首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
油田固体废物的毒性试验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对某油田3个区域井场的废弃钻井液和取自集输站及注水站的油泥(砂)等两种固体废物进行急性生物毒性试验和浸出毒性试验,试验结果表明:该油田的废弃钻井液急性生物毒性相对较大,油泥(砂)不具有急性生物毒性;这两种固体废物均不具有浸出毒性和腐蚀性。  相似文献   

2.
Abstract: For most wastewater discharges to streams, the effluent creates a plume that becomes less distinct as it mixes with the receiving water. Constant‐discharge tracer studies were used to characterize the plume or physical mixing zone (PMZ) at two similar transition terrain streams. At both sites, the laterally unmixed PMZs did not extend across the entire stream and mixing occurred relatively quickly. The observed plumes were significantly smaller than the regulatory mixing zone (RMZ) allowed by the State of Colorado. At Site 1 mixing occurred within a much shorter distance due to the presence of a riffle zone located a few meters downstream of the discharge point. Interpretation of field data with an analytical model suggests that the effective transverse dispersion coefficient (kz) for the riffle zone at Site 1 (~1 m2/s) was significantly higher than the average value over the longer nonriffle section at Site 2 (~0.01 m2/s). These results imply that to achieve the fastest mixing in transition terrain streams, thereby minimizing the size of the PMZ, discharge outfalls should be located upstream and close to riffle zones.  相似文献   

3.
Waste generation and accumulating quantities of oil field waste are a matter of environmental concern. This study proposes the Slurry Fracture Injection (SFI) technique as an alternative waste disposal method. The slurried solids injection waste disposal method is environmentally secure and permanent, leaving no future liabilities that must be risk-evaluated or priced. An entire waste stream comprising ground solids and waste water can be injected into deep and hydraulically secure target strata with no contamination of potable water-bearing formations or formations outside the target zone that may contain resources (gas and oil). The slurry injection method can be used to clean and reclaim landfills, oil pits and granular waste dumps. This article proposes a two-tier screening method for evaluating the feasibility of this technique and the identification of suitable target zones. A stringent environmental and process control monitoring program should complement the planning and operational period to ensure environmental protection, waste containment, and regulatory HSE compliance.  相似文献   

4.
Spills of toxic materials into bodies of water receiving industrial waste discharges can be prevented only if frequent or continuous assessments of effluent quality can be made. Currently available methods can automatically measure individual physical or chemical waste components but cannot assess toxicity caused by the interaction of components or the presence of an unsuspected material. Aquatic organisms, in contrast, respond to their total environment and in this way integrate the effects of all the various chemical and physical waste parameters.This study evaluates the possibility of using the continuously and automatically recorded responses of fish to monitor the toxicity of industrial waste effluents. A review of previously developed toxicity monitoring systems is followed by a field evaluation of a method that uses the computer-monitored ventilatory patterns of 12 bluegills (Lepomis macrochirus Rafinesque) to monitor the toxicity of an industrial waste effluent as it flows into a river. No known toxic spills occurred in the effluent during the operation of this system, but acetone added to the effluent waste caused responses from the fish at concentrations which peaked near the 96-hr LC50 level. Some responses were also noted when no known toxicant was present; these were related to environmental disturbances and system design problems. Recommendations are made for the design of future biologic monitoring units.  相似文献   

5.
Copper flotation waste from copper production using a pyrometallurgical process contains toxic metals such as Cu, Zn, Co and Pb. Because of the presence of trace amounts of these highly toxic metals, copper flotation waste contributes to environmental pollution. In this study, the leaching characteristics of copper flotation waste from the Black Sea Copper Works in Samsun, Turkey have been investigated before and after vitrification. Samples obtained from the factory were subjected to toxicity tests such as the extraction procedure toxicity test (EP Tox), the toxicity characteristic leaching procedure (TCLP) and the "method A" extraction procedure of the American Society of Testing and Materials. The leaching tests showed that the content of some elements in the waste before vitrification exceed the regulatory limits and cannot be disposed of in the present form. Therefore, a stabilization or inertization treatment is necessary prior to disposal. Vitrification was found to stabilize heavy metals in the copper flotation waste successfully and leaching of these metals was largely reduced. Therefore, vitrification can be an acceptable method for disposal of copper flotation waste.  相似文献   

6.
ABSTRACT: Abundant use of copper based products has resulted in increased violation of copper water quality criteria in runoff from urban storm water systems. The objectives of this work were to understand the mobility and toxicity of copper in an urban watershed and to apportion the amount of copper entering the freshwater receiving stream from different urban land covers using a mass balance approach. Sixteen rainfall events collected from the University of Connecticut study watershed between August 1998 and September 2000 were analyzed to assess copper flux in an urban storm water system. Mean flow weighted dissolved copper concentrations observed in the study for copper based architectural material runoff, pervious area runoff, impervious area runoff, and in the receiving stream were 1210 ± 840, 9 ± 3, 8 ± 2, and 14 ± 7 μg/L, respectively. Mean dissolved copper concentrations in the receiving stream exceeded Connecticut's water quality criteria. Despite exceeding the dissolved concentration based criteria, cupric ion concentrations at the system outlet remained below 0.05 μg/L for all storms analyzed, and no acute toxicity (using Daphnia pulex as the test organism) was measured in samples collected from the stream.  相似文献   

7.
ABSTRACT: Confined production of poultry results in significant volumes of waste material which are typically disposed of by land application. Concerns over the potential environmental impacts of poultry waste disposal have resulted in ongoing efforts to develop management practices which maintain high quality of water downstream of disposal areas. The timing of application to minimize waste constituent losses is a management practice with the potential to ensure high quality of streams, rivers, and lakes downstream of receiving areas. This paper describes the development and application of a method to identify which time of year is best, from the standpoint of surface water quality, for land application of poultry waste. The procedure consists of using a mathematical simulation model to estimate average nitrogen and phosphorus losses resulting from different application timings, and then identifying the timings which minimize losses of these nutrients. The procedure was applied to three locations in Arkansas, and three different criteria for optimality of application timing were investigated. One criterion was oriented strictly to water quality, one was oriented only to crop production, and the last was a combination. The criteria resulted in different windows of time being identified as optimal. Optimal windows also varied with location of the receiving area. The results indicate that it is possible to land-apply poultry waste at times which both minimize nutrient losses and maximize crop yield.  相似文献   

8.
Nutrient load allocations and subsequent reductions in total nitrogen and phosphorus have been applied in the Chesapeake watershed since 1992 to reduce hypoxia and to restore living resources. In 2010, sediment allocations were established to augment nutrient allocations supporting the submerged aquatic vegetation resource. From the initial introduction of nutrient allocations in 1992 to the present, the allocations have become more completely applied to all areas and loads in the watershed and have also become more rigorously assessed and tracked. The latest 2010 application of nutrient and sediment allocations were made as part of the Chesapeake Bay total maximum daily load and covered all six states of the Chesapeake watershed. A quantitative allocation process was developed that applied principles of equity and efficiency in the watershed, while achieving all tidal water quality standards through an assessment of equitable levels of effort in reducing nutrients and sediments. The level of effort was determined through application of two key watershed scenarios: one where no action was taken in nutrient control and one where maximum nutrient control efforts were applied. Once the level of effort was determined for different jurisdictions, the overall load reduction was set watershed‐wide to achieve dissolved oxygen water quality standards. Further adjustments were made to the allocation to achieve the James River chlorophyll‐a standard.  相似文献   

9.
ABSTRACT: A modeling framework was developed for managing copper runoff in urban watersheds that incorporates water quality characterization, watershed land use areas, hydrologic data, a statistical simulator, a biotic ligand binding model to characterize acute toxicity, and a statistical method for setting a watershed specific copper loading. The modeling framework is driven by export coefficients derived from water quality parameters and hydrologic inputs measured in an urban watershed's storm water system. This framework was applied to a watershed containing a copper roof built in 1992. A series of simulations was run to predict the change in receiving stream water chemistry caused by roof aging and to determine the maximum copper loading (at the 99 percent confidence level) a watershed could accept without causing acute toxicity in the receiving stream. Forecasting the amount of copper flux responsible for exceeding the assimilation capacity of a watershed can be directly related to maximum copper loadings responsible for causing toxicity in the receiving streams. The framework developed in this study can be used to evaluate copper utilization in urban watersheds.  相似文献   

10.
Criteria for equitable allocations: the heart of international water conflict   总被引:16,自引:0,他引:16  
At the heart of most international water conflicts is the question of 'equitable' allocations, criteria for which are vague and often contradictory. However, application of an equitable water-sharing agreement along the volatile waterways of the globe is a prerequisite to hydropolitical stability. This article explores the question of equity measures for water-sharing agreements in the context of global hydropolitics and is divided into three parts. The Introduction provides a brief summary of the general principles of equitable allocations. The second part of the paper describes the practice of water resources allocations as exemplified in the Transboundary Freshwater Dispute Database - a computerized database of 149 treaties relating to international water resources compiled at Oregon State University; 49 of these treaties delineate specific water allocations. The third and fourth parts of the article contrast the principles and practice of water equity. It is noticeable how rarely the general principles are explicitly invoked, particularly the extreme principles of absolute sovereignty or absolute riverain integrity. Most treaties favor existing uses, and/or guarantees to downstream riparians. It is interesting that, while many international water negotiations begin with differing legal interpretations of rights, they often shift to a needs-based criteria for water allocations. Mostly, one is struck by the creativity of the negotiators in addressing specific language to each very specific local setting and concerns.  相似文献   

11.
The state of North Carolina's Department of Environment and Natural Resources (NCDENR) conducts routine water quality monitoring throughout the state to assess the health of aquatic systems. The current study reports the results of a retrospective (1990–2000) ecological risk assessment of six heavy metals (arsenic, cadmium, copper, lead, mercury, and zinc) in 17 North Carolina basins that was conducted to estimate the risk of heavy metal toxicity to freshwater organisms and assess the sufficiency of NCDENR's monitoring data to identify water-quality-related ecological threats. Acute and chronic ecotoxicological thresholds (ETs) were calculated for each metal based upon the 10th percentile of species sensitivity distributions and were normalized for water hardness. Statewide probabilities (expressed as percentages) of a random sample exceeding acute or chronic ETs among the six metals ranged from 0.01% to 12.19% and 0.76% to 21.21%, respectively, with copper having the highest and arsenic and mercury the lowest risk. Basin-specific probabilities varied significantly depending upon water hardness and presumably watershed development. Although the majority of specific sites where data were collected were at low risk for metal toxicity, some specific sites had a high probability of toxic events associated with one or more metals. Analytical detection limits for metals were frequently higher than estimated chronic ET, limiting the ability to assess the risk of chronic toxicity in soft-water basins. Results suggest risk-based criteria may be useful for assessing and validating the sufficiency of monitoring programs and prioritizing management goals.  相似文献   

12.
National Pollution Discharge Elimination Permit (NPDES)-driven effluent toxicity tests using Ceriodaphnia dubia and fathead minnows were conducted for more than 20 years to assess and monitor the effects of wastewaters at the United States (U.S.) Department of Energy Y-12 National Security Complex (Y-12 Complex) in Oak Ridge, Tennessee. Toxicity testing was also conducted on water samples from East Fork Poplar Creek (EFPC), the wastewater receiving stream, as part of a comprehensive biological monitoring and assessment program. In this paper, we evaluate the roles of this long-term toxicity assessment and monitoring program in the management and ecological recovery of EFPC. Effluent toxicity testing, associated toxicant evaluation studies, and ambient toxicity monitoring were instrumental in identifying toxicant sources at the Y-12 Complex, guiding modifications to wastewater treatment procedures, and assessing the success of various pollution-abatement actions. The elimination of untreated wastewater discharges, the dechlorination of remaining wastewater streams, and the implementation of flow management at the stream headwaters were the primary actions associated with significant reductions in the toxicity of stream water in the upper reaches of EFPC from the late 1980s through mid 1990s. Through time, as regulatory requirements changed and water quality improved, emphasis shifted from comprehensive toxicity assessments to more focused toxicity monitoring efforts. Ambient toxicity testing with C. dubia and fathead minnows was supplemented with less-standardized but more sensitive alternative laboratory toxicity tests and in situ bioassays. The Y-12 Complex biological monitoring experience demonstrates the value of toxicity studies to the management of a wastewater receiving stream.  相似文献   

13.
ABSTRACT: This paper uses the grey fuzzy multiobjective programming to aid in decision making for the allocation of waste load in a river system under versatile uncertainties and risks. It differs from previous studies by considering a multicriteria objective function with combined grey and fuzzy messages under a cost benefit analysis framework. Such analysis technically integrates the prior information of water quality models, water quality standards, wastewater treatment costs, and potential benefits gained via in‐stream water quality improvement. While fuzzy sets are characterized based on semantic and cognitive vagueness in decision making, grey numbers can delineate measurement errors in data collection. By employing three distinct set theoretic fuzzy operators, the synergy of grey and fuzzy implications may smoothly characterize the prescribed management complexity. With the aid of genetic algorithm in the solution procedure, the modeling outputs contribute to the development of an effective waste load allocation and reduction scheme for tributaries in this subwatershed located in the lower Tseng‐Wen River Basin, South Taiwan. Research findings indicate that the inclusion of three fuzzy set theoretic operators in decision analysis may delineate different tradeoffs in decision making due to varying changes, transformations, and movements of waste load in association with land use pattern within the watershed.  相似文献   

14.
Disposal of discarded chromated copper arsenate (CCA)-treated wood in landfills raises concerns with respect to leaching of preservative compounds. When unweathered CCA-treated wood is leached using the toxicity characteristic leaching procedure (TCLP), arsenic concentrations exceed the toxicity characteristic (TC) limit of 5mg/L in most cases. The majority of discarded CCA-treated wood, however, results from demolition activities, where the wood has typically been subjected to weathering. Since preservatives do migrate from the wood during its normal use, leaching characteristics of weathered and aged CCA-treated wood may differ from unweathered wood. To evaluate this, CCA-treated wood removed from service after various degrees of weathering was collected from multiple sources and leached with the TCLP, the synthetic precipitation leaching procedure (SPLP) and California's waste extraction test (WET). Five to seven individual pieces of wood were analyzed from each source. The average TCLP arsenic concentration for the 14 sources ranged from 3.2 to 13 mg/L. The average TCLP concentrations of the 100 wood pieces tested were 6.4, 5.9 and 3.2 mg/L for arsenic, copper and chromium, respectively. Overall, in 60 out of 100 samples tested by the TCLP, arsenic concentrations exceeded 5 mg/L (the TC regulatory value). SPLP leachate concentrations were similar to TCLP concentrations, although copper leached somewhat more with the TCLP. WET leachate concentrations were approximately a factor of 10 higher than TCLP concentrations. Discarded CCA-treated wood, even after exposure to years of weathering, often exceeds the TC limit for arsenic and without the current regulatory exemption would possibly require management as a TC hazardous waste in the US.  相似文献   

15.
Permit-trading policy in a total maximum daily load (TMDL) program may provide an additional avenue to produce environmental benefit, which closely approximates what would be achieved through a command and control approach, with relatively lower costs. One of the important considerations that might affect the effective trading mechanism is to determine the dynamic transaction prices and trading ratios in response to seasonal changes of assimilative capacity in the river. Advanced studies associated with multi-temporal spatially varied trading ratios among point sources to manage water pollution hold considerable potential for industries and policy makers alike. This paper aims to present an integrated simulation and optimization analysis for generating spatially varied trading ratios and evaluating seasonal transaction prices accordingly. It is designed to configure a permit-trading structure basin-wide and provide decision makers with a wealth of cost-effective, technology-oriented, risk-informed, and community-based management strategies. The case study, seamlessly integrating a QUAL2E simulation model with an optimal waste load allocation (WLA) scheme in a designated TMDL study area, helps understand the complexity of varying environmental resources values over space and time. The pollutants of concern in this region, which are eligible for trading, mainly include both biochemical oxygen demand (BOD) and ammonia-nitrogen (NH3-N). The problem solution, as a consequence, suggests an array of waste load reduction targets in a well-defined WLA scheme and exhibits a dynamic permit-trading framework among different sub-watersheds in the study area. Research findings gained in this paper may extend to any transferable dynamic-discharge permit (TDDP) program worldwide.  相似文献   

16.
Abstract: New criteria, pollutant load of unit area (PLUA), are developed for sustainable water quality management, which not only avoids degrading water quality but also considers the equity of development between different generations. A simulation‐optimization model is established to determine PLUA, in which uses the QUAL2E model to simulate pollutant transport and formulates a linear programming model to optimize the objective of maximal loads (carrying capacity). Two watersheds, the Touchen creek and the Keya creek, both in Taiwan, are taken as case studies. The PLUA criterion is applied to several existing projects which have passed environmental impact assessment (EIA). The results show that if the Hsinchu Science‐Based Industrial Park discharges wastewater to the Touchen creek, the total pollutant discharge of 85.6 kg/day exceeds the allocated load. Consequently, a waste reduction of at least 23.4% is required. Although these existing projects have passed EIA, most of them violate the criterion of PLUA and thus contribute to continued degradation of water quality. This study suggests developing PLUA as a part of the process of strategic environmental assessment (SEA) for watershed management plans and then applying it to EIA as a criterion for new project assessment. Furthermore, if carrying capacities of all pollutant discharges and resource uses can be translated into loads per unit of area, an integrated sustainable watershed management plan can be developed.  相似文献   

17.
Acute toxicity of an acaricide (Nuvan® 1000 EC) in lizards (Agama agama) was observed within 2 minutes spraying of the acaricide in an enclosed dog kennel; heavily infested by ticks in urban area of Ibadan city, South western Nigeria. The acaricide was used at the 0.5% concentration recommended by the manufacturer (Novartis). A lizard which emerged from the kennel during the acaricide spraying exhibited acute signs of toxicity which consisted of shivering, gasping and death. The clinical signs of the acute toxicity manifested in the affected lizard resembled central nervous system (CNS) breakdown or neurotoxicity. Also, two lizards (one female and one male) were found dead in the kennel in the second and third days after the single acaricide spraying operation. The acute acaricide toxicity in lizards observed in this study portrayed the danger of environmental hazard to non-target commensal organisms and it is the first reported case in the area.  相似文献   

18.
Anaerobic digestion of source-separated municipal organic waste is considered feasible in Denmark. The limited hydraulic retention in the biogas reactor (typically 15 d) does not allow full degradation of the organic waste. Storage of anaerobically digested municipal organic waste can therefore be a source of methane (CH4) emission that may contribute significantly to the potential global warming impact from the waste treatment system. This study provides a model for quantifying the CH4 production from stored co-digested municipal organic waste and estimates the production under typical Danish climatic conditions, thus quantifying the potential global warming impact from storage of the digested municipal organic waste before its use on agricultural land. Laboratory batch tests on CH4 production as well as temperature measurements in eight full-scale storage tanks provided data for developing a model estimating the CH4 production in storage tanks containing digested municipal organic waste. The temperatures measured in separate storage tanks on farms receiving digested slurry were linearly correlated with air temperature. In storage tanks receiving slurry directly from biogas reactors, significantly higher temperatures were measured due to the high temperatures of the effluent from the reactor. Storage tanks on Danish farms are typically emptied in April and have a constant inflow of digested material. During the warmest months the content of digested material is therefore low, which limits the yearly CH4 production from storage.  相似文献   

19.
Leachability of printed wire boards containing leaded and lead-free solder   总被引:1,自引:0,他引:1  
Due to environmental concerns and regulatory initiatives, electronics manufacturers are replacing the tin/lead solder commonly used on printed wire boards (PWBs) with alternative solders. To determine the potential waste management impacts of the alternative solders versus the tin/lead solder, two leaching tests on PWBs manufactured with five alternative types of solder were performed: the toxicity characteristic leaching procedure (TCLP) and the synthetic precipitation leaching procedure (SPLP). These tests are commonly used in the US regulatory community to assess pollutant leachability in different disposal scenarios. The article discusses the application and limitations of these tests. The five types of solders investigated were 63Sn/37Pb, 99.3Sn/0.7Cu, 95.5Sn/4Ag/0.5 Cu, 96Sn/2.5Ag/1Bi/0.5Cu, and 42Sn/1Ag/57Bi. The leaching tests were conducted on four PWB sections, each with a unique configuration and solder density. The largest lead concentrations were observed from the PWBs containing Sn/Pb solder, with concentrations exceeding the hazardous waste toxicity characteristic (TC) in TCLP leachates. Silver, the other regulated element used in the solders, was rarely detected, with none of the samples exceeding the TC limit for silver. High copper concentrations were observed and were determined to result from the PWB itself, not from the copper-containing solders.  相似文献   

20.
This paper integrates economic, biological, and physical models to explore the efficient combination and spatial allocation of conservation efforts to protect water quality and increase salmonid populations in the Grande Ronde basin, Oregon. We focus on the effects of shade on water temperatures and the subsequent impacts on endangered juvenile salmonid populations. The integrated modeling system consists of a physical model that links riparian conditions and hydrological characteristics to water temperature; a biological model that links water temperature and riparian conditions to salmonid abundance, and an economic model that incorporates both physical and biological models to estimate minimum cost allocations of conservation efforts. Our findings indicate that conservation alternatives such as passive and active riparian restoration, the width of riparian restoration zones, and the types of vegetation used in restoration activities should be selected based on the spatial distribution of riparian characteristics in the basin. The relative effectiveness of passive and active restoration plays an important role in determining the efficient allocations of conservation efforts. The time frame considered in the restoration efforts and the magnitude of desired temperature reductions also affect the efficient combinations of restoration activities. If the objective of conservation efforts is to maximize fish populations, then fishery benefits should be directly targeted. Targeting other criterion such as water temperatures would result in different allocations of conservation efforts, and therefore are not generally efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号