首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 829 毫秒
1.
This paper presents a simple methodology for estimating pressure pressure buildup due to the injection of supercritical CO2into a saline formation, and the limiting pressure at which the formation starts to fracture. Pressure buildup is calculated using the approximate solution of Mathias et al. [Mathias, S.A., Hardisty, P.E., Trudell, M.R., Zimmerman, R.W., 2009. Approximate solutions for pressure buildup during CO2 injection in brine aquifers. Transp. Porous Media. doi:10.1007/s11242-008-9316-7], which accounts for two-phase Forchheimer flow (of supercritical CO2 and brine) in a compressible porous medium. Compressibility of the rock formation and both fluid phases are also accounted for. Injection pressure is assumed to be limited by the pressure required to fracture the rock formation. Fracture development is assumed to occur when pore pressures exceed the minimum principal stress, which in turn is related to the Poisson’s ratio of the rock formation. Detailed guidance is also offered concerning the estimation of viscosity, density and compressibility for the brine and CO2. Example calculations are presented in the context of data from the Plains CO2 Reduction (PCOR) Partnership. Such a methodology will be useful for screening analysis of potential CO2 injection sites to identify which are worthy of further investigation.  相似文献   

2.
Large volumes of CO2 captured from carbon emitters (such as coal-fired power plants) may be stored in deep saline aquifers as a means of mitigating climate change. Storing these additional fluids may cause pressure changes and displacement of native brines, affecting subsurface volumes that can be significantly larger than the CO2 plume itself. This study aimed at determining the three-dimensional region of influence during/after injection of CO2 and evaluating the possible implications for shallow groundwater resources, with particular focus on the effects of interlayer communication through low-permeability seals. To address these issues quantitatively, we conducted numerical simulations that provide a basic understanding of the large-scale flow and pressure conditions in response to industrial-scale CO2 injection into a laterally open saline aquifer. The model domain included an idealized multilayered groundwater system, with a sequence of aquifers and aquitards (sealing units) extending from the deep saline storage formation to the uppermost freshwater aquifer. Both the local CO2-brine flow around the single injection site and the single-phase water flow (with salinity changes) in the region away from the CO2 plume were simulated. Our simulation results indicate considerable pressure buildup in the storage formation more than 100 km away from the injection zone, whereas the lateral distance migration of brine is rather small. In the vertical direction, the pressure perturbation from CO2 storage may reach shallow groundwater resources only if the deep storage formation communicates with the shallow aquifers through sealing units of relatively high permeabilities (higher than 10?18 m2). Vertical brine migration through a sequence of layers into shallow groundwater bodies is extremely unlikely. Overall, large-scale pressure changes appear to be of more concern to groundwater resources than changes in water quality caused by the migration of displaced saline water.  相似文献   

3.
Sequestration of carbon dioxide (CO2) in deep saline aquifers has emerged as an option for reducing greenhouse gas emissions to the atmosphere. The large amounts of supercritical CO2 that need to be injected into deep saline aquifers may cause large fluid pressure increases. The resulting overpressure may promote reactivation of sealed fractures or the creation of new ones in the caprock seal. This could lead to escape routes for CO2. In order to assess the probability of such an event, we model an axisymmetric horizontal aquifer–caprock system, including hydromechanical coupling. We study the failure mechanisms, using a viscoplastic approach. Simulations illustrate that, depending on boundary conditions, the least favorable moment takes place at the beginning of injection. Initially, fluid pressure rises sharply because of a reduction in permeability due to desaturation. Once CO2 fills the pores in the vicinity of the injection well and a capillary fringe is fully developed, the less viscous CO2 displaces the brine and the capillary fringe laterally. The overpressure caused by the permeability reduction within the capillary fringe due to desaturation decreases with distance from the injection well. This results in a drop in fluid pressure buildup with time, which leads to a safer situation. Nevertheless, in the presence of low-permeability boundaries, fluid pressure continues to rise in the whole aquifer. This occurs when the radius of influence of the injection reaches the outer boundary. Thus, caprock integrity might be compromised in the long term.  相似文献   

4.
Climate change is being caused by greenhouse gases such as carbon dioxide (CO2). Carbon capture and storage (CCS) is of interest to the scientific community as one way of achieving significant global reductions of atmospheric CO2 emissions in the medium term. CO2 would be captured from large stationary sources such as power plants and transported via pipelines under high pressure conditions to underground storage. If a downward leakage from a surface transportation system module occurs, the CO2 would undergo a large temperature reduction and form a bank of “dry ice” on the ground surface; the sublimation of the gas from this bank represents an area source term for subsequent atmospheric dispersion, with an emission rate dependent on the energy balance at the bank surface. Gaseous CO2 is denser than air and tends to remain close to the surface; it is an asphyxiant, a cerebral vasodilator and at high concentrations causes rapid circulatory insufficiency leading to coma and death. Hence a subliming bank of dry ice represents safety hazard. A model is presented for evaluating the energy balance and sublimation rate at the surface of a solid frozen CO2 bank under different environmental conditions. The results suggest that subliming gas behaves as a proper dense gas (i.e. it remains close to the ground surface) only for low ambient wind speeds.  相似文献   

5.
Industrial-scale injection of CO2 into saline formations in sedimentary basins will cause large-scale fluid pressurization and migration of native brines, which may affect valuable groundwater resources overlying the deep sequestration aquifers. In this paper, we discuss how such basin-scale hydrogeologic impacts (1) may reduce current storage capacity estimates, and (2) can affect regulation of CO2 storage projects. Our assessment arises from a hypothetical future carbon sequestration scenario in the Illinois Basin, which involves twenty individual CO2 storage projects (sites) in a core injection area most suitable for long-term storage. Each project is assumed to inject five million tonnes of CO2 per year for 50 years. A regional-scale three-dimensional simulation model was developed for the Illinois Basin that captures both the local-scale CO2–brine flow processes and the large-scale groundwater flow patterns in response to CO2 storage. The far-field pressure buildup predicted for this selected sequestration scenario support recent studies in that environmental concerns related to near- and far-field pressure buildup may be a limiting factor on CO2 storage capacity. In other words, estimates of storage capacity, if solely based on the effective pore volume available for safe trapping of CO2, may have to be revised based on assessments of pressure perturbations and their potential impacts on caprock integrity and groundwater resources. Our results suggest that (1) the area that needs to be characterized in a permitting process may comprise a very large region within the basin if reservoir pressurization is considered, and (2) permits cannot be granted on a single-site basis alone because the near- and far-field hydrogeologic response may be affected by interference between individual storage sites. We also discuss some of the challenges in making reliable predictions of large-scale hydrogeologic impacts related to CO2 sequestration projects.  相似文献   

6.
Large-scale storage of carbon dioxide in saline aquifers may cause considerable pressure perturbation and brine migration in deep rock formations, which may have a significant influence on the regional groundwater system. With the help of parallel computing techniques, we conducted a comprehensive, large-scale numerical simulation of CO2 geologic storage that predicts not only CO2 migration, but also its impact on regional groundwater flow. As a case study, a hypothetical industrial-scale CO2 injection in Tokyo Bay, which is surrounded by the most heavily industrialized area in Japan, was considered, and the impact of CO2 injection on near-surface aquifers was investigated, assuming relatively high seal-layer permeability (higher than 10 microdarcy). A regional hydrogeological model with an area of about 60 km × 70 km around Tokyo Bay was discretized into about 10 million gridblocks. To solve the high-resolution model efficiently, we used a parallelized multiphase flow simulator TOUGH2-MP/ECO2N on a world-class high performance supercomputer in Japan, the Earth Simulator. In this simulation, CO2 was injected into a storage aquifer at about 1 km depth under Tokyo Bay from 10 wells, at a total rate of 10 million tons/year for 100 years. Through the model, we can examine regional groundwater pressure buildup and groundwater migration to the land surface. The results suggest that even if containment of CO2 plume is ensured, pressure buildup on the order of a few bars can occur in the shallow confined aquifers over extensive regions, including urban inlands.  相似文献   

7.
To test the injection behaviour of CO2 into brine-saturated rock and to evaluate the dependence of geophysical properties on CO2 injection, flow and exposure experiments with brine and CO2 were performed on sandstone samples of the Stuttgart Formation representing potential reservoir rocks for CO2 storage. The sandstone samples studied are generally fine-grained with porosities between 17 and 32% and permeabilities between 1 and 100 mD.Additional batch experiments were performed to predict the long-term behaviour of geological CO2 storage. Reservoir rock samples were exposed over a period of several months to CO2-saturated reservoir fluid in high-pressure vessels under in situ temperature and pressure conditions. Petrophysical parameters, porosity and the pore radius distribution were investigated before and after the experiments by NMR (Nuclear Magnetic Resonance) relaxation and mercury injection. Most of the NMR measurements of the tested samples showed a slight increase of porosity and a higher proportion of large pores.  相似文献   

8.
Carbon dioxide (CO2) injection into saline aquifers is one of the promising options to sequester large amounts of CO2 in geological formations. During as well as after injection of CO2 into an aquifer, CO2 migrates towards the top of the formation due to density differences between the formation brine and the injected CO2. The time scales of CO2 migration towards the top of an aquifer and the fraction of CO2 that is trapped as residual gas depends strongly on the driving forces that are acting on the injected CO2.When CO2 migrates to the top of an aquifer, brine may be displaced downwards in a counter-current flow setting particularly during the injection period. A majority of the published work on counter-current flow settings have reported significant reductions in the associated relative permeability functions as compared to co-current measurements. However, this phenomenon has not yet been considered in the simulation of CO2 storage into saline aquifers.In this paper we study the impact of changes in mobility for the two-phase brine/CO2 system as a result of transitions between co- and counter-current flow settings. We have included this effect in a simulator and studied the impact of the related mobility reduction on the saturation distribution and residual saturation of CO2 in aquifers over relevant time scales. We demonstrate that the reduction in relative permeability in the vertical direction changes the plume migration pattern and has an impact on the amount of gas that is trapped as a function of time. This is to our best knowledge the first attempt to integrate counter-current relative permeability into the simulation of injection and subsequent migration of CO2 in aquifers. The results and analysis presented in this paper are directly relevant to all ongoing activities related to the design of large-scale CO2 storage in saline aquifers.  相似文献   

9.
Acid gas geological disposal is a promising process to reduce CO2 atmospheric emissions and an environment-friendly and economic alternative to the transformation of H2S into sulphur by the Claus process. Acid gas confinement in geological formations is to a large extent controlled by the capillary properties of the water/acid–gas/caprock system, because a significant fraction of the injected gas rises buoyantly and accumulates beneath the caprock. These properties include the water/acid gas interfacial tension (IFT), to which the so-called capillary entry pressure of the gas in the water-saturated caprock is proportional. In this paper we present the first ever systematic water/acid gas IFT measurements carried out by the pendant drop technique under geological storage conditions. We performed IFT measurements for water/H2S systems over a large range of pressure (up to P = 15 MPa) and temperature (up to T = 120 °C). Water/H2S IFT decreases with increasing P and levels off at around 9–10 mN/m at high T (≥70 °C) and P (>12 MPa). The latter values are around 30–40% of water/CO2 IFTs, and around 20% of water/CH4 IFTs at similar T and P conditions. The IFT between water and a CO2 + H2S mixture at T = 77 °C and P > 7.5 MPa is observed to be approximately equal to the molar average IFT of the water/CO2 and water/H2S binary mixtures. Thus, when the H2S content in the stored acid gas increases the capillary entry pressure decreases, together with the maximum height of acid gas column and potential storage capacity of a given geological formation. Hence, considerable attention should be exercised when refilling with a H2S-rich acid gas a depleted gas reservoir, or a depleted oil reservoir with a gas cap: in the case of hydrocarbon reservoirs that were initially (i.e., at the time of their discovery) close to capillary leakage, acid gas leakage through the caprock will inevitably occur if the refilling pressure approaches the initial reservoir pressure.  相似文献   

10.
During injection of carbon dioxide (CO2) into deep saline aquifers, the available pore volume of the aquifer may be used inefficiently, thereby decreasing the effective capacity of the repository for CO2 storage. Storage efficiency is the fraction of the available pore space that is utilized for CO2 storage, or, in other words, it is the ratio between the volume of stored CO2 and the maximum available pore volume. In this note, we derive and present simple analytical expressions for estimating CO2 storage efficiency under the scenario of a constant-rate injection of CO2 into a confined, homogeneous, isotropic, saline aquifer. The expressions for storage efficiency are derived from models developed previously by other researchers describing the shape of the CO2-brine interface. The storage efficiency of CO2 is found to depend on three dimensionless groups, namely: (1) the residual saturation of brine after displacement by CO2; (2) the ratio of CO2 mobility to brine mobility; (3) a dimensionless group (which we call a “gravity factor”) that quantifies the importance of CO2 buoyancy relative to CO2 injection rate. In the particular case of negligible residual brine saturation and negligible buoyancy effects, the storage efficiency is approximately equal to the ratio of the CO2 viscosity to the brine viscosity. Storage efficiency decreases as the gravity factor increases, because the buoyancy of the CO2 causes it to occupy a thin layer at the top of the confined formation, while leaving the lower part of the aquifer under-utilized. Estimates of storage efficiency from our simple analytical expressions are in reasonable agreement with values calculated from simulations performed with more complicated multi-phase-flow simulation software. Therefore, we suggest that the analytical expressions presented herein could be used as a simple and rapid tool to screen the technical or economic feasibility of a proposed CO2 injection scenario.  相似文献   

11.
The estimates for geological CO2 storage capacity worldwide vary, but it is generally believed that the capacity in saline aquifers will be sufficient for the amounts of CO2 that will need to be stored. The effort required to select and qualify a geological storage site for safe storage will, however, be significant and storage capacity may be a limited resource regionally. Both from a economic and resource management perspective it is therefore important that potential storage sites are exploited to their full potential.In static capacity estimates, where the maximum stored amount of CO2 is given as a fraction of the formation pore volume, typically arrive at efficiency factors in the range of a few per cents. Recent work has shown that when the dynamic behaviour of the injected CO2 is taken into account, the efficiency factor will be reduced because of the increase in pore pressure in the region around the injection well(s). The increase in pore pressure will propagate much further than the CO2. The EU directive on geological CO2 storage specifically addresses the restriction that will apply when different storage sites are interacting due to pressure communication. Consequently, the pore pressure increase at the boundary of the storage license area will be an important limiting factor for the amount of CO2 that can be injected.One obvious method to control the pore pressure is to produce water from the aquifer at some distance from the CO2 injection wells. This paper discusses results from simulations of CO2 injection in two aquifers on the Norwegian Continental Shelf; the Johansen aquifer and the southern part of the Utsira aquifer. These aquifers are candidates for injection of CO2 shipped out via pipeline from the Norwegian West Coast. The injected amounts of CO2 over a period of 50 years are 0.518 Gtonne for the Johansen aquifer and 1.04 Gtonne for the Utsira aquifer.Several design options for the injection operations are investigated: Injection of CO2 without water production; injection into several wells to distribute the injected fluids and reduce the local pressure increase around each injection well; and injection with simultaneous production of water from one or more wells. The boundaries of the aquifer formations are assumed closed in all simulations. The possible consequences of other types of boundary conditions (semi-closed or open) are briefly discussed.  相似文献   

12.
CO2 capture and geological storage (CCS) is considered as a viable option to mitigate greenhouse gas emissions during the transition phase towards the use of clean and renewable energy. This paper concentrates on the transport of CO2 between source (CO2 capture at plants) and sink (geological storage reservoirs). In the cost estimation of CO2 transport, the pipeline diameter plays an important role. In this respect, the paper reviews equations that were used in several reports on CO2 pipeline transport. As some parameters are not taken into account in these equations, alternative formulas are proposed which calculate the proper inner diameter size based on flow rate, pressure drop per unit length, CO2 density, CO2 viscosity, pipeline material roughness and topographic height differences (the Darcy–Weisbach solution) and, in addition, on the amount and type of bends (the Manning solution). Comparison between calculated diameters using the reviewed and the proposed equations demonstrate the important influence of elevation difference (which is not considered in the reviewed equations) and pipeline material roughness-related factor on the calculated diameter. Concerning the latter, it is suggested that a Darcy–Weisbach roughness height of 0.045 mm better corresponds to a Manning factor of 0.009 than higher Manning values previously proposed in literature. Comparison with the actual diameter of the Weyburn pipeline confirms the accuracy of the proposed equations. Comparison with other existing CO2 pipelines (without pressure information) indicate that the pipelines are designed for lower pressure gradients than 25 Pa/m or for (future) higher flow rates. The proposed Manning equation is implemented in an economic least-cost route planner in order to obtain the best economic solution for pipeline trajectory and corresponding diameter.  相似文献   

13.
The paper presents a methodology for CO2 chain analysis with particular focus on the impact of technology development on the total system economy. The methodology includes the whole CO2 chain; CO2 source, CO2 capture, transport and storage in aquifers or in oil reservoirs for enhanced oil recovery. It aims at supporting the identification of feasible solutions and assisting the selection of the most cost-effective options for carbon capture and storage. To demonstrate the applicability of the methodology a case study has been carried out to illustrate the possible impact of technology improvements and market development. The case study confirms that the CO2-quota price to a large extent influence the project economy and dominates over potential technology improvements. To be economic feasible, the studied chains injecting the CO2 in oil reservoirs for increased oil production require a CO2-quota price in the range of 20–27 €/tonne CO2, depending on the technology breakthrough. For the chains based on CO2 storage in saline aquifers, the corresponding CO2-quota price varies up to about 40 €/tonne CO2.  相似文献   

14.
The CO2SINK project in Ketzin represents a field laboratory for the storage of CO2 in a 650-m deep saline aquifer. The project is accompanied by a microbiological monitoring programme to characterise the composition and activity of the autochthonous microbial community in rock and brine samples and their changes in response to CO2 storage. A prerequisite of these studies is the acquisition of samples free of contamination from microorganisms and organic and inorganic components. Drilling mud and technical fluids are the main sources of contamination. This study describes the application of the fluorescent dye tracers fluorescein and rhodamine B as contamination controls for rock core and brine samples. Fluorescein was added to drilling mud that was used during the coring phase of the Ketzin wells Ktzi 200, 201 and 202. In addition, total organic carbon (TOC) concentrations, reflecting the carboxymethyl cellulose (CMC) component of the drilling mud, were determined to verify the tracer results. The fluorescence and TOC analyses revealed that drilling mud filtrate penetrated the outer 20 mm of mildly permeable sandstone cores. Rhodamine B was added to brines that were used to displace the drilling mud and to flush the wells after completion. The tracer monitoring during the discharge of drilling mud and displacement brines from the wells during hydraulic tests and nitrogen lifts enabled the quantification of reservoir fluid quality. After the production of 140–190 m3 (16–21 borehole volumes) of fluid, the drilling mud concentration was reduced to about 0.05%. The use of fluorescein emerged as a field-capable, sensitive and reliable method during the sampling of rock core and formation brine samples.  相似文献   

15.
CO2 can be effectively immobilized during CO2 injection into saline aquifers by residual trapping – also known as capillary trapping – a process resulting from capillary snap-off of isolated CO2 bubbles. Simulations of CO2 injection were performed to investigate the interplay of viscous and gravity forces and capillary trapping of CO2. Results of those simulations show that gas injection processes in which gravitational forces are weak compared to viscous forces (low gravity number Ngv) trap significantly more CO2 than do flows with strong gravitational forces relative to the viscous forces (high Ngv). The results also indicate that over a wide range of gravity numbers (Ngv), significant fractions of the trapping of CO2 can occur relatively quickly. The amount of CO2 that is trapped after injection ceases is demonstrated to correlate with Ngv. For some simulated displacements, effects of capillary pressure and aquifer dip angle on the amount and the rate of trapping are reported. Trapping increases when effects of capillary pressure and aquifer inclination are included in the model. Finally we show that injection schemes such as alternating injection of brine and CO2 or brine injection after CO2 injection can also enhance the trapping behavior.  相似文献   

16.
This article is concerned with control issues related to the design of a semi-closed O 2/CO 2 gas turbine cycle for CO 2 capture. Some control strategies and their interaction with the process design are discussed. One control structure is implemented on a dynamic simulation model using a predictive controller, and simulations assess the performance and compare its merits with a conventional PI structure. The results indicate that it can be advantageous for operability to allow a varying (as opposed to fixed) compressor inlet pressure, at the cost of a more expensive design. Furthermore, the results show that a predictive controller has some advantages with respect to the simpler conventional PI control structure, in particular in terms of constraint handling.  相似文献   

17.
The CO2SINK pilot project at Ketzin is aimed at a better understanding of geological CO2 storage operation in a saline aquifer. The reservoir consists of fluvial deposits with average permeability ranging between 50 and 100 mDarcy. The main focus of CO2SINK is developing and testing of monitoring and verification technologies. All wells, one for injection and two for observation, are equipped with smart casings (sensors behind casing, facing the rocks) containing a Distributed Temperature Sensing (DTS) and electrodes for Electrical Resistivity Tomography (ERT). The in-hole Gas Membrane Sensors (GMS) observed the arrival of tracers and CO2 with high temporal resolution. Geophysical monitoring includes Moving Source Profiling (MSP), Vertical Seismic Profiling (VSP), crosshole, star and 4-D seismic experiments. Numerical models are benchmarked via the monitoring results indicating a sufficient match between observation and prediction, at least for the arrival of CO2 at the first observation well. Downhole samples of brine showed changes in the fluid composition and biocenosis. First monitoring results indicate anisotropic flow of CO2 coinciding with the “on-time” arrival of CO2 at observation well one (Ktzi 200) and the later arrival at observation well two (Ktzi 202). A risk assessment was performed prior to the start of injection. After one year of operations about 18,000 t of CO2 were injected safely.  相似文献   

18.
CO2 storage capacity estimation: Methodology and gaps   总被引:3,自引:0,他引:3  
Implementation of CO2 capture and geological storage (CCGS) technology at the scale needed to achieve a significant and meaningful reduction in CO2 emissions requires knowledge of the available CO2 storage capacity. CO2 storage capacity assessments may be conducted at various scales—in decreasing order of size and increasing order of resolution: country, basin, regional, local and site-specific. Estimation of the CO2 storage capacity in depleted oil and gas reservoirs is straightforward and is based on recoverable reserves, reservoir properties and in situ CO2 characteristics. In the case of CO2-EOR, the CO2 storage capacity can be roughly evaluated on the basis of worldwide field experience or more accurately through numerical simulations. Determination of the theoretical CO2 storage capacity in coal beds is based on coal thickness and CO2 adsorption isotherms, and recovery and completion factors. Evaluation of the CO2 storage capacity in deep saline aquifers is very complex because four trapping mechanisms that act at different rates are involved and, at times, all mechanisms may be operating simultaneously. The level of detail and resolution required in the data make reliable and accurate estimation of CO2 storage capacity in deep saline aquifers practical only at the local and site-specific scales. This paper follows a previous one on issues and development of standards for CO2 storage capacity estimation, and provides a clear set of definitions and methodologies for the assessment of CO2 storage capacity in geological media. Notwithstanding the defined methodologies suggested for estimating CO2 storage capacity, major challenges lie ahead because of lack of data, particularly for coal beds and deep saline aquifers, lack of knowledge about the coefficients that reduce storage capacity from theoretical to effective and to practical, and lack of knowledge about the interplay between various trapping mechanisms at work in deep saline aquifers.  相似文献   

19.
We measure the trapped non-wetting phase saturation as a function of the initial saturation in sand packs. The application of the work is for CO2 storage in aquifers where capillary trapping is a rapid and effective mechanism to render injected CO2 immobile. The CO2 is injected into the formation followed by chase brine injection, or natural groundwater flow, which displaces and traps CO2 on the pore scale as a residual immobile phase. Current models to predict the amount of trapping are based on experiments in consolidated media, while CO2 may be stored in relatively shallow, poorly consolidated systems. We use analogue fluids at ambient conditions. The trapped saturation initially rises linearly with initial saturation to a value of approximately 0.13 for oil/water systems and 0.14 for gas/water systems. There then follows a region where the residual saturation is constant with further increases in initial saturation. This behaviour is not predicted by the traditional literature trapping models, but is physically consistent with unconsolidated media where most of the larger pores can easily be invaded at relatively low saturation and there is, overall, relatively little trapping. A good match to our experimental data was achieved with the trapping model proposed by Aissaoui.  相似文献   

20.
Numerical modelling of multiphase flow is an essential tool to ensure the viability of long-term and safe CO2 storage in geological formations. Uncertainties arising from the heterogeneity of the formation and lack of knowledge of formation properties need to be assessed in order to create a model that can reproduce the data available from monitoring. In this study, we investigated the impact of unknown spatial variability in the petrophysical properties within a sandy channel facies of a fluviatile storage formation using stochastic methods in a Monte Carlo approach. The stochastic method has been applied to the Ketzin test site (CO2SINK), and demonstrates that the deterministic homogeneous model satisfactorily predicts the first CO2 arrival time at the Ketzin site. The equivalent permeability was adjusted to the injection pressure and is in good agreement with the hydraulic test. It has been shown that with increasing small-scale heterogeneity, the sharpness of the CO2 front decreases and a greater volume of the reservoir is affected, which is also seen in an increased amount of dissolved CO2. Increased anisotropy creates fingering effects, which result in higher probabilities for earlier arrival times. Generally, injectivity decreases with increasing heterogeneity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号