首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There is interest in quantifying phosphorus (P) loss from intensively grazed dairy landscapes to identify key pathways and target remediation methods. The Bog Burn drains a dairying catchment in Southland, New Zealand, and has been monitored at fortnightly intervals over a 12-mo period at four sites for suspended sediment (SS), dissolved reactive phosphorus (DRP), and total phosphorus (TP). Time-integrated samplers, deployed at 0.6 median water depth at each site (calculated from previous year's flow data), collected sediment samples, which were analyzed for SS, bioavailable phosphorus (BAP), and TP. Mean concentrations of DRP and TP in stream flow and BAP and TP in sediment were generally highest in summer or autumn (0.043 mg DRP L(-1), 0.160 mg TP L(-1), 173 mg BAP kg(-1), 2228 mg TP kg(-1)) and lowest in winter or spring (0.012 mg DRP L(-1), 0.034 mg TP L(-1), 6 mg BAP kg(-1), 711 mg TP kg(-1)), while loads were highest in winter. Analysis of (137)Cs concentrations in trapped sediment, topsoil, subsoil, and stream bed and bank sediment indicated that trapped sediment was derived from topsoil and entered the stream either through tile drainage or, to a lesser extent, overland flow. Because concentrations of DRP and TP in stream flow are in excess of recommended limits for good water quality (>0.01 mg DRP L(-1), 0.033 mg TP L(-1)), management should focus on the topsoil and specifically on decreasing P loss via tile drainage. This is best achieved by decreasing soil Olsen P concentrations, especially because, on average, Olsen P concentrations in the catchment were above the agronomic optimum.  相似文献   

2.
Recent work has shown that a significant portion of the total loss of phosphorus (P) from agricultural soils may occur via subsurface drainflow. The aim of this study was to compare the concentrations of different P forms in surface and subsurface runoff, and to assess the potential algal availability of particulate phosphorus (PP) in runoff waters. The material consisted of 91 water-sample pairs (surface runoff vs. subsurface drainage waters) from two artificially drained clayey soils (a Typic Cryaquept and an Aeric Cryaquept) and was analyzed for total suspended solids (TSS), total phosphorus (TP), dissolved molybdate-reactive phosphorus (DRP), and anion exchange resin-extractable phosphorus (AER-P). On the basis of these determinations, we calculated the concentrations of PP, desorbable particulate phosphorus (PPi), and particulate unavailable (nondesorbable) phosphorus (PUP). Some water samples and the soils were also analyzed for 137Cs activity and particle-size distribution. The major P fraction in the waters studied was PP and, on average, only 7% of it was desorbable by AER. However, a mean of 47% of potentially bioavailable P (AER-P) consisted of PPi. The suspended soil material carried by drainflow contained as much PPi (47-79 mg kg-1) as did the surface runoff sediment (45-82 mg kg-1). The runoff sediments were enriched in clay-sized particles and 137Cs by a factor of about two relative to the surface soils. Our results show that desorbable PP derived from topsoil may be as important a contributor to potentially algal-available P as DRP in both surface and subsurface runoff from clayey soils.  相似文献   

3.
Total phosphorus (TP) loads in many rivers in the north-central United States have increased, including the Illinois River at Valley City, Illinois, USA, which increased 39% from the periods 1989–1996 to 2015–2019 despite efforts to reduce loads from point and nonpoint sources. Here, we quantify long-term variations in phosphorus (P) loads in the Illinois River and its tributaries and identify factors that may be causing the variations. We calculated river loads of dissolved (DP) and particulate P (PP), total and volatile suspended solids (TSS and VSS), and other potentially related constituents at 41 locations. DP loads generally increased and PP and TSS loads generally decreased from 1989–1996 to 2015–2019. During 1989–1996, P accumulated in the lower basin between Marseilles and Valley City (excluding monitored tributaries). This portion of the basin is very flat and accumulates sediment. During 2015–2019, this section shifted from being a net sink to being a net source of P, accounting for 78% of the increased TP load at Valley City. We present evidence supporting several mechanisms that could have caused this shift: increased DP and chloride loads, reduced sulfate and nitrate concentrations influencing ionic strength and redox potential in the sediments, and increased VSS loads at Valley City possibly indicating greater algal production and contributing to hypoxia in lower river sediments. Additional research is needed to quantify the relative importance of these mechanisms.  相似文献   

4.
Growing interest in corn (Zea mays L.) silage utilization on Wisconsin dairy farms may have implications for nutrient losses from agricultural lands. Increasing the silage cutting height will increase residue cover and could reduce off-site migration of sediments and associated constituents compared with conventional silage harvesting. We examined the effects of residue level and manure application timing on phosphorus (P) losses in runoff from no-till corn. Treatments included conventional corn grain (G) and silage (SL; 10- to 15-cm cutting height) and nonconventional, high-cut (60-65 cm) silage (SH) subjected to different manure application regimes: no manure (N) or surface application in fall (F) or spring (S). Simulated rainfall (76 mm h(-1); 1 h) was applied in spring and fall for two years (2002-2003), runoff from 2.0- x 1.5-m plots was collected, and subsamples were analyzed for dissolved reactive phosphorus (DRP), total phosphorus (TP), and P mass distribution in four particle size classes. Total P and DRP loads were inversely related to percent residue cover, but both TP and DRP concentrations were unaffected by residue level. Manure application increased DRP concentrations in spring runoff by two to five times but did not significantly affect DRP loads, since higher concentrations were offset by lower runoff volumes. Spring manure application reduced TP loads in spring runoff by 77 to 90% compared with plots receiving no manure, with the extent of reductions being greatest at the lower residue levels (<24%). The TP concentration in sediments increased as particle size decreased. Manure application increased the TP concentration of the 0- to 2-microm fraction by 79 to 125%, but elevated the 2- to 10- and 10- to 50-microm fractions to a lesser extent. Recent manure additions were most influential in enriching transported sediments with P. By itself, higher residue cover achieved by high-cutting silage was often insufficient to lower P losses; however, the combination of manure application and higher residue levels significantly reduced P losses from corn fields harvested for silage.  相似文献   

5.
Uptake and release of phosphorus from overland flow in a stream environment   总被引:1,自引:0,他引:1  
Phosphorus runoff from agricultural fields has been linked to fresh-water eutrophication. However, edge-of-field P losses can be modified by benthic sediments during stream flow by physiochemical processes associated with Al, Fe, and Ca, and by biological assimilation. We investigated fluvial P when exposed to stream-bed sediments (top 3 cm) collected from seven sites representing forested and agricultural areas (pasture and cultivated), in a mixed-land-use watershed. Sediment was placed in a 10-m-long, 0.2-m-wide fluvarium to a 3-cm depth and water was recirculated over the sediment at 2 L s(-1) and 5% slope. When overland flow (4 mg dissolved reactive phosphorus [DRP] and 9 mg total phosphorus [TP] L(-1)) from manured soils was first recirculated, P uptake was associated with Al and Fe hydrous oxides for sediments from forested areas (pH 5.2-5.4) and by Ca for sediments from agricultural areas (pH 6.5-7.2). A large increase (up to 200%) in readily available P NH4Cl fraction was noted. After 24 h, DRP concentration in channel flow was related to sediment solution P concentration at which no net sorption or desorption of P occurs (EPC0) (r2 = 0.77), indicating quasi-equilibrium. When fresh water (approximately 0.005 mg P L(-1) mean base flow DRP at seven sites) was recirculated over the sediments for 24 h, P release kinetics followed an exponential function. Microbial biomass P accounted for 34 to 43% of sediment P uptake from manure-rich overland flow. Although abiotic sediment processes played a dominant role in determining P uptake, biotic process are clearly important and both should be considered along with the location and management of landscape inputs for remedial strategies to be effective.  相似文献   

6.
Both sediment and phosphorus (P) are important contaminants for surface water quality. Knowing the main sources of sediment and P loss within agricultural catchments enables mitigation practices to be better targeted. With this in mind seasonal loads of suspended sediment (SS), dissolved reactive P (DRP), total P (TP), and bioavailable P (BAP) were measured in a low gradient stream draining an intensively farmed New Zealand dairying catchment. Integrating in situ samplers were deployed to collect samples and the results merged with continuous flow data to calculate seasonal loads during 2005 through 2006. Flow rate, SS, and TP concentrations peaked in winter-spring and were lowest in summer-autumn. Concentrations of BAP in trapped sediment were greatest in autumn, contrasting with winter and spring when greater amounts of sediment were trapped, but with lower P enrichment. Analysis of (137)Cs and mixing model output showed that a major source of sediment and associated P in winter and spring was stream banks. Possible causes for this include trampling and destabilization by stock, channel straightening and sediment removal, and removal of riparian trees that stabilize banks. Modelling indicated that overland flow probably from topsoil (but could include sediment from lanes) contributed most sediment during summer and autumn. Remediation aimed at decreasing particulate P inputs to streams should focus on riparian protection measures, such as permanent stock exclusion and planting with shrubs and trees, ensuring runoff from lanes is minimized, and decreasing Olsen P to nearer optimum agronomic levels.  相似文献   

7.
Abstract: Drainage ditches can be a key conduit of phosphorus (P) between agricultural soils of the Atlantic Coastal Plain and local surface waters, including the Chesapeake Bay. This study sought to quantify the effect of a common ditch management practice, sediment dredging, on fate of P in drainage ditches. Sediments from two drainage ditches that had been monitored for seven years and had similar characteristics (flow, P loadings, sediment properties) were sampled (0‐5 cm) after one of the ditches had been dredged, which removed fine textured sediments (clay = 41%) with high organic matter content (85 g/kg) and exposed coarse textured sediments (clay = 15%) with low organic matter content (2.2 g/kg). Sediments were subjected to a three‐phase experiment (equilibrium, uptake, and release) in recirculating 10‐m‐long, 0.2‐m‐wide, and 5‐cm‐deep flumes to evaluate their role as sources and sinks of P. Under conditions of low initial P concentrations in flume water, sediments from the dredged ditch released 13 times less P to the water than did sediments from the ditch that had not been dredged, equivalent to 24 mg dissolved P. However, the sediments from the dredged ditch removed 19% less P (76 mg) from the flume water when it was spiked with dissolved P to approximate long‐term runoff concentrations. Irradiation of sediments to destroy microorganisms revealed that biological processes accounted for up to 30% of P uptake in the coarse textured sediments of the dredged ditch and 18% in the fine textured sediments of the undredged ditch. Results indicate that dredging of coastal plain drainage ditches can potentially impact the P buffering capacity of ditches draining agricultural soils with a high potential for P runoff.  相似文献   

8.
The loss of phosphorus and sediment to surface waters can impair their quality. It was hypothesized that the practice of winter grazing dairy cattle on cropland of moderate slope (5-20%) would exacerbate the loss of P and suspended sediment (SS) from land to water. In a small (4.3 ha) catchment two flumes were installed, upstream and downstream of one field (about 2 ha) that had been cropped for 2 yr and grazed in winter (June-July) by dairy cattle. Flow proportional samples were taken and measured for dissolved reactive phosphorus (DRP), particulate phosphorus (PP), total phosphorus (TP), and SS. During the 2002 hydrologic year (March-February) loads of SS increased per hectare downstream (1449 kg ha(-1)) compared to upstream (880 kg ha(-1)). The same increase from upstream (873 kg ha(-1)) to downstream (969 kg ha(-1)) happened in 2003. However, while in 2003 TP increased downstream by 1.64 kg ha(-1) compared to upstream (0.24 kg ha(-1)), in 2002 an increase of only 0.006 kg ha(-1) at the downstream flume occurred compared to upstream (0.98 kg ha(-1)). Investigation of P transport pathways suggested that overland flow contributed <0.1 kg P ha(-1) to stream flow, 10 and 5% of TP load in 2002 and 2003, with the greater load in 2002 reflecting more rainfall in that year. The contribution to stream flow by subsurface flow was estimated at 0.3 kg P ha(-1). Stream bed sediments showed an increase in total P concentration in summer when no flow occurred due to the admission by the farmer of 10 cattle upstream of the cropped paddock in summer 2001-2002 and 20 cattle between the two flumes in 2003 to graze stream banks. This action was calculated to contribute via dung at least, the remaining P lost: about 0.5 kg P in 2002 and 1.0 kg P in 2003. Clearly, not allowing animals to "clear-up" stream banks is a priority if good surface water quality is to be achieved. Furthermore, compared to stock access the impact of winter grazing cropland on P losses was minimal, but SS load was increased by an average of 75%.  相似文献   

9.
Many source and transport factors control P loss from agricultural landscapes; however, little information is available on how these factors are linked at a watershed scale. Thus, we investigated mechanisms controlling P release from soil and stream sediments in relation to storm and baseflow P concentrations at four flumes and in the channel of an agricultural watershed. Baseflow dissolved reactive phosphorus (DRP) concentrations were greater at the watershed outflow (Flume 1; 0.042 mg L(-1)) than uppermost flume (Flume 4; 0.028 mg L(-1)). Conversely, DRP concentrations were greater at Flume 4 (0.304 mg L(-1)) than Flume 1 (0.128 mg L(-1)) during stormflow. Similar trends in total phosphorus (TP) concentration were also observed. During stormflow, stream P concentrations are controlled by overland flow-generated erosion from areas of the watershed coincident with high soil P. In-channel decreases in P concentration during stormflow were attributed to sediment deposition, resorption of P, and dilution. The increase in baseflow P concentrations downstream was controlled by channel sediments. Phosphorus sorption maximum of Flume 4 sediment (532 mg kg(-1)) was greater than at the outlet Flume 1 (227 mg kg(-1)). Indeed, the decrease in P desorption between Flumes 1 and 4 sediment (0.046 to 0.025 mg L(-1)) was similar to the difference in baseflow DRP between Flumes 1 and 4 (0.042 to 0.028 mg L(-1)). This study shows that erosion, soil P concentration, and channel sediment P sorption properties influence streamflow DRP and TP. A better understanding of the spatial and temporal distribution of these processes and their connectivity over the landscape will aid targeting remedial practices.  相似文献   

10.
ABSTRACT: It is suggested that new impoundments undergo an initial period of trophic upsurge lasting one to three years because of organic detritus and inorganic nutrients from the inundated basin. The new Monksville Reservoir in Passaic County, New Jersey, provided an opportunity to study the accelerated transformation of the Wanaque River into a 200-ha lake and to compare productivity with the older Wanaque Reservoir located immediately downstream. A one-year investigation of both reservoirs was conducted during 1988. The primary productivity (0.547 g C m?2 d?1) of the new Monksville Reservoir was not significantly different from that of the established Wanaque Reservoir (0.668 g C m?2 d?1). Mean surface chlorophyll a concentrations were similar (3.0–4.0 μg 1?1), although the Monksville Reservoir exhibited more pronounced chlorophyll peaks in spring and late autumn. Phytoplankton and zooplankton populations were consistently larger and fluctuated sharply in the Monksville Reservoir. Both reservoirs became thermally stratified, but only the Monksville Reservoir developed a metalimnetic dissolved oxygen minimum. The results demonstrated that the predicted trophic upsurge in the new reservoir did not occur in the first year therefore, the ecosystem dynamics did not fit the model for larger reservoirs.  相似文献   

11.
ABSTRACT: An application of the receiving water block of the EPA Storm Water management Model (SWMM) is presented to quantify water quality impacts and evaluated control alternatives for a 208 areawide waste water management plan in Volusia Country, Florida. The water quality impact analyses were conducted for dry-and wet-weather conditions to simulate dissolved oxygen (DO), chlorides, total nitrogen (TN), and total phosphorus (TP) in the Halifax Rivers, Florida, a 40-kilometer-long tidal estuary located on the Atlantic coast of Florida near Daytona Beach. Dry-weather analysis was performed using conventional 7-day, 10-year low flow conditions to determine a set of unit transfer coefficients which estimate the pollutant concentration transferred to any point in the estuary from a constant unit discharge of pollutants at the existing waste water treatment plant outfall locations. Wet-weather analysis was performed by continuous simulation of a typical three-month summer wet season in Florida. Three-month cumulative duration curves of DO, TN and TP concentrations were constructed to estimate the relative value of controlling urban runoff of waste water treatment plant effluent on the Halifax River. The three-month continuous simulation indicated that the greatest change in DO, TN, and TP duration curves is possible by abatement of waste water treatment plant pollution.  相似文献   

12.
Runoff losses of dissolved and particulate phosphorus (P) may occur when rainfall interacts with manures and biosolids spread on the soil surface. This study compared P levels in runoff losses from soils amended with several P sources, including 10 different biosolids and dairy manure (untreated and treated with Fe or Al salts). Simulated rainfall (71 mm h(-1)) was applied until 30 min of runoff was collected from soil boxes (100 x 20 x 5 cm) to which the P sources were surfaced applied. Materials were applied to achieve a common plant available nitrogen (PAN) rate of 134 kg PAN ha(-1), resulting in total P loading rates from 122 (dairy manure) to 555 (Syracuse N-Viro biosolids) kg P ha(-1). Two biosolids produced via biological phosphorus removal (BPR) wastewater treatment resulted in the highest total dissolved phosphorus (13-21.5 mg TDP L(-1)) and total phosphorus (18-27.5 mg TP L(-1)) concentrations in runoff, followed by untreated dairy manure that had statistically (p = 0.05) higher TDP (8.5 mg L(-1)) and TP (10.9 mg L(-1)) than seven of the eight other biosolids. The TDP and TP in runoff from six biosolids did not differ significantly from unamended control (0.03 mg TDP L(-1); 0.95 mg TP L(-1)). Highest runoff TDP was associated with P sources low in Al and Fe. Amending dairy manure with Al and Fe salts at 1:1 metal-to-P molar ratio reduced runoff TP to control levels. Runoff TDP and TP were not positively correlated to TP application rate unless modified by a weighting factor reflecting the relative solubility of the P source. This suggests site assessment indices should account for the differential solubility of the applied P source to accurately predict the risk of P loss from the wide variety of biosolids materials routinely land applied.  相似文献   

13.
Contamination of unfenced streams with P, sediments, and pathogenic bacteria from cattle (Bos taurus) activity may be affected by the availability of shade and alternative water sources. The objectives of this study were to evaluate water quality in two streams draining tall fescue (Festuca arundinacea Schreb.)-common bermudagrass (Cynodon dactylon L.) pastures with different shade distribution, and to quantify the effects of alternative water sources on stream water quality. For 3 yr, loads of dissolved reactive phosphorus (DRP), total phosphorus (TP), and total suspended solids (TSS) were measured during storm flow, and loads of DRP, TP, TSS, and Escherichia coli were measured every 14 d during base flow. We also used GPS collars to determine amount of time cattle spent in riparian areas. Our results showed that cattle-grazed pastures with unfenced streams contributed significant loads of DRP, TP, TSS, and E. coli to surface waters (p < 0.01). Time spent by cattle in riparian areas as well as storm flow loads of DRP, TP, and TSS were larger (p < 0.08) in the pasture with the smaller amount of nonriparian shade. Water trough availability decreased base flow loads of TSS and E. coli in both streams, and decreased time cattle spent in riparian areas in the pasture with the smaller amount of nonriparian shade (p < 0.08). Our results indicate that possible BMPs to reduce contamination from cattle-grazed pastures would be to develop or encourage nonriparian shade and to provide cattle with alternative water sources away from the stream.  相似文献   

14.
The pastoral grazing of farmed red deer (Cervus elaphus) is common in New Zealand. However, red deer have a natural instinct to seek out water and wallow in it. Often, in headwater catchments, they will create a wallow in a wet area connected to a waterway. Aesthetically, wallowing areas can be unpleasant and give the impression they are significant sources of contaminants entering waterways. This paper aimed to quantify their contribution to loads of contaminants lost from three headwater catchments (4.1 to 32.1 ha). Monthly water samples were taken of base flow and of all storm flow events and analyzed for nitrogen (N) and phosphorus (P) species, suspended sediment (SS), and the fecal indicator bacteria-E. coli. Median concentrations were generally in excess of recommended guidelines for lowland water quality and contact recreation in New Zealand (guidelines=9 microg dissolved reactive P L(-1), 30 microg total P L(-1), 444 microg nitrate and nitrite N L(-1), 0.9 mg NH4+-N L(-1) at pH 7, 4 mg SS L(-1), and 260 cfu 100 mL(-1)). Loads of P (up to c. 3 kg P ha(-1)) and SS (up to 4.5 Mg ha(-1)) exceeded the highest loads measured (1.7 kg P and 2 Mg SS ha(-1)) for a range of pastoral catchments in New Zealand, including deer-farmed catchments without many wallows connected to waterways. More losses occurred during storm flow than base flow but, more importantly, the majority of losses only occurred when deer were in the paddock and wallowing. Hence, to mitigate most contaminant losses, management should focus on discouraging wallowing and/or breaking the connectivity between wallows and waterways.  相似文献   

15.
ABSTRACT: Because the Truckee River connects two lakes along the Eastern Sierra Nevada Mountains with different limiting nutrients, this research addresses whether the nitrogen:phosphorus (N:P) balance of the river ecosystem changes longitudinally. Historical (1990 to 2000) total nitro‐gen:total phosphorus (TN:TP) ratios in river water exhibited the expected gradient from high N:P ratios upstream to low N:P ratios downstream, with the major gradient of the N:P balance occurring within the transition between montane and high desert terrain. During 2001, the river contained anomalously low total nitrogen concentrations in the far upper reaches and dissolved inorganic nitrogen concentrations in the lower reaches, resulting in a less apparent longitudinal gradient of N:P ratios. Measurements of periphyton growth and physiology (nutrient bioassays and ectoenzyme activities) and stoichiometry during the summer of 2001 also exhibited a complex picture of the spatial variation of N:P balance that was not entirely consistent with a strong N:P gradient. However, the compendium of the indicators did support the overall picture of an overarching longitudinal gradient from high to low N:P ratios. The results suggest that periphyton management efforts in the Truckee River should consider the overall spatial gradient as well as the small‐scale dynamics of the stream ecosystem structure.  相似文献   

16.
Pollution of water resources by phosphorus (P) is a critical issue in regions with agricultural and urban development. In this study, we estimated P inputs from agricultural and urban sources in 24 catchments draining to the Central Valley in California and compared them with measured river P export to investigate hydrologic and anthropogenic factors affecting regional P retention and export. Using spatially explicit information on fertilizer use, livestock population, agricultural production, and human population, we calculated that net surface balances for anthropogenic P ranged from -12 to 648 kg P km yr in the early 2000s. Inorganic P fertilizer and manure P comprised the largest fraction of total input for all but two catchments. From 2000 to 2003, a median of 7% (range, -287 to 88%) of net annual anthropogenic P input was exported as total P (TP). Yields (kg P km yr) of dissolved inorganic P (DIP), dissolved organic P, particulate P, and TP were not significantly related to catchment-level, per area anthropogenic P input. However, there were significant relationships between mean annual P concentrations and P input from inorganic fertilizers and manure due to the concentration of agricultural land near catchment mouths and regional variation in runoff. Catchment-level P fertilizer and manure inputs explained 4 to 23% more variance in mean annual DIP and TP concentrations than percent of catchment area in agriculture. This study suggests that spatially explicit estimates of anthropogenic P input can help identify sources of multiple forms of P exported in rivers at management-relevant spatial scales.  相似文献   

17.
The Olsen-P status of grazed grassland (Lolium perenne L.) swards in Northern Ireland was increased over a 5-yr period (March 2000 to February 2005) by applying different rates of P fertilizer (0, 10, 20, 40, or 80 kg P ha(-1) yr(-1)) to assess the relationship between soil P status and P losses in land drainage water and overland flow. Plots (0.2 ha) were hydrologically isolated and artificially drained to v-notch weirs, with flow proportional monitoring of drainage water and overland flow. Annually, the collectors for overland flow intercepted between 11 and 35% of the surplus rainfall. Single flow events accounted for up to 52% of the annual dissolved reactive phosphorus (DRP) load. The Olsen-P status of the soil influenced DRP and total phosphorus (TP) concentrations in land drainage water and overland flow. Annual TP loss was highly variable and ranged from 0.19 to 1.55 kg P ha(-1) yr(-1) for the plot receiving no P fertilizer and from 0.35 to 2.94 kg P ha(-1) yr(-1) for the plot receiving 80 kg P ha(-1) yr(-1). Despite the Olsen-P status in the soils ranging from 22 to 99 mg P kg(-1), after 5 yr of fertilizer P applications it was difficult to identify a clear Olsen-P concentration at which P losses increased. Any relationship was confounded by annual variability of hydrologic events and flows and by hydrologic differences between plots. Withholding P fertilizer for over 5 yr was not long enough to lower P losses or to have an adverse effect on herbage P concentrations.  相似文献   

18.
Kardos, Josef S. and Christopher C. Obropta, 2011. Water Quality Model Uncertainty Analysis of a Point‐Point Source Phosphorus Trading Program. Journal of the American Water Resources Association (JAWRA) 47(6):1317–1337. DOI: 10.1111/j.1752‐1688.2011.00591.x Abstract: Water quality modeling is a major source of scientific uncertainty in the Total Maximum Daily Load (TMDL) process. The effects of these uncertainties extend to water quality trading programs designed to implement TMDLs. This study examines the effects of water quality model uncertainty on a nutrient trading program. The study builds on previous work to design a phosphorus trading program for the Nontidal Passaic River Basin in New Jersey that would implement the watershed TMDL for total phosphorus (TP). The study identified how water quality model uncertainty affects outcomes of potential trades of TP between wastewater treatment plants. The uncertainty analysis found no evidence to suggest that the outcome of trades between wastewater treatment plants, as compared with command and control regulation, will significantly increase uncertainty in the attainment of dissolved oxygen surface water quality standards, site‐specific chlorophyll a criteria, and reduction targets for diverted TP load at potential hot spots in the watershed. Each simulated trading scenario demonstrated parity with or improvement from the command and control approach at the TMDL critical locations, and low risk of hot spots elsewhere.  相似文献   

19.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.  相似文献   

20.
不同水力负荷条件下的人工湿地污染处理效果分析   总被引:1,自引:0,他引:1  
本文研究了水力负荷对抚仙湖北岸典型人工湿地净化河道污水处理效率的影响。研究表明,TN、TP及SS去除率随着水力负荷的增加而下降,COD去除率受水力负荷的影响程度相对较小。综合考虑水力负荷对氮磷、有机物及悬浮物等水质净化效果的影响,如果不考虑其它因素,仅从系统处理效果的角度选择水力负荷,人工湿地系统的最佳水力负荷为0.5 m3/m2·d以下。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号