首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A significant portion of the NO3 from agricultural fields that contaminates surface waters in the Midwest Corn Belt is transported to streams or rivers by subsurface drainage systems or "tiles." Previous research has shown that N fertilizer management alone is not sufficient for reducing NO3 concentrations in subsurface drainage to acceptable levels; therefore, additional approaches need to be devised. We compared two cropping system modifications for NO3 concentration and load in subsurface drainage water for a no-till corn (Zea mays L.)-soybean (Glycine max [L.] Merr.) management system. In one treatment, eastern gamagrass (Tripsacum dactyloides L.) was grown in permanent 3.05-m-wide strips above the tiles. For the second treatment, a rye (Secale cereale L.) winter cover crop was seeded over the entire plot area each year near harvest and chemically killed before planting the following spring. Twelve 30.5x42.7-m subsurface-drained field plots were established in 1999 with an automated system for measuring tile flow and collecting flow-weighted samples. Both treatments and a control were initiated in 2000 and replicated four times. Full establishment of both treatments did not occur until fall 2001 because of dry conditions. Treatment comparisons were conducted from 2002 through 2005. The rye cover crop treatment significantly reduced subsurface drainage water flow-weighted NO3 concentrations and NO3 loads in all 4 yr. The rye cover crop treatment did not significantly reduce cumulative annual drainage. Averaged over 4 yr, the rye cover crop reduced flow-weighted NO3 concentrations by 59% and loads by 61%. The gamagrass strips did not significantly reduce cumulative drainage, the average annual flow-weighted NO3 concentrations, or cumulative NO3 loads averaged over the 4 yr. Rye winter cover crops grown after corn and soybean have the potential to reduce the NO3 concentrations and loads delivered to surface waters by subsurface drainage systems.  相似文献   

2.
This study quantified the effects of tillage (moldboard plowing [MP], ridge tillage [RT]) and nutrient source (manure and commercial fertilizer [urea and triple superphosphate]) on sediment, NH4+ -N, NO3- -N, total P, particulate P, and soluble P losses in surface runoff and subsurface tile drainage from a clay loam soil. Treatment effects were evaluated using simulated rainfall immediately after corn (Zea mays L.) planting, the most vulnerable period for soil erosion and water quality degradation. Sediment, total P, soluble P, and NH4+ -N losses mainly occurred in surface runoff. The NO3- -N losses primarily occurred in subsurface tile drainage. In combined (surface and subsurface) flow, the MP treatment resulted in nearly two times greater sediment loss than RT (P < 0.01). Ridge tillage with urea lost at least 11 times more NH4+ -N than any other treatment (P < 0.01). Ridge tillage with manure also had the most total and soluble P losses of all treatments (P < 0.01). If all water quality parameters were equally important, then moldboard plow with manure would result in least water quality degradation of the combined flow followed by moldboard plow with urea or ridge tillage with urea (equivalent losses) and ridge tillage with manure. Tillage systems that do not incorporate surface residue and amendments appear to be more vulnerable to soluble nutrient losses mainly in surface runoff but also in subsurface drainage (due to macropore flow). Tillage systems that thoroughly mix residue and amendments in surface soil appear to be more prone to sediment and sediment-associated nutrient (particulate P) losses via surface runoff.  相似文献   

3.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.  相似文献   

4.
Phosphorus is an essential plant nutrient and critical to agricultural production, but it is also a problem when excessive amounts enter surface waters. Summer rotational grazing and winter feeding beef pasture systems at two fertility levels (56 and 28 kg available P ha(-1)) were studied to evaluate the P losses from these systems via surface runoff and subsurface flow using eight small (0.3-1.1 ha), instrumented watersheds and spring developments. Runoff events from a 14-yr period (1974-1988) were evaluated to determine the relationships between event size in mm, total dissolved reactive phosphorous (TDRP) concentration, and TDRP transport. Most of the TDRP transported was via surface runoff. There were strong correlations (r2 = 0.45-0.66) between TDRP transport and event size for all watersheds, but no significant (P = 0.05) correlations between TDRP concentration and event size. Flow-weighted average TDRP concentrations from the pasture watersheds for the 14-yr period ranged from 0.64 to 1.85 mg L(-1) with a few individual event concentrations as high as 85.7 mg L(-1). The highest concentrations were in events that occurred soon after P fertilizer application. Average seasonal flow-weighted TDRP concentrations for subsurface flow were < 0.05 mg L(-1). Applying P fertilizer to pastures in response to soil tests should keep TDRP concentrations in subsurface flow at environmentally acceptable levels. Management to reduce runoff and avoidance of P fertilizer application when runoff producing rainfall is anticipated in the next few days will help reduce the surface losses of P.  相似文献   

5.
Thirteen metric tons of poultry litter are produced annually by poultry producers in the U.S. Poultry litter contains the sex hormones estradiol and testosterone, endocrine disruptors that have been detected in surface waters. The objective of this study was to evaluate the potential impact of poultry litter applications on estradiol and testosterone concentrations in subsurface drainage and surface runoff in irrigated crop land under no-till and conventional-till management. We conducted an irrigation study in fall of 2001 and spring of 2002. Four treatments, no-till plus poultry litter, conventional-till plus poultry litter, no-till plus conventional fertilizer, and conventional-till plus conventional fertilizer, were evaluated. Flow-weighted concentration and load ha−1 of the two hormones were measured in drainage and runoff. Soil concentrations of estradiol and testosterone were measured. Based on comparisons to the conventional fertilizer (and control) treatments, poultry litter did not add to the flow-weighted concentration or load ha−1 of either estradiol or testosterone in subsurface drainage or surface runoff. Significant differences were, however, observed between tillage treatments: flow-weighted concentrations of estradiol were greater for no-till than conventional-till plots of the June irrigation; and runoff loads of both estradiol and testosterone were less from no-till than conventional-till plots for the November irrigation. Although the differences between no-till and conventional-tillage appeared to affect the hydrologic transport of both hormones, the differences appeared to have inconsequential environmental impact.  相似文献   

6.
Agricultural tillage influences runoff and infiltration, but consequent effects on watershed hydrology are poorly documented. This study evaluated 25 yr (1971-1995) hydrologic records from four first-order watersheds in Iowa's loess hills. Two watersheds were under conventional tillage and two were under conservation (ridge) tillage, one of which was terraced. All four watersheds grew corn (Zea mays L.) every year. Flow-frequency statistics and autoregressive modeling were used to determine how conservation treatments influenced stream hydrology. The autoregressive modeling characterized variations in discharge, baseflow, and runoff at multi-year, annual, and shorter time scales. The ridge-tilled watershed (nonterraced) had 47% less runoff and 36% more baseflow than the conventional watershed of similar landform and slope. Recovery of baseflow after drought was quicker in the conservation watersheds, as evidenced by 365-d moving average plots, and 67% greater baseflow during the driest 2 yr. The two conventional watersheds were similar, except the steeper watershed discharged more runoff and baseflow during short (<30 d), wet periods. Significant multi-year and annual cycles occurred in all variables. Under ridge-till, seasonal (annual-cycle) variations in baseflow had greater amplitude, showing the seasonality of subsurface contaminant movement could increase under conservation practices. However, deviations from the modeled cycles of baseflow were also more persistent under conservation practices, indicating baseflow was more stable. Indeed, flow-frequency curves showed wet-weather discharge decreased and dry-weather discharge increased under conservation practices. Although mean discharge increased in the conservation watersheds, variance and skewness of daily values were smaller. Ridge tillage with or without terraces increased stream discharge but reduced its variability.  相似文献   

7.
Municipal biosolids are typically not used on the steepest of forested slopes in the U.S. Pacific Northwest. The primary concern in using biosolids on steep slopes is movement of biosolids particles and soluble nutrients to surface waters during runoff events. We examined the pattern and extent of P and N runoff from a perennial stream draining a small, forested 21.4-ha watershed in western Washington before and after biosolids application. In this study, we applied biosolids at a rate of 13.5 Mg ha(-1) (700 kg N ha(-1) and 500 kg P ha(-1)) to 40% of the watershed following nearly 1.5 years of pre-application water sampling and 1.5 years thereafter. There was no evidence of direct runoff of P or N from biosolids into surface water. Elevated surface water discharge did not change the concentration of PO4-P, biologically available phosphorus (BAP), bioavailable particulate phosphorus (BPP), or total P nor did it affect the concentration-discharge relationship. Some instances of total P concentrations exceeding the USEPA surface water standard of 0.1 mg L(-1) were observed following biosolids application. However, total P in 27 Creek was predominately in particulate form and not labile, suggesting that detritus moving into the main creek channel and ephemeral drainage courses may be the principal P source. Ammonium N concentrations in runoff water were consistent before and after biosolids application, ranging from below detection limits (0.01 mg L(-1)) to 0.1 mg L(-1); no concentration-discharge relationship existed. Biosolids application changed the 27 Creek concentration-discharge relationship for NO3(-)-N. Before application, no relationship existed. Beginning nine months after biosolids application, increases in discharge were positively related to increases in NO3(-)-N concentrations. Nitrate concentrations in runoff following biosolids application were approximately 10 times less than the USEPA drinking water standard of 10 mg L(-1).  相似文献   

8.
Conservation tillage can reduce soil loss; however, the residual herbicides normally used to control weeds are often detected in surface runoff at high levels, particularly if runoff-producing storms occur shortly after application. Therefore, we measured losses of alachlor, atrazine, linuron, and metribuzin from seven small (0.45-0.79-ha) watersheds for 9 yr (1993-2001) to investigate whether a reduced-input system for corn (Zea mays L.) and soybean [Glycine max (L.) Merr.] production with light disking, cultivation, and half-rate herbicide applications could reduce losses compared with chisel and no-till. As a percentage of application, annual losses were highest for all herbicides for no-till and similar for chisel and reduced-input. Atrazine was the most frequently detected herbicide and yearly flow-weighted concentrations exceeded the drinking water standard of 3 microg L(-1) in 20 out of 27 watershed years that it was applied. Averaged for 9 corn yr, yearly flow-weighted atrazine concentrations were 26.3, 9.6, and 8.3 microg L(-1) for no-till, chisel, and reduced-input, respectively. Similarly, flow-weighted concentrations of alachlor exceeded the drinking water standard of 2 microg L(-1) in 23 out of 54 application years and in all treatments. Thus, while banding and half-rate applications as part of a reduced-input management practice reduced herbicide loss, concentrations of some herbicides may still be a concern. For all watersheds, 60 to 99% of herbicide loss was due to the five largest transport events during the 9-yr period. Thus, regardless of tillage practice, a small number of runoff events, usually shortly after herbicide application, dominated herbicide transport.  相似文献   

9.
Farmstead runoff poses significant environmental impacts to ground and surface waters. Three vegetated filter strips were assessed for the treatment of dairy farmstead runoff at the soil surface and subsurface at 0.3- or 0. 46-m and 0. 76-m depths for numerous storm events. A medium-sized Michigan dairy was retrofitted with two filter strips on sandy loam soil and a third filter strip was implemented on a small Michigan dairy with sandy soil to collect and treat runoff from feed storage, manure storage, and other impervious farmstead areas. All filter strips were able to eliminate surface runoff via infiltration for all storm events over the duration of the study, eliminating pollutant contributions to surface water. Subsurface effluent was monitored to determine the contributing groundwater concentrations of numerous pollutants including chemical oxygen demand (COD), metals, and nitrates. Subsurface samples have an average reduction of COD concentrations of 20, 11, and 85% for the medium dairy Filter Strip 1 (FS1), medium dairy Filter Strip 2 (FS2), and the small Michigan dairy respectively, resulting in average subsurface concentrations of 355, 3960, and 718 mg L COD. Similar reductions were noted for ammonia and total Kjeldahl nitrogen (TKN) in the subsurface effluent. The small Michigan dairy was able to reduce the pollutant leachate concentrations of COD, TKN, and ammonia over a range of influent concentrations. Increased influent concentrations in the medium Michigan dairy filter strips resulted in an increase in COD, TKN, and ammonia concentrations in the leachate. Manganese was leached from the native soils at all filter strips as evidenced by the increase in manganese concentrations in the leachate. Nitrate concentrations were above standard drinking water limits (10 mg L), averaging subsurface concentrations of 11, 45, and 25 mg L NO-N for FS1, FS2, and the small Michigan dairy, respectively.  相似文献   

10.
Residual herbicides used in the production of soybean [Glycine max (L.) Merr] and corn (Zea mays L.) are often detected in surface runoff at concentrations exceeding their maximum contaminant levels (MCL) or health advisory levels (HAL). With the advent of transgenic, glyphosate-tolerant soybean and glufosinate-tolerant corn this concern might be reduced by replacing some of the residual herbicides with short half-life, strongly sorbed, contact herbicides. We applied both herbicide types to two chiseled and two no-till watersheds in a 2-yr corn-soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat (Triticum aestivum L.)-red clover (Trifolium pratense L.) rotation and monitored herbicide losses in runoff water for four crop years. In soybean years, average glyphosate loss (0.07%) was approximately 1/7 that of metribuzin (0.48%) and about one-half that of alachlor (0.12%), residual herbicides it can replace. Maximum, annual, flow-weighted concentration of glyphosate (9.2 microg L(-1)) was well below its 700 microg L(-1) MCL and metribuzin (9.5 microg L(-1)) was well below its 200 microg L(-1) HAL, whereas alachlor (44.5 microg L(-1)) was well above its 2 microg L(-1) MCL. In corn years, average glufosinate loss (0.10%) was similar to losses of alachlor (0.07%) and linuron (0.15%), but about one-fourth that of atrazine (0.37%). Maximum, annual, flow-weighted concentration of glufosinate (no MCL) was 3.5 microg L(-1), whereas atrazine (31.5 microg L(-1)) and alachlor (9.8 microg L(-1)) substantially exceeded their MCLs of 3 and 2 microg L(-1), respectively. Regardless of tillage system, flow-weighted atrazine and alachlor concentrations exceeded their MCLs in at least one crop year. Replacing these herbicides with glyphosate and glufosinate can reduce the occurrence of dissolved herbicide concentrations in runoff exceeding drinking water standards.  相似文献   

11.
Residual herbicides regularly used in conjunction with conservation tillage to produce corn ( L.) and soybean [ (L.) Merr] are often detected in surface water at concentrations that exceed their U.S. maximum contaminant levels (MCL) and ecological standards. These risks might be reduced by planting glyphosate-tolerant varieties of these crops and totally or partially replacing the residual herbicides alachlor, atrazine, linuron, and metribuzin with glyphosate, a contact herbicide that has a short half-life and is strongly sorbed to soil. Therefore, we applied both herbicide types at typical rates and times to two chisel-plowed and two no-till watersheds in a 2-yr corn/soybean rotation and at half rates to three disked watersheds in a 3-yr corn/soybean/wheat-red clover ( L.- L.) rotation and monitored herbicide losses in surface runoff for three crop years. Average dissolved glyphosate loss for all tillage practices, as a percentage of the amount applied, was significantly less ( ≤ 0.05) than the losses of atrazine (21.4x), alachlor (3.5x), and linuron (8.7x) in corn-crop years. Annual, flow-weighted, concentration of atrazine was as high as 41.3 μg L, much greater than its 3 μg L MCL. Likewise, annual, flow-weighted alachlor concentration (MCL = 2 μg L) was as high as 11.2 and 4.9 μg L in corn- and soybean-crop years, respectively. In only one runoff event during the 18 watershed-years it was applied did glyphosate concentration exceed its 700 μg L MCL and the highest, annual, flow-weighted concentration was 3.9 μg L. Planting glyphosate-tolerant corn and soybean and using glyphosate in lieu of some residual herbicides should reduce the impact of the production of these crops on surface water quality.  相似文献   

12.
Pasture management practices can affect forage quality and production, animal health and production, and surface and groundwater quality. In a 5-yr study conducted at the North Appalachian Experimental Watershed near Coshocton, Ohio, we compared the effects of two contrasting grazing methods on surface and subsurface water quantity and quality. Four pastures, each including a small, instrumented watershed (0.51-1.09 ha) for surface runoff measurements and a developed spring for subsurface flow collection, received 112 kg N ha(-1) yr(-1) and were grazed at similar stocking rates (1.8-1.9 cows ha(-1)). Two pastures were continuously stocked; two were subdivided so that they were grazed with frequent rotational stocking (5-6 times weekly). In the preceding 5 yr, these pastures received 112 kg N ha(-1) yr(-1) after several years of 0 N fertilizer and were grazed with weekly rotational stocking. Surface runoff losses of N were minimal. During these two periods, some years had precipitation up to 50% greater than the long-term average, which increased subsurface flow and NO(3)-N transport. Average annual NO(3)-N transported in subsurface flow from the four watersheds during the two 5-yr periods ranged from 11.3 to 22.7 kg N ha(-1), which was similar to or less than the mineral-N received in precipitation. Flow and transport variations were greater among seasons than among watersheds. Flow-weighted seasonal NO(3)-N concentrations in subsurface flow did not exceed 7 mg L(-1). Variations in NO(3)-N leached from pastures were primarily due to variable precipitation rather than the effects of continuous, weekly rotational, or frequent rotational stocking practices. This suggests that there was no difference among these grazing practices in terms of NO(3)-N leaching.  相似文献   

13.
Surface runoff water quality in a managed three zone riparian buffer   总被引:2,自引:0,他引:2  
Managed riparian forest buffers are an important conservation practice but there are little data on the water quality effects of buffer management. We measured surface runoff volumes and nutrient concentrations and loads in a riparian buffer system consisting of (moving down slope from the field) a grass strip, a managed forest, and an unmanaged forest. The managed forest consisted of sections of clear-cut, thinned, and mature forest. The mature forest had significantly lower flow-weighted concentrations of nitrate, ammonium, total Kjeldahl N (TKN), sediment TKN, total N (nitrate + TKN), dissolved molybdate reactive P (DMRP), total P, and chloride. The average buffer represented the conditions along a stream reach with a buffer system in different stages of growth. Compared with the field output, flow-weighted concentrations of nitrate, ammonium, DMRP, and total P decreased significantly within the buffer and flow-weighted concentrations of TKN, total N, and chloride increased significantly within the buffer. All loads decreased significantly from the field to the middle of the buffer, but most loads increased from the middle of the buffer to the sampling point nearest the stream because surface runoff volume increased near the stream. The largest percentage reduction of the incoming nutrient load (at least 65% for all nutrient forms) took place in the grass buffer zone because of the large decrease (68%) in flow. The average buffer reduced loadings for all nutrient species, from 27% for TKN to 63% for sediment P. The managed forest and grass buffer combined was an effective buffer system.  相似文献   

14.
This study was designed to evaluate the improved version of the Root Zone Water Quality Model (RZWQM) using 6 yr (1992-1997) of field-measured data from a field within Walnut Creek watershed located in central Iowa. Measured data included subsurface drainage flows, NO3-N concentrations and loads in subsurface drainage water, and corn (Zea mays L.) and soybean [Glycine mar (L.) Merr.] yields. The dominant soil within this field was Webster (fine-loamy, mixed, superactive, mesic Typic Endoaquolls) and cropping system was corn-soybean rotation. The model was calibrated with 1992 data and was validated with 1993 to 1997 data. Simulations of subsurface drainage flow closely matched observed data showing model efficiency of 99% (EF = 0.99), and difference (D) of 1% between measured and predicted data. The model simulated NO3-N losses with subsurface drainage water reasonably well with EF = 0.8 and D = 13%. The simulated corn grain yields were in close agreement with measured data with D < 10%. Nitrogen-scenario simulations demonstrated that corn yield response function reached a plateau when N-application rate exceeded 90 kg ha(-1). Fraction of applied N lost with subsurface drainage water varied from 7 to 16% when N-application rate varied from 30 to 180 kg ha(-1) after accounting for the nitrate loss with no-fertilizer application. These results indicate that the RZWQM has the potential to simulate the impact of N application rates on corn yields and NO3-N losses with subsurface drainage flows for agricultural fields in central Iowa.  相似文献   

15.
Manure additions to cropland can reduce total P losses in runoff on well-drained soils due to increased infiltration and reduced soil erosion. Surface residue management in subsequent years may influence the long-term risk of P losses as the manure-supplied organic matter decomposes. The effects of manure history and long-term (8-yr) tillage [chisel plow (CP) and no-till (NT)] on P levels in runoff in continuous corn (Zea mays L.) were investigated on well-drained silt loam soils of southern and southwestern Wisconsin. Soil P levels (0-15 cm) increased with the frequency of manure applications and P stratification was greater near the surface (0-5 cm) in NT than CP. In CP, soil test P level was linearly related to dissolved P (24-105 g ha(-1)) and bioavailable P (64-272 g ha(-1)) loads in runoff, but not total P (653-1893 g ha(-1)). In NT, P loads were reduced by an average of 57% for dissolved P, 70% for bioavailable P, and 91% for total P compared with CP. This reduction was due to lower sediment concentrations and/or lower runoff volumes in NT. There was no relationship between soil test P levels and runoff P concentrations or loads in NT. Long-term manure P applications in excess of P removal by corn in CP systems ultimately increased the potential for greater dissolved and bioavailable P losses in runoff by increasing soil P levels. Maintaining high surface residue cover such as those found in long-term NT corn production systems can mitigate this risk in addition to reducing sediment and particulate P losses.  相似文献   

16.
ABSTRACT: Nutrient loading from beef pastures located within the northern Lake Okeechobee watershed in Florida, has been identified as a source of phosphorus contributing to the accelerated eutrophication of the lake. Since 1989 within the watershed, 557 agricultural drainage sites, mainly beef pasture, have been monitored for compliance under a regulatory program. Of those sites, 154 were actively monitored for phosphorus concentrations from October 1, 1998, to September 30, 1999. Of these 154 sites, 77 were considered to be out of compliance (OOC). An OOC site is defined as having runoff with a 12‐month average phosphorus concentration exceeding the permitted discharge limit. The average annual phosphorous load from the 77 OOC sites for an eight‐year study period from October 1, 1991, to September 30, 1999, was estimated using measured concentration values and simulated runoff obtained from an agricultural nonpoint source pollution model, CREAMS‐WT. The 77 OOC sites produced an estimated average annual 46 metric tonnes of phosphorus load, of which an estimated 22 tonnes of phosphorus reached Lake Okeechobee on an average annual basis. The remaining estimated average annual 24 tonnes of phosphorus load was retained by streams and wetlands in the discharge transport system between the sites and the lake. The estimated average annual load reaching Lake Okeechobee from the OOC sites represented 11 percent of the phosphorus load above a five‐year average annual target load for the lake. However, the OOC site drainage areas represented only 3 percent of the northern watershed that drains into the lake. Of the 77 OOC sites, 12 sites had an average annual phosphorus loading rate equal to or greater than 3.0 kg/ha and were placed on the priority list for the Critical Restoration Project in the Lake Okeechobee watershed. To estimate the possible phosphorus load reductions from the 77 sites, two scenarios were modeled. The first scenario reduced phosphorus concentrations in runoff to the permitted discharge limits under the Lake Okeechobee regulatory program. The second scenario changed current land uses to native rangeland with an estimated annual offsite total phosphorus areal loading rate of 0.114 kg/ha. These two scenarios are hypothetical with assumed concentration values and loading rate. Model results showed that the first management scenario reduced the average annual phosphorus load to the lake by an estimated 15 tonnes. The second scenario reduced the average annual phosphorus load to the lake by an estimated 21 tonnes.  相似文献   

17.
Substantial amounts of NO3 from agricultural crop production systems on poorly drained soils can be transported to surface water via subsurface drainage. A field study was conducted from the fall of 1993 through 2000 on a tile-drained Canisteo clay loam soil (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquoll) to determine the influence of fall vs. spring application of N and nitrapyrin [NP; 2-chloro-6-(trichloromethyl) pyridine] on NO3 losses from a corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] rotation. Four anhydrous ammonia treatments (fall N, fall N + NP, spring preplant N, and spring N + NP) were replicated four times and applied at 135 kg N ha(-1) for corn on individual drainage plots. Drainage occurred in all seven years. Seventy-one percent of the annual drainage and 75% of the annual NO3 loss occurred in April, May, and June. Fifty-four percent of the NO3 lost in the drainage occurred during the corn phase and 46% during the soybean phase. Annual flow-weighted NO3-N concentrations for the fall, fall + NP, spring, and spring + NP treatments averaged 14.3, 11.5, 10.7, and 11.3 mg L(-1) during the corn phase but annual NO3-N concentrations were still > or =10 mg L(-1) in three of six years for the spring preplant treatment. Averaged across the six rotation cycles, flow-normalized NO3-N losses ranked in the order: fall N > spring N + NP > fall N + NP > spring N. Under these conditions, NO3 losses in subsurface drainage from a corn-soybean rotation can be reduced 14% by spring N and 10% by late fall N + NP compared with fall-applied N. Nitrate losses were not appreciably reduced by adding NP to spring preplant N.  相似文献   

18.
Rainfall simulation experiments are widely used to study erosion and contaminant transport in overland flow. We investigated the use of two rainfall simulators designed to rain on 2-m-long (2-m2) and 10.7-m-long (32.6-m2) plots to estimate overland flow and phosphorus (P) transport in comparison with watershed-scale data. Simulated rainfall (75 mm h(-1)) generated more overland flow from 2-m-long (20 L m2) than from 10.7-m-long (10 L m2) plots established in grass, no-till corn (Zea mays L.), and recently tilled fields, because a relatively greater area of the smaller plots became saturated (>75% of area) during rainfall compared with large plots (<75% area). Although average concentrations of dissolved reactive phosphorus (DRP) in overland flow were greater from 2-m-long (0.50 mg L(-1)) than 10.7-m-long (0.35 mg L(-1)) plots, the relationship between DRP and Mehlich-3 soil P (as defined by regression slope) was similar for both plots and for published watershed data (0.0022 for grassed, 0.0036 for no-till, and 0.0112 for tilled sites). Conversely, sediment, particulate phosphorus (PP), and total phosphorus (TP) concentrations and selective transport of soil fines (<2 microm) were significantly lower from 2- than 10.7-m-long plots. However, slopes of the logarithmic regression between P enrichment ratio and sediment discharge were similar (0.281-0.301) for 2- and 10.7-m-long plots, and published watershed data. While concentrations and loads of P change with plot scales, processes governing DRP and PP transport in overland flow are consistent, supporting the limited use of small plots and rainfall simulators to assess the relationship between soil P and overland flow P as a function of soil type and management.  相似文献   

19.
In contrast to spatial inequality, there are currently no methods for leveraging information on temporal inequality to improve conservation efficacy. The objective of this study was to use Lorenz curves to quantify temporal inequality in surface runoff and tile drainage, identify controls on nutrient loading in these flowpaths, and develop design flows for structural conservation practices. Surface runoff (n = 94 site‐years) and tile drainage (n = 90 site‐years) were monitored on 40 fields in Ohio. Results showed, on average, 80% of nitrate‐nitrogen, soluble reactive phosphorus (P), and total P loads occurred between 7 and 12 days per year in surface runoff and between 32 and 58 days per year in tile drainage. Similar temporal inequality between discharge and load provided evidence that loading was transport‐limited and highlighted the critical role hydrologic connectivity plays in nutrient delivery from tile‐drained fields. Design flow criterion for sizing structural practices based on load reduction goals was developed by combining Lorenz curves and flow duration curves. Comparing temporal inequality between fields and the Maumee River, the largest tributary to the western Lake Erie Basin, revealed challenges associated with achieving watershed load reduction goals with field‐scale conservation. In‐field (i.e., improved nutrient and water management), edge‐of‐field (i.e., structural practices), and instream practices will all be required to meet nutrient reduction goals from tile‐drained watersheds.  相似文献   

20.
Agricultural runoff contributes nutrients to nonpoint-source pollution of surface waters. This study was conducted to investigate the potential use of alternative farming practices to improve water quality. The study examined the effects of both alternative and conventional farming practices on subsurface drainage and nitrogen and phosphorus loss through subsurface drainage from glacial till soils (i.e., Calciaquolls, Endoaquolls, Eutrudepts, Hapludolls) in southwest Minnesota. Alternative farming practices included organic management practices, species biodiversity, and/or practices that include reduced inputs of synthetic fertilizer and pesticides. Conventional farming practices include corn-soybean (Zea mays L.-Glycine max L., respectively) rotations and their associated recommended fertilizer rates as well as pesticide usage. Precipitation was highly variable during the 3-yr study period including a below-average year (2003), an average year (2002), and an above-average year (2004). Results indicate that alternative farming practices reduced subsurface drainage discharge by 41% compared with conventional practices. Flow-weighted mean nitrate-nitrogen (nitrate N) concentrations during tile flow were 8.2 and 17.2 mg L(-1) under alternative and conventional farming practices, respectively. Alternative farming practices reduced nitrate N losses by between 59 and 62% in 2002 and 2004 compared with conventional practices. Ammonium-nitrogen (ammonium N), orthophosphorus, and total phosphorus losses in subsurface drainage were very low and did not pose a substantial risk of pollution. Results suggest that alternative farming practices have the potential to reduce agricultural impacts on water quality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号