standard methods. At the end of experiment, all vermibeds expressed a significant decrease in pH (7.8–19.2%) organic C (8.5–25.8%) content, and an increase in total N (130.4–170.7%), available P (22.2–120.8%), exchangeable K (104.9–159.5%), exchangeable Ca (49.1–118.1%), and exchangeable Mg (13.6–51.2%) content. Overall, earthworms could maximize decomposition and mineralization efficiency in bedding with lower proportions of distillery sludge. DTPA extractable metal reduction in substrate was recorded between the ranges of 12.5–38.8% for Zn, 5.9–30.4% for Fe, 4.7–38.2% for Mn and 4.5–42.1% for Cu. Maximum values for the mean individual live weight (809.69 ± 20.09 mg) and maximum individual growth rate (mg wt. worm−1 day−1) (5.81 ± 0.18) of earthworms was noted in T1 treatment, whereas cocoon numbers (69.0 ± 7.94) and individual reproduction rate (cocoon worm−1 day−1) (0.046 ± 0.002) was highest in T2 treatment. Earthworm mortality tended to increase with increasing proportion of distillery sludge, and maximum mortality in E. fetida was recorded for the T4 (45.0 ± 5.0) treatment. Results indicate that vermicomposting might be useful for managing the energy and nutrient rich distillery sludge on a low-input basis. Products of this process can be used for sustainable land restoration practices. The feasibility of worms to mitigate the toxicity of metals also reduces the possibility of soil contamination, which has been reported in earlier studies during direct field application of industrial wastes.  相似文献   

18.
With the increase of urbanization, municipal solid waste has also increased. Therefore, the need for solid waste management is also increasing compared with earlier decades. Composting is a good option for the recycling of solid waste; however, it produces leachate, which requires proper treatment systems to prevent environmental degradation. Due to high chemical oxygen demand (COD) concentrations in compost leachate, anaerobic treatment is the best option for handling the effluent, and an anaerobic baffled reactor (ABR) is one such anaerobic reactor that can be used for its treatment. Because of high ammonia and heavy metal concentrations, as well as the possibility of sludge washout in ABRs, it is important to use proper media, such as zeolite, which can reduce inhibition effects and sludge washout from the reactor. Anaerobic treatment, especially during the methanogenesis phase, is sensitive, and pH and alkalinity are parameters that influence the treatment. Therefore, adjusting these parameters within a normal range is very important to the proper functioning of anaerobic systems. In this study, a pilot‐scale ABR was used, and the last 4 of the 8 ABR compartments were filled with zeolite. The bioreactor was operated at hydraulic retention times (HRT) of 3, 4, and 5 days, with zeolite filling ratios of 10%, 20%, and 30%, and influent COD concentrations of 10,000, 20,000, and 30,000 milligrams per liter (mg/L). In this study, pH value was 6.43 ± 0.1, 6.96 ± 0.3, and 6.96 ± 0.25 at filling ratios of 10%, 20%, and 30%, respectively. According to the results, in all filling ratios, no significant changes were observed in the pH value when the organic loading rate increased and its amount was within a constant range. Influent alkalinity was equal to 2015 ± 510, 2884 ± 505, and 4154 ± 233 milligrams of calcium carbonate per liter (mg CaCO3/L) at influent COD concentrations of 10,000, 20,000, and 30,000 mg/L, respectively, and in effluent, they were 2536 ± 336, 3379 ± 639, and 4377 ± 325 mg CaCO3/L, respectively. The amount of alkalinity in the effluent increased compared with the alkalinity in the influent. The results show that the amount of alkalinity in the influent and effluent was similar, and the alkalinity enhancement was lower when the filling ratio was increased from 10% to 20%, and 20% to 30%. Comparisons of the results from zeolite with and without biofilm showed that, in cases of zeolite with biofilm, the amounts of silica and oxygen decreased and the amount of carbon increased, and it showed the formation of biofilm on the surface of zeolite. In addition, the absence of sodium in the zeolite with the biofilm indicated that sodium was exchanged with ammonium ions. According to the results, zeolite can be used in anaerobic reactors as a medium, and it also reduces fluctuations in pH and alkalinity at different organic loading rates, providing a normal range for anaerobic treatment.  相似文献   

19.
It was shown that the 4 Hz 30 dB mechanical vibration (MV) of physiological solution (PS) had modulation effect on snail heart contractility. However, the nature of metabolic pathway of MV-treated PS-induced effect is not clear yet. It was suggested that the MV-induced modulation of water molecules dissociation leads to the variation of reactive oxygen species’ level in cell bathing medium, which could serve as a messenger for switching on the metabolic pathway(s) responsible for modulation of muscle contractility. The aim of present work was to check this hypothesis and to elucidate the metabolic pathway through which the effect of MV-treated PS on heart contractility was realized. For this purpose, the effect of MV on heat fusion periods (HFP) and H2O2 content in PS, as well as on heart contractility, 45Ca2+ efflux, intracellular levels of cGMP and cAMP, muscle hydration, and ouabain binding were studied. It was shown that MV treatment of PS increased the HFP-(21.33 ± 4%) and decreased the H2O2 content-(5 ± 0.9%). The intracardiac perfusion by MV-treated PS increased the amplitudes of heart contractility, which was accompanied by the increasing of 45Ca2+ efflux (252.4 ± 16%), elevation of cGMP’s level (42.05 ± 7%), decreasing of cAMP’s level (82.67 ± 7%), increasing of the tissue hydration (18.64 ± 3%), and increasing of the number of ouabain binding sides (25 ± 4%). It was suggested that MV-induced increasing of heart muscle contraction amplitudes is due to the decreases of H2O2 content in the medium, which leads to the elevation of heart muscle contractility in result of activation of cGMP-dependent Na+/Ca2+ exchange in forward regime.  相似文献   

20.
A feasibility study on utilization of non edible oil of Scleropyrum pentandrum was carried out to see its potential as a new source for biodiesel production. Nonedible oil seeds of Scleropyrum pentandrum have oil content of 55–60%. Transesterification of freshly extracted oil in the presence of anhydrous sodium hydroxide at a concentration 1% (w/v oil) and methanol-oil ratio of 40% (v/v oil) yields 90.8% methyl esters under conventional heating. Month old oil requires sulfuric acid pretreatment (esterification) before transesterification. The transesterified oil has a density 889–893 kg/m3; kinematic viscosity of 4.21–5.7 mm2/s; cetane index 46.03; pour point of ?15°C and gross calorific value of 40.135 MJ/kg and oxidative stability of 2.35 hours. The properties are well within the Indian, European and American standard limits recommended for biodiesel except the oxidation stability, which can be improved by adding antioxidant additives. The engine performance studies of B10 and B20 blends of Scleropyrum pentandrum biodiesel (SP biodiesel) with statistical inference confirmed that it can be used as a fuel in CI engines without any engine modifications. The engine exhaust emission analysis showed that the emission of hydrocarbons can be minimized by at least 15–20%, CO emission by 15%, smoke opacity by 10–12% and moderately lesser CO2 and NOx emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号