首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
In Ireland, no database detailing the design, influent loading rates or performance of constructed wetlands (CWs) exists. On account of this, they are designed without any protocol based on empirical data. The aim of this paper was to provide the first published data on the performance of free-water surface flow (FWSF) CWs treating primary and secondary-treated municipal wastewater, and agricultural dairy soiled water (DSW) in Ireland. In total, the performance of thirty-four FWSF CWs, comprising fourteen CWs treating primary-treated municipal wastewater, thirteen CWs treating secondary-treated municipal wastewater, and seven CWs treating DSW, were examined. In most CWs, good organic, suspended solids (SS) and nutrient removal was measured. At an average organic loading rate (OLR) of 10 and 9 g biochemical oxygen demand (BOD) m(-2) d(-1), CWs treating primary and secondary wastewater removed 95 and 84% of influent BOD. Constructed wetlands treating DSW had an average BOD removal of 98%. At average SS loading rates of 6 and 14 g m(-2) d(-1), CWs treating primary and secondary wastewater had a 96 and an 82% reduction, and produced a final effluent with a concentration of 14 and 13 mg L(-1). Constructed wetlands treating DSW produced a final effluent of 34 mg L(-1) (94% reduction). Similar to other studies, all CWs examined had variable performance in ammonium-N (NH(4)(+)-N) removal, with average removals varying between 37% (for CWs treating secondary wastewater) and 88% (for CWs treating DSW). Variable ortho-phosphorus (PO(4)(3-)-P) removal was attributable to different durations of operation, media types and loading rates.  相似文献   

2.
Constructed wetlands (CW) usually require large land areas for treating wastewater. This study evaluated the feasibility of applying CW with less land requirement by operating a group of microcosm wetlands at a hydraulic retention time (HRT) of less than 4 d in southern Taiwan. An artificial wastewater, simulating municipal wastewater containing 200 mg L(-1) of chemical oxygen demand (COD), 20 mg L(-1) of NH4+-N (AN), and 20 mg L(-1) of PO4(3-)-P (OP), was the inflow source. Three emergent plants [reed, Phragmites australis (Cav.) Trin. ex Steud.; water primrose, Ludwigia octovalvis (Jacq.) P.H. Raven; and dayflower, Commelina communis L.] and two floating plants [water spinach, Ipomoea aquatica Forssk.; and water lettuce, Pistia stratiotes L.] plants were tested. The planted systems showed more nutrient removal than unplanted systems; however, the type of macrophytes in CW did not make a major difference in treatment. At the HRTs of 2 to 4 d, the planted system maintained greater than 72,80, and 46% removal for COD, AN, and OP, respectively. For AN and OP removal, the highest efficiencies occurred at the HRT of 3 d, whereas maximum removal rates for AN and OP occurred at the HRT of 2 d. Both removal rates and efficiencies were reduced drastically at the HRT of 1 d. Removals of COD, OP, and AN followed first-order reactions within the HRTs of 1 to 4 d. The efficient removals of these constituents obtained with HRT between 2 and 4 d indicated the possibility of using a CW system for wastewater treatment with less land requirement.  相似文献   

3.
微生物菌剂在酿酒废水处理中的应用研究   总被引:6,自引:1,他引:5  
采用厌氧-好氧工艺,结合微生物菌剂对酿酒废水进行了处理研究。进水CODCr浓度可达到8,456.3-22,442.0mg/L,BOD55,040.0-9.557.1mg/L,pH3-4,可不调pH,采用微生物菌剂接种可启动厌氧反应器,COD有机负荷最高达到10.2gCOD/Ld,COD去除率稳定在91-95%,BOD去除率90-94%,出水pH6.6-7.1,出水CODCr在2,000mg/L以下,BOD5800mg/L以下。厌氧污泥可全部颗粒化。好氧处理系统中接种微生物菌剂,曝气10-12小时,可保证出水中CODCr在230mg/L以下,甚至直接达到国家一级排放标准。微生物菌剂的应用是取得该处理效果的关键。  相似文献   

4.
This study focuses on a lab-scale rotating biological contactor (RBC) treating vegetable oil wastewater with high BOD and COD. The fabricated RBC was checked for efficiency in degrading polluted wastewater under different operating conditions. The maximum removal efficiencies for BOD and COD were 95.75% and 89%, respectively. This high removal percentage was obtained with 30% submergence of 10 discs rotating at 8 rpm. For the first time, bio-kinetic models were applied to the experimental results for vegetable oil wastewater. The best fit was obtained with the modified Stover-Kincannon and Grau model. The saturation constant (Ks) values were 1.872 and 3.024 g/L/d for BOD and COD, respectively, for the modified Stover-Kincannon and Grau model. For the Grau second-order model, the saturation constant was 1.416 and 3.744 g/L/d for BOD and COD, respectively. The predicted effluent BOD and COD values of the modified Stover–Kincannon model fitted almost exactly with the experimental values. This clearly predicts that this model can be best used to predict effluent BOD and COD concentration in a Rotating Biological contactor treating vegetable oil wastewater. The kinetic parameters determined in this study can be used to improve the design and operation of continuous mode RBC systems.  相似文献   

5.
Treatment of low-strength soluble wastewater (COD approximately 500 mg/L) was studied using an eight chambered anaerobic baffled reactor (ABR). At pseudo steady-state (PSS), the average total and soluble COD values (COD(T) and COD(S)) at 8h hydraulic retention time (HRT) were found to be around 50 and 40 mg/L, respectively, while at 10h HRT average COD(T) and COD(S) values were of the order of 47 and 37 mg/L, respectively. COD and BOD (3 day, 27 degrees C) removal averaged more than 90%. Effluent conformed to Indian standards laid down for BOD (less than 30 mg/L). Reactor effluent characteristics exhibited very low values of standard deviation indicating excellent reactor stability at PSS in terms of effluent characteristics. Based on mass balance calculations, more than 60% of raw wastewater COD was estimated to be recovered as CH(4) in the gas phase. Compartment-wise profiles indicated that most of the BOD and COD got reduced in the initial compartments only. Sudden drop in pH (7.8-6.7) and formation of volatile fatty acids (VFA) (53-85 mg/L) were observed in the first compartment due to acidogenesis and acetogenesis. The pH increased and VFA concentration decreased longitudinally down the reactor. Residence time distribution (RTD) studies revealed that the flow pattern in the ABR was neither completely plug-flow nor perfectly mixed. Observations from scanning electron micrographs (SEM) suggest that distinct phase separation takes place in an ABR.  相似文献   

6.
A moving bio-film (MB), made from the inner tube of used tyres was applied in a conventional-aerobic-SBR for increasing the system efficiency and quality of bio-sludge due to good sedimentation (the density of 1.925+/-0.21 g/cm(3)), non-biodegradability and re-usability of the media without any regeneration. The total bio-sludge mass of the MB-aerobic-SBR was about 30% higher than that of the conventional-aerobic-SBR resulting in a reduction of the F/M value of the system and amount of suspended bio-sludge waste. The amount of suspended bio-sludge waste, SVI and SRT of the MB-aerobic-SBR under a low organic loading of 80+/-9.3g BOD(5)/m(3)-d were 1,485+/-146 mg/d, 51+/-3.7 ml/g and 10.1+/-5.1 days, respectively while they were 1,800+/-152 mg/d, 69+/-4.0 ml/g and 8.3+/-5.3 days, respectively in the conventional-aerobic-SBR. The BOD(5), TKN and TP removal efficiencies of the MB-aerobic-SBR were about 1-2, 2-3 and 10-12% higher, respectively, than that of the conventional-aerobic-SBR. Also, the BOD(5) and COD removal efficiencies of the MB-aerobic-SBR were higher than 95% even when the system was operated with synthetic wastewater containing 800 mg/l BOD(5) under a very low HRT of 1.5 days (organic loading of 528+/-50.8 g BOD(5)/m(3)-d). The effluent BOD(5), COD, total kjeldahl nitrogen, total phosphorus and suspended solids of the MB-aerobic-SBR under a high organic loading of 528+/-50.8 g BOD(5)/m(3)-d were 45+/-5.1, 37+/-3.6, 4.1+/-1.0, 1.5+/-0.80 and 41+/-2mg/l, respectively.  相似文献   

7.
Since the performance of algal treatment for pulp mill effluent decreases with increasing color intensity and AOX content, which mainly originate from the chlorine bleaching of Kraft pulp, the separated CEH bleaching effluent was pre-treated by both the conventional and the heterogeneous catalytic ozonation processes. An increase in the BOD(5)/COD ratio from 0.11 to 0.28 and 87% color abatement in terms of Pt-Co were achieved by catalytic ozonation, which had the best treatment performance. Biodegradability enhancement of the CEH effluent correlated well with a decrease in toxicity, high-molecular-weight-compound content, and AOX abatement. By the pre-treatment of the CEH bleaching effluent, the overall efficiencies of algal treatment of the combined pulp mill effluent in terms of the fractional removal of COD and color were increased from 76% and 53% to 86-90% and 96-99%, respectively. Effects of both the conventional and the catalytic ozonation pre-treatments on subsequent biological treatment were close to each other and they reduced the filling period of the Sequential Batch Reactor (SBR) cycle from 8 to 5 days.  相似文献   

8.
Selenium (Se), boron (B), and salinity contamination of agricultural drainage water is potentially hazardous for water reuse strategies in central California. To demonstrate the feasibility of using plants to extract Se from drainage water, Se accumulation was determined in canola (Brassica napus L.) and broccoli (Brassica oleracea L.) irrigated with drainage effluent in the San Joaquin Valley, California. In the 2-yr field study, both crops were irrigated with a typical drainage water containing Se (150 microg L(-1)), B (5 mg L(-1)), and a sulfate dominated salinity (EC of 7 dS m(-1)). Total dry matter yields were at least 11 Mg ha(-1) for both canola and broccoli, and plant tissue Se concentrations did not exceed 7 mg kg(-1) DM for either crop. Based on the amount of soluble Se applied to crops with drainage water and the estimated amount of soluble Se remaining in soil to a depth of 90 cm at harvest, both canola and broccoli accumulated at least 40% of the estimated soluble Se lost from the soil for both years. Applied Se not accounted for in plant tissue or as soluble Se in the soil was presumably lost by biological volatilization. This study suggests that irrigating two high value crops such as canola and broccoli with Se-laden effluent helps manage Se-laden effluent requiring treatment, and also produces economically viable Se-enriched crops. Future research should focus on managing residual salt and B in the soil for sustaining long time water reuse strategies.  相似文献   

9.
Combined chemical and biological oxidation of penicillin formulation effluent   总被引:12,自引:0,他引:12  
Antibiotic formulation effluent is well known for its important contribution to environmental pollution due to its fluctuating and recalcitrant nature. In the present study, the chemical treatability of penicillin formulation effluent (average filtered COD(o)=830 mg/l; average soluble COD(o)=615 mg/l; pH(o)=6.9) bearing the active substances penicillin Amoxicillin Trihydrate (C(16)H(19)N(3)O(5)S.3H(2)O) and the beta-lactamase inhibitor Potassium Clavulanate (C(8)H(8)KNO(5)) has been investigated. For this purpose, the penicillin formulation effluent was subjected to ozonation (applied ozone dose=2500 mg/(lxh)) at varying pH (2.5-12.0) and O(3)+H(2)O(2) (perozonation) at different initial H(2)O(2) concentrations (=2-40 mM) and pH 10.5. According to the experimental results, the overall Chemical Oxygen Demand (COD) removal efficiency varied between 10 and 56% for ozonation and 30% (no H(2)O(2)) and 83% (20 mM H(2)O(2)) for the O(3)+H(2)O(2) process. The addition of H(2)O(2) improved the COD removal rates considerably even at the lowest studied H(2)O(2) concentration. An optimum H(2)O(2) concentration of 20 mM existed at which the highest COD removal efficiency and abatement kinetics were obtained. The ozone absorption rate ranged between 53% (ozonation) and 68% (perozonation). An ozone input of 800 mg/l in 20 min was sufficient to achieve the highest BOD(5)/COD (biodegradability) ratio (=0.45) and BOD(5) value (109 mg/l) for the pre-treated penicillin formulation effluent. After the establishment of optimum ozonation and perozonation conditions, mixtures of synthetic domestic wastewater+raw, ozonated and perozonated penicillin formulation effluent were subjected to biological activated sludge treatment at a food-to-microorganisms (F/M) ratio of 0.23 mg COD/(mg MLSSxd), using a consortium of acclimated microorganisms. COD removal efficiencies of the activated sludge process were 71, 81 and 72% for pharmaceutical wastewater containing synthetic domestic wastewater mixed with either raw, ozonated or perozonated formulation effluent, respectively. The ultimate COD value obtained after 24-h biotreatment of the synthetic domestic wastewater+pre-ozonated formulation effluent mixture was around 100 mg/l instead of 180 mg/l which was the final COD obtained for the wastewater mixture containing raw formulation effluent, indicating that pre-ozonation at least partially removed the non-biodegradable COD fraction of the formulation effluent.  相似文献   

10.
Paper mills generate large amounts of solid waste consisting of fibrous cellulose, clay, and lime. Paper mill sludge (PMS) can improve reclamation of surface-coal mines where low pH and organic-carbon levels in the spoil cover material can inhibit revegetation. When applied at high rates, however, PMS may adversely impact the quality of surface runoff. Therefore, we applied PMS at 0, 224, and 672 dry Mg ha(-)(1) to 22.1 x 4.6-m plots at a recently mined site and monitored runoff for a total of 13 mo. The zero-rate plots served as controls and received standard reclamation consisting of mulching with hay and fertilization at planting. Compared to the control plots, PMS reduced runoff fourfold to sixfold and decreased erosion from 47 Mg ha(-1) to <1 Mg ha(-1). Most of the reduction occurred in the 2.5 mo before the plots were planted. Flow-weighted average dissolved oxygen concentrations in runoff from plots at the 224 and 672 Mg ha(-1) rates, however, were much lower (相似文献   

11.
The occurrence of significant amounts of biocidal finishing agents in the environment as a consequence of intensive textile finishing activities has become a subject of major public health concern and scientific interest only recently. In the present study, the treatment efficiency of selected, well-known advanced oxidation processes (Fenton, Photo-Fenton, TiO(2)/UV-A, TiO(2)/UV-A/H(2)O(2)) and ozone was compared for the degradation and detoxification of a commercial textile biocide formulation containing a 2,4,4'-trichloro-2'-hydroxydiphenyl ether as the active ingredient. The aqueous biocide solution was prepared to mimic typical effluent originating from the antimicrobial finishing operation (BOD(5,o) < or =5 mg/L; COD(o)=200 mg/L; DOC(o) (dissolved organic carbon)=58 mg/L; AOX(o) (adsorbable organic halogens)=48 mg/L; LC(50,o) (lethal concentration causing 50% death or immobilization in Daphnia magna)=8% v/v). Ozonation experiments were conducted at different ozone doses (500-900 mg/h) and initial pH (7-12) to assess the effect of ozonation on degradation (COD, DOC removal), dearomatization (UV(280) and UV(254) abatement), dechlorination (AOX removal) and detoxification (changes in LC(50)). For the Fenton experiments, the effect of varying ferrous iron catalyst concentrations and UV-A light irradiation (the Photo-Fenton process) was examined. In the heterogenous photocatalytic experiments, Degussa P25-type TiO(2) was used as the catalyst and the effect of reaction pH (3, 7 and 12) and H(2)O(2) addition on the photocatalytic treatment efficiency was examined. Although in the photochemical (i.e. Photo-Fenton, TiO(2)/UV-A and TiO(2)/UV-A/H(2)O(2)) experiments appreciably higher COD and DOC removal efficiencies were obtained, ozonation appeared to be equally effective to achieve dearomatization (UV(280) abatement) at all studied reaction pH. During ozonation of the textile biocide effluent, AOX abatement proceeded significantly faster than dearomatization and was complete after 20 min ozonation (267 mg O(3)). On the other hand, for complete detoxification, ozonation had to be continued for at least 30 min (corresponding to 400mg O(3)). Effective AOX and acute toxicity removal was also obtained after heterogeneous photocatalytic treatment (TiO(2)/UV-A and TiO(2)/UV-A/H(2)O(2)). The Fenton-based treatment experiments and particularly the dark Fenton reaction resulted in relatively poor degradation, dearomatization, AOX and acute toxicity removals.  相似文献   

12.
Due to the toxic effects of trichlorophenol (TCP) on microorganisms, biological treatment efficiencies of TCP containing wastewaters are usually low. Synthetic wastewater containing 2,4,6-TCP was biologically treated in a hybrid-loop bioreactor system consisting of a packed column biofilm and an aerated tank bioreactor with effluent recycle in order to improve COD and TCP removals. Effects of the feed TCP concentration on COD, TCP and toxicity removal performance of the system were investigated for the feed TCP between 50 and 450 mg L(-1) while the sludge age (solids retention time, SRT) and hydraulic residence time (HRT) were kept constant at 20 d and 25 h, respectively. Biomass concentrations in the packed column and in the aeration tank decreased with increasing feed TCP concentrations due to toxic effects of TCP on the organisms. Low biomass concentrations in the system at high feed TCP contents resulted in low COD, TCP and toxicity removals. Therefore, percent TCP, COD and toxicity removals decreased with increasing feed TCP concentrations especially above 400 mg L(-1). The effluent TCP concentrations were lower than 20 mg L(-1) for the feed TCP concentrations below 390 mg L(-1) resulting in TCP and COD removals above 90%. Specific rates of TCP and COD removals increased with the feed TCP due to low biomass concentrations at high TCP contents. The system should be operated at a feed TCP lower than 400 mg L(-1) in order to obtain more than 90% TCP, COD and toxicity removals under the specified experimental conditions.  相似文献   

13.
采用将脱硫废液与炼油废水按比例混合之后对其进行处理的方法,通过批式试验,考查混合废液的BOD5/COD指标及其COD、NH3-N、S2-的去除率。筛选合适的混合液配比,分别对500︰1和800︰1的混合废液进行了模型试验,分析了COD去除效果。结果表明:800︰1的混合废液在10d之后,出水COD为134mg/L,达到了《污水综合排放标准》(GB8978—1996)二级标准要求。最终确定炼油废水与脱硫废液混合的合适比例应不低于800︰1。  相似文献   

14.
A sequencing batch reactor biofilm (MSBR) system was modified from the conventional sequencing batch reactor (SBR) system by installing 2.7 m2 surface area of plastic media on the bottom of the reactor to increase the system efficiency and bio-sludge quality by increasing the bio-sludge in the system. The COD, BOD5, total kjeldahl nitrogen (TKN) and oil & grease removal efficiencies of the MSBR system, under a high organic loading of 1340 g BOD5/m3 d, were 89.3+/-0.1, 83.0+/-0.2, 59.4+/-0.8, and 82.4+/-0.4%, respectively, while they were only 87.0+/-0.2, 79.9+/-0.3, 48.7+/-1.7 and 79.3+/-10%, respectively, in the conventional SBR system. The amount of excess bio-sludge in the MSBR system was about 3 times lower than that in the conventional SBR system. The sludge volume index (SVI) of the MSBR system was lower than 100 ml/g under an organic loading of up to 1340 g BOD5/m3 d. However, the MSBR under an organic loading of 680 g BOD5/m3 d gave the highest COD, BOD5, TKN and oil & grease removal efficiencies of 97.9+/-0.0, 97.9+/-0.1, 79.3+/-1.0 and 94.8+/-0.5%, respectively, without any excess bio-sludge waste. The SVI of suspended bio-sludge in the MSBR system was only 44+/-3.4 ml/g under an organic loading of 680 g BOD5/m3 d.  相似文献   

15.
Beneficial effects of leaving residue at the soil surface are well documented for steep lands, but not for flat lands that are drained with surface inlets and tile lines. This study quantified the effects of tillage and nutrient source on tile line and surface inlet water quality under continuous corn (Zea mays L.) from relatively flat lands (<3%). Tillage treatments were either fall chisel or moldboard plow. Nutrient sources were either fall injected liquid hog manure or spring incorporated urea. The experiment was on a Webster-Canisteo clay loam (Typic Endoaquolls) at Lamberton, MN. Surface inlet runoff was analyzed for flow, total solids, NO(3)-N, NH(4)-N, dissolved P, and total P. Tile line effluent was analyzed for flow, NO(3)-N, and NH(4)-N. In four years of rainstorm and snowmelt events there were few significant differences (p < 0.10) in water quality of surface inlet or tile drainage between treatments. Residue cover minimally reduced soil erosion during both snowmelt and rainfall runoff events. There was a slight reduction in mineral N losses via surface inlets from manure treatments. There was also a slight decrease (p = 0.025) in corn grain yield from chisel-plow plots (9.7 Mg ha(-1)) compared with moldboard-plow plots (10.1 Mg ha(-1)). Chisel plowing (approximately 30% residue cover) alone is not sufficient to reduce nonpoint source sediment pollution from these poorly drained flat lands to the extent (40% reduction) desired by regulatory agencies.  相似文献   

16.
Anaerobic/aerobic treatment of meat processing wastewater   总被引:2,自引:0,他引:2  
The meat processing industry is believed to produce highly polluted wastewater. Analysis of such wastewater indicated that the waste was highly contaminated with organic compounds as indicated by COD (1544mgO2l–1), BOD (646mgO2l–1), and TSS (1155 mgl–1). Moreover, oil and grease concentrations reached 144mgl–1 treatment of raw wastewater using Upflow Anaerobic Sludge Blanket (UASB) followed by Rotating Biological Contactors (RBC) was studied. Efficiency of the UASB for the removal of CODtotal, BODtotal, TSS, and oil and grease was 56%, 56%, 85%, and 58%, respectively. The quality of the UASB effluent barely complies with the regulatory standards for discharging wastewater into the sewerage network. UASB effluent was subjected for further treatment using a RBC unit to improve the quality of the treated effluent for reuse in irrigation purposes. Residual COD, BOD, TSS, and oil and grease, following RBC, was 132mgO2l–1, 40mgO2l–1, 44mgl–1, and 10mgl–1 respectively. The overall efficiency of the treatment units provided good quality effluent. The overall percentage removal of COD, BOD, TSS, and oil and grease was 91.5%, 94%, 96%, and 91%, respectively. Based on the quality of the treated effluent and guidelines recommended for wastewater reuse, it may be concluded that a slight to moderate restricted irrigation is applicable to reuse the treated effluent in the green belt around the factory. Disinfection should be applied to ensure the safety of such a process.  相似文献   

17.
A stratified sand filter column, operated in recirculation mode and treating synthetic effluent resembling high-strength dairy wastewaters was studied over a 342-d duration. The aim of this paper was to examine the organic, total suspended solids (TSS) and nutrient removal rates of the sand filter, operated in recirculation mode, under incrementally increasing hydraulic and organic loading rates and to propose a field filter-sizing criterion. Best performance was obtained at a system hydraulic loading rate of 10 L m(-2) d(-1); a higher system hydraulic loading rate (of 13.4 L m(-2) d(-1)) caused surface ponding. The system hydraulic loading rate of 10 L m(-2) d(-1) gave a filter chemical oxygen demand (COD), TSS, and total kjeldahl nitrogen (TKN) loading rate of 14, 3.7, and 2.1 g m(-2) d(-1), respectively, and produced consistent COD and TSS removals of greater than 99%, and an effluent NO(3)-N concentration of 42 mg L(-1) (accounting for an 86% reduction in total nitrogen (Tot-N)). As the proportional surface area requirement for the sand filter described in this study is less than the recommended surface area requirement of a free-water surface (FWS) wetland treating an effluent of similar quality, it could provide an economic and sustainable alternative to conventional wetland treatment.  相似文献   

18.
The main objective of this paper was to perform a preliminary comparative study between chemical and electrochemical coagulation processes, both followed by flocculation and sedimentation of an effluent from an upflow anaerobic sludge blanket (UASB) reactor treating simulated wastewater from an unbleached Kraft pulp mill. The electrochemical treatment removed up to 67% (with aluminum electrodes) and 82% (with stainless-steel electrodes) of the remaining chemical oxygen demand (COD) and 84% (stainless steel) and 98% (aluminum) of the color in the wastewater. These efficiencies were achieved with an energy consumption ranging from 14 to 20 Wh l(-1). The coagulation-flocculation treatment with ferric chloride and aluminum sulfate removed up to 87% and 90% of COD and 94% and 98% of color, respectively. The addition of a high molecular weight cationic polymer enhanced both COD and color removal efficiencies. The two post-treatment processes proved to be technically feasible; however the economical feasibility could not be assessed since the experiments were performed with small reactors that could distort scale factors.  相似文献   

19.
Resting (living) bio-sludge from a domestic wastewater treatment plant was used as an adsorbent of both direct dyes and organic matter in a sequencing batch reactor (SBR) system. The dye adsorption capacity of the bio-sludge was not increased by acclimatization with direct dyes. The adsorption of Direct Red 23 and Direct Blue 201 onto the bio-sludge was almost the same. The resting bio-sludge showed higher adsorption capacity than the autoclaved bio-sludge. The resting bio-sludge that was acclimatized with synthetic textile wastewater (STWW) without direct dyes showed the highest Direct Blue 201, COD, and BOD(5) removal capacities of 16.1+/-0.4, 453+/-7, and 293+/-9 mg/g of bio-sludge, respectively. After reuse, the dye adsorption ability of deteriorated bio-sludge was recovered by washing with 0.1% sodium dodecyl sulfate (SDS) solution. The direct dyes in the STWW were also easily removed by a GAC-SBR system. The dye removal efficiencies were higher than 80%, even when the system was operated under a high organic loading of 0.36kgBOD(5)/m(3)-d. The GAC-SBR system, however, showed a low direct dye removal efficiency of only 57+/-2.1% with raw textile wastewater (TWW) even though the system was operated with an organic loading of only 0.083kgBOD(5)/m(3)-d. The dyes, COD, BOD(5), and total kjeldalh nitrogen removal efficiencies increased up to 76.0+/-2.8%, 86.2+/-0.5%, 84.2+/-0.7%, and 68.2+/-2.1%, respectively, when 0.89 g/L glucose (organic loading of 0.17kgBOD(5)/m(3)-d) was supplemented into the TWW.  相似文献   

20.
The aim of this investigation was to evaluate the influence of batch versus continuous flow on the removal efficiencies of chemical oxygen demand (COD), nitrogen (N) and total phosphorus (TP) in tropical subsurface flow constructed wetlands (SSF CW). The quantitative role of the higher aquatic plants in nutrient removal in these two operational modes was also investigated. Results indicated no significant difference (p > 0.05) in COD removal between batch and continuous flow modes for either the planted or unplanted treatments. Furthermore, the batch-loaded planted wetlands showed significantly (p < 0.05) higher ammonium removal efficiencies (95.2%) compared with the continuously fed systems (80.4%), most probably because the drain and fill batch mode presented systematically more oxidized environmental conditions. With respect to TP removal, for both planted and unplanted beds, there was significant enhancement (p < 0.05) in batch flow operation (69.6% for planted beds; 39.1% for unplanted beds) as compared to continuous flow operation (46.8% for planted beds; 25.5% for unplanted beds). In addition, at a 4-day hydraulic retention time (HRT), the presence of plants significantly enhanced both ammonia oxidation and TP removal in both batch and continuous modes of operation as compared to that for unplanted beds. An estimation of the quantitative role of aeration from drain and fill operation at a 4-day HRT, as compared to rhizosphere aeration by the higher aquatic plant, indicated that drain and fill operation might account for only less than half of the higher aquatic plant's quantitative contribution of oxygen (1.55 g O2 per m2 per day for batch flow versus 1.13 g O2 per m2 per day for continuous flow).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号