首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
This study describes soil water repellency developed under prolonged irrigation with treated sewage effluent in a semiarid environment. Soil surface layer (0-5 cm) and soil profile (0-50 cm) transects were sampled at a high resolution at the close of the irrigation season and rainy winter season. Samples from 0- to 5-cm transects were subdivided into 1-cm slices to obtain fine scale resolution of repellency and organic matter distribution. Extreme to severe soil water repellency in the 0- to 5-cm soil surface layer persisted throughout the 2-yr study period in the effluent-irrigated Shamouti orange [Citrus sinensis (L.) Osbeck cv. Shamouti] orchard plot. Nearby Shamouti orange plots irrigated with tap water were either nonrepellent or only somewhat repellent. Repellency was very variable spatially and with depth, appearing in vertically oriented "repellency tongues." Temporal and spatial variability in repellency in the uppermost 5-cm soil surface layer was not related to seasonality, soil moisture content, or soil organic matter content. Nonuniform distribution of soil moisture and fingered flow were observed in the soil profile after both seasons, demonstrating that the repellent layer had a persistent effect on water flow in the soil profile. A lack of correlation between bulk density and volumetric water content in the soil profile demonstrates that the observed nonuniform spatial distribution of moisture results from preferential flow and not heterogeneity in soil properties. Soil water repellency can adversely affect agricultural production, cause contamination of underlying ground water resources, and result in excessive runoff and soil erosion.  相似文献   

2.
Reduction of migration of fecal coliforms (FC) and streptococci (FS) by limiting the leaching in effluent-irrigated soil was tested in lysimeters packed with quartz sand without or with added biosolids compost or with one of two clayey soils. The 200-L, 70-cm-deep lysimeters were either planted with a Eucalyptus camaldulensis or an Oroblanco citrus tree (in the sand only), or not planted. The Eucalyptus was irrigated with oxidation pond effluent (OPE) and the Oroblanco with mechanical-biological treatment plant effluent (MBTPE). The leaching fraction (LF) ranged from 0.2 to about 1.0, and the residence time (RT) from under 1 to 40 d. The Eucalyptus was also tested under intermittent leaching (RT 11-20 d) and deficit irrigation (without leaching for about 6 mo) regimes. Under MBTPE irrigation there was little or no leaching of FC and FS. Under OPE irrigation at LF 1 without a Eucalyptus there was little or no bacterial leaching at irrigation rates below 40 L d(-1) per lysimeter (RT > or = 0.8 d). Bacterial counts in the leachate were substantial in the presence of a Eucalyptus tree under LF 0.2 and intermittent leaching regimes, and when sand-packed unplanted lysimeters received OPE effluent at >45 L d(-1). Bacterial recovery peaked at LF 0.2, at up to 45% of the input level. At LF 1 (RT 0.6-2.8 d) and with intermittent leaching the recoveries were minute. Bacterial counts in the washout from the deficit-irrigated lysimeters were typical of nonpolluted soils. The bacterial concentration and recovery patterns in the leachate mostly matched the organic carbon (OC) load in the irrigation water, and its concentration and bioavailablity in the leachate. We related the leaching patterns of the fecal bacteria to their relative reproduction and die-off rates, and to the dependence of their regrowth on available carbon sources.  相似文献   

3.
The environmental fate of herbicides can be studied at different levels: in the lab with disturbed or undisturbed soil columns or in the field with suction cup lysimeters or soil enclosure lysimeters. A field lysimeter experiment with 10 soil enclosures was performed to evaluate the mass balance in different environmental compartments of the phenylurea herbicides diuron [3-(3,4-diclorophenyl)-1,1-dimethyl-urea] and linuron [3-(3,4-dichlorophenyl)-1-methoxy-1-methylurea]. After application on the agricultural soil, the herbicides were searched for in soil, pore water, and air samples. Soil and water samples were collected at different depths of the soil profile and analyzed to determine residual concentrations of both the parent compounds and of their main transformation products, to verify their persistence and their leaching capacity. Air volatilization was calculated using the theoretical profile shape method. The herbicides were detected only in the surface layer (0-10 cm) of soil. In this layer, diuron was reduced to 50% of its initial concentration at the end of the experiment, while linuron was still 70% present after 245 d. The main metabolites detected were DCPMU [3-(3,4-dichlorophenyl)-1-methylurea] and DCA (3,4-dichloroaniline). In soil pore water, diuron and linuron were detected at depths of 20 and 40 cm, although in very low concentrations. Therefore the leaching of these herbicides was quite low in this experiment. Moreover, volatilization losses were inconsequential. The calculated total mass balance showed a high persistence of linuron and diuron in the soil, a low mobility in soil pore water (less than 0.5% in leachate water), and a negligible volatilization effect. The application of the Pesticide Leaching Model (PELMO) showed similar low mobility of the chemicals in soil and water, but overestimated their volatilization and their degradation to the metabolite DCPMU. In conclusion, the use of soil enclosure lysimeters proved to be a good experimental design for studying mobility and transport processes of herbicides in field conditions.  相似文献   

4.
Phosphorus leaching from cow manure patches on soil columns   总被引:2,自引:0,他引:2  
The loss of P in overland flow or leachate from manure patches can impair surface water quality. We studied leaching of P from 10-cm-high lysimeters filled with intact grassland soil or with acid-washed sand. A manure patch was created on two grassland and two sand-filled lysimeters, and an additional two grass lysimeters served as blanks. Lysimeters were leached in the laboratory during 234 d with a diluted salt solution, and column effluent was passed through a 0.45-microm filter, analyzed for pH, dissolved reactive P (DRP), and total dissolved P (TDP). At the end of the experiment lysimeter soil was sampled and analyzed for pH, available P, and oxalate-extractable P, Fe, and Al. The concentration of TDP in the effluent from the sand column increased to 25 mg L-1 during the first weeks and remained above 10 mg L-1 during the rest of the percolation. In effluent from grass + patch lysimeters TDP gradually increased to 4 mg L-1. Both in the manure and in the effluent of the sand lysimeter P was found mainly in the form of DRP, but in the effluent from the grass lysimeters was found mainly as dissolved unreactive P (DUP=TDP-DRP). Earthworm activity was responsible for decomposition of the manure patch on the grass lysimeters. Manure patches and their remains were found to be a long-term source of high concentrations of P in leachates. Spreading of patches after a grazing period could reduce their possible negative impacts on the environment.  相似文献   

5.
Leaching of nitrogen (N) after forest fertilization has the potential to pollute ground and surface water. The purpose of this study was to quantify N leaching through the primary rooting zone of N-limited Douglas-fir [Pseudotsuga menziesii (Mirb.) Franco] forests the year after fertilization (224 kg N ha(-1) as urea) and to calculate changes in the N pools of the overstory trees, understory vegetation, and soil. At six sites on production forests in the Hood Canal watershed, Washington, tension lysimeters and estimates of the soil water flux were used to quantify the mobilization and leaching of NO(3)-N, NH(4)-N, and dissolved organic nitrogen below the observed rooting depth. Soil and vegetation samples were collected before fertilization and 1 and 6 mo after fertilization. In the year after fertilization, the total leaching beyond the primary rooting zone in excess of control plots was 4.2 kg N ha(-1) (p = 0.03), which was equal to 2% of the total N applied. The peak NO(3)-N concentration that leached beyond the rooting zone of fertilized plots was 0.2 mg NO(3)-N L(-1). Six months after fertilization, 26% of the applied N was accounted for in the overstory, and 27% was accounted for in the O+A horizon of the soil. The results of this study indicate that forest fertilization can lead to small N leaching fluxes out of the primary rooting zone during the first year after urea application.  相似文献   

6.
Biomass crops are being promoted as environmentally favorable alternatives to fossil fuels or ethanol production from maize (Zea mays L.), particularly across the Corn Belt of the United States. However, there are few if any empirical studies on inorganic N leaching losses from perennial grasses that are harvested on an annual basis, nor has there been empirical evaluation of the hydrologic consequences of perennial cropping systems. Here we report on the results of 4 yr of field measurements of soil moisture and inorganic N leaching from a conventional maize-soybean [Glycine max (L.) Merr.] system and two unfertilized perennial grasses harvested in winter for biomass: Miscanthus x giganteus and switchgrass (Panicum virgatum cv. Cave-in-Rock). All crops were grown on fertile Mollisols in east-central Illinois. Inorganic N leaching was measured with ion exchange resin lysimeters placed 50 cm below the soil surface. Maize--soybean nitrate leaching averaged 40.4 kg N ha(-1) yr(-1), whereas switchgrass and Miscanthus had values of 1.4 and 3.0 kg N ha(-1) yr(-1), respectively. Soil moisture monitoring (to a depth of 90 cm) indicated that both perennial grasses dried the soil out earlier in the growing season compared with maize-soybean. Later in the growing season, soil moisture under switchgrass tended to be greater than maize-soybean or Miscanthus, whereas the soil under Miscanthus was consistently drier than under maize--soybean. Water budget calculations indicated that evapotranspiration from Miscanthus was about 104 mm yr(-1) greater than under maize-soybean, which could reduce annual drainage water flows by 32% in central Illinois. Drainage water is a primary source of surface water flows in the region, and the impact ofextensive Miscanthus production on surface water supplies and aquatic ecosystems deserves further investigation.  相似文献   

7.
Excessive N and water use in agriculture causes environmental degradation and can potentially jeopardize the sustainability of the system. A field study was conducted from 2000 to 2002 to study the effects of four N treatments (0, 100, 200, and 300 kg N ha(-1) per crop) on a wheat (Triticum aestivum L.) and maize (Zea mays L.) double cropping system under 70 +/- 15% field capacity in the North China Plain (NCP). The root zone water quality model (RZWQM), with the crop estimation through resource and environment synthesis (CERES) plant growth modules incorporated, was evaluated for its simulation of crop production, soil water, and N leaching in the double cropping system. Soil water content, biomass, and grain yield were better simulated with normalized root mean square errors (NRMSE, RMSE divided by mean observed value) from 0.11 to 0.15 than soil NO(3)-N and plant N uptake that had NRMSE from 0.19 to 0.43 across these treatments. The long-term simulation with historical weather data showed that, at 200 kg N ha(-1) per crop application rate, auto-irrigation triggered at 50% of the field capacity and recharged to 60% field capacity in the 0- to 50-cm soil profile were adequate for obtaining acceptable yield levels in this intensified double cropping system. Results also showed potential savings of more than 30% of the current N application rates per crop from 300 to 200 kg N ha(-1), which could reduce about 60% of the N leaching without compromising crop yields.  相似文献   

8.
The potential of pesticides for nonpoint ground water pollution depends on their dissipation and leaching behavior in soils. We investigated the fate of 10 pesticides in two tropical soils of contrasting texture in the Brazilian Cerrado region near Cuiabá during an 80-d period, employing topsoil dissipation studies, soil core analyses, and lysimeter experiments. Dissipation of pesticides was rapid, with field half-lives ranging from 0.8 to 20 d in Ustox and 0.6 to 11.8 d in Psamments soils. Soil core analyses showed progressive leaching of polar pesticides in Psamments, whereas in Ustox pesticides were rapidly transported to 40 cm soil depth regardless of their sorption properties, suggesting that leaching was caused by preferential flow. In lysimeter experiments (35 cm soil depth), cumulative leaching was generally low, with < or = 0.02% and < or = 0.19% of the applied amounts leached in Ustox and Psamments, respectively. In both soils, all pesticides but the pyrethroids were detected in percolate at 35 cm soil depth within the first 6 d after application. Cumulative efflux and mean concentrations of pesticides in percolate were dosely correlated with their Groundwater Ubiquity Score (GUS). The presence of alachlor (2-chloro-2', 6'-diethyl-N-methoxymethylacetanilide), atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine), metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylethyl)acetamide], simazine [2-chloro-4,6-bis(ethylamino)-1,3,5-triazine], and trifluralin (2,6-dinitro-N,N-dipropyl-4-trifluoromethylaniline) throughout the soil profile and in percolate of wick lysimeters at 95 cm soil depth indicated that a nonpoint pollution of ground water resources in tropical Brazil cannot be ruled out for these substances.  相似文献   

9.
Monitoring of nitrate leaching in sandy soils: comparison of three methods   总被引:2,自引:0,他引:2  
Proper N fertilizer and irrigation management can reduce nitrate leaching while maintaining crop yield, which is critical to enhance the sustainability of vegetable production on soils with poor water and nutrient-holding capacities. This study evaluated different methods to measure nitrate leaching in mulched drip-irrigated zucchini, pepper, and tomato production systems. Fertigation rates were 145 and 217 kg N ha(-1) for zucchini; 192 and 288 kg N ha(-1) for pepper; and 208 and 312 kg N ha(-1) for tomato. Irrigation was either applied at a fixed daily rate or based on threshold values of soil moisture sensors placed in production beds. Ceramic suction cup lysimeters, subsurface drainage lysimeters and soil cores were used to access the interactive effects of N rate and irrigation management on N leaching. Irrigation treatments and N rate interaction effects on N leaching were significant for all crops. Applying N rates in excess of standard recommendations increased N leaching by 64, 59, and 32%, respectively, for pepper, tomato, and zucchini crops. Independent of the irrigation treatment or nitrogen rate, N leaching values measured from the ceramic cup lysimeter-based N leaching values were lower than the values from the drainage lysimeter and soil coring methods. However, overall nitrate concentration patterns were similar for all methods when the nitrate concentration and leached volume were relatively low.  相似文献   

10.
The effects of changing precipitation on soil leaching in a deciduous forest were examined by experimentally manipulating throughfall fluxes in the field. In addition to an ambient treatment (AMB), throughfall fluxes were reduced by 33% (DRY treatment) and increased by 33% (WET treatment) using a system of rain gutters and sprinklers on Walker Branch Watershed, Tennessee. Soil leaching was measured with resin lysimeters in the O horizons and with ceramic cup lysimeters in the E (25 cm) and Bt (70 cm) horizons. Large and statistically significant treatment effects on N fluxes were found in the O horizons (lower N fluxes in the DRY and higher N fluxes in the WET treatment). Together with the greater O horizon N content observed in the DRY treatment, this suggested that N was being immobilized at a greater rate in the DRY treatment than in the AMB or WET treatments. No statistically significant treatment effects on soil solution were found in the E horizons with the exception of (Ca2+ + Mg2+) to K+ ratio. Statistically significant treatment effects on electrical conductivity (EC), pH, Ca2+, Mg2+, K+, Na+, SO4(2-), and Cl- were found in the Bt horizons due to differences between the DRY and other treatments. Despite this, calculated fluxes of Ca2+, Mg2+, K+, Na+, SO4(2-), and Cl- were lowest in the DRY treatment. These results suggest that lower precipitation will cause temporary N immobilization in litter and long-term enrichment in soil base cations whereas increased precipitation will cause long-term depletion of soil base cations.  相似文献   

11.
The effect of the addition of spent mushroom substrate (SMS) to the soil as an amendment on the distribution and/or fate of copper from a copper-based fungicide applied to a vineyard soil in La Rioja (N. Spain) was studied. The study was carried out on experimental plots amended or not with SMS at rates of 40 and 100 t ha(-1). The variation in total Cu content in the topsoil (0-10 cm) and in the soil profile (0-50 cm), and the distribution of Cu in different fractions of the topsoil were studied as a function of the dose of Cu added (5 and 10 kg ha(-1)) and of the time elapsed since application (0-12 months). In addition, the changes in the chemical properties (solid organic carbon (OC), dissolved organic carbon (DOC) and pH) of the soils were studied. A greater capacity for Cu retention by the amended soils than by the unamended one was observed only when the fungicide was applied at the high dose. No effect of the amendment rate was noted on this retention capacity. The metal content in the topsoil decreased over time in step with the disappearance of the OC in the amended soil due to its oxidation, mineralization and/or leaching. This decrease in total Cu content was possibly due to the formation of soluble Cu complexes with the DOC, which facilitated its transport through the soil. A re-distribution of Cu in the different soil fractions was also observed over time, mainly from the organic to the residual fraction. The results obtained indicate that the increase in OC due to the application of SMS at the rates used does not lead to any significant increase in the persistence of Cu in the soil over time. Of greater interest would be the assessment of the risk for groundwater quality, owing to possible leaching of the fungicide enhanced by the SMS when SMS and Cu-based fungicides are jointly applied to vineyard soils.  相似文献   

12.
The fate of 15N-labeled cattle (Bos taurus) urine (52 g N m(-2)), applied to a 0.4-m2 surface area on three dates between May and October to three different pasture soils, was studied using 2-m2 lysimeters. Over a period of two years, the sward recovered most of the 15N, but the amount recovered decreased with application date (62% in spring to 17% in fall). However, N uptake by ryegrass (Lolium perenne L.) in Year 2 showed that some nitrogen came from the previous year's urine application. The largest leaching losses of urine N resulted from the late application date. These losses mainly occurred during the first winter despite the small amount of water drainage. Soil type largely determined 15N losses. The granitic Brunisol was the most freely draining and had the greatest leaching (up to 35% recovery of urinary N). In contrast, leaching in the silty loam Neoluvisol remained under 4% of 15N applied. The Calcosol appeared to be susceptible to all kinds of N losses with intermediate unaccounted-for N pool and leaching fractions and lesser utilization of urinary N by grass. Immobilization in soil organic matter, roots and litter, and stubble pools were not markedly influenced by the date of application or soil type. They amounted to 25 to 33, 2, and 2% of N applied as urine, respectively. In these climatic conditions with moderate drainage, leaching of water poor in quality for nitrate only occurred for late-season grazing or on the granitic Brunisol, which was very vulnerable to leaching.  相似文献   

13.
N-nitrosodimethylamine (NDMA) is a potent carcinogen that is often present in municipal wastewater effluents. In a previous field study, it was observed that NDMA did not leach through turfgrass soils following 4 mo of intensive irrigation with NDMA-containing wastewater effluent. To better understand the loss pathways for NDMA in landscape irrigation systems, a mass balance approach was employed using in situ lysimeters treated with 14C-NDMA. When the lysimeters were subjected to irrigation and field conditions after NDMA application, very rapid dissipation of NDMA was observed for both types of soil used in the field plots. After only 4 h, total 14C activity in the lysimeters decreased to 19.1 to 26.1% of the applied amount, and less than 1% of the activity was detected below the 20-cm depth. Analysis of plant materials showed that less than 3% of the applied 14C was incorporated into the plants, suggesting only a minor role for plant uptake in removing NDMA from the vegetated soils. The rapid dissipation and limited downward movement of NDMA in the in situ lysimeters was consistent with the negligible leaching observed in the field study, and suggests volatilization as the only significant loss pathway. This conclusion was further corroborated by rapid NDMA volatilization found from water or a thin layer of soil under laboratory conditions. In a laboratory incubation experiment, prolonged wastewater irrigation did not result in enhanced NDMA degradation in the soil. Therefore, although NDMA may be present at relatively high levels in treated wastewater, gaseous diffusion and volatilization in unsaturated soils may effectively impede significant leaching of NDMA, minimizing the potential for ground water contamination from irrigation with treated wastewater.  相似文献   

14.
15.
Land application has become a widely applied method for treating wastewater. However, it is not always clear which soil-plant systems should be used, or why. The objectives of our study were to determine if four contrasting soils, from which the pasture is regularly cut and removed, varied in their ability to assimilate nutrients from secondary-treated domestic effluent under high hydraulic loadings, in comparison with unirrigated, fertilized pasture. Grassed intact soil cores (500 mm in diameter by 700 mm in depth) were irrigated (50 mm wk(-1)) with secondary-treated domestic effluent for two years. Soils included a well-drained Allophanic Soil (Typic Hapludand), a poorly drained Gley Soil (Typic Endoaquept), a well-drained Pumice Soil formed from rhyolitic tephra (Typic Udivitrand), and a well-drained Recent Soil formed in a sand dune (Typic Udipsamment). Effluent-irrigated soils received between 746 and 815 kg N ha(-1) and 283 and 331 kg P ha(-1) over two years of irrigation, and unirrigated treatments received 200 kg N ha(-1) and 100 kg P ha(-1) of dissolved inorganic fertilizer over the same period. Applying effluent significantly increased plant uptake of N and P from all soil types. For the effluent-irrigated soils plant N uptake ranged from 186 to 437 kg N ha(-1) yr(-1), while plant P uptake ranged from 40 to 88 kg P ha(-1) yr(-1) for the effluent-irrigated soils. Applying effluent significantly increased N leaching losses from Gley and Recent Soils, and after two years ranged from 17 to 184 kg N ha(-1) depending on soil type. Effluent irrigation only increased P leaching from the Gley Soil. All P leaching losses were less than 49 kg P ha(-1) after two years. The N and P leached from effluent treatments were mainly in organic form (69-87% organic N and 35-65% unreactive P). Greater N and P leaching losses from the irrigated Gley Soil were attributed to preferential flow that reduced contact between the effluent and the soil matrix. Increased N leaching from the Recent Soil was the result of increased leaching of native soil organic N due to the higher hydraulic loading from the effluent irrigation.  相似文献   

16.
The leaching of surface-applied herbicides, such as dicamba (2methoxy-3,6-dichlorobenzoic acid), to ground water is an environmental concern. Seasonal changes in soil temperature and water content, affecting infiltration and biodegradation, may control leaching. The objectives of this study were to (i) investigate the leaching of dicamba applied to turfgrass, (ii) measure the degradation rate of dicamba in soil and thatch in the laboratory under simulated field conditions, and (iii) test the ability of the model EXPRES (containing LEACHM) to simulate the field transport and degradation processes. Four field lysimeters, packed with sandy loam soil and topped with Kentucky bluegrass (Poa pratensis L.) sod, were monitored after receiving three applications (May, September, November) of dicamba. Concentrations of dicamba greater than 1 mg L(-1) were detected in soil water. Although drying of the soil during the summer prevented deep transport, greater leaching occurred in late autumn due to increased infiltration. From the batch experiment, the degradation rate for dicamba in thatch was 5.9 to 8.4 times greater than for soil, with a calculated half-life as low as 5.5 d. Computer modeling indicated that the soil and climatic conditions would influence the effectiveness of greater degradation in thatch for reducing dicamba leaching. In general, EXPRES predictions were similar to observed concentration profiles, though peak dicamba concentrations at the 10-cm depth tended to be higher than predicted in May and November. Differences between predictions and observations are probably a result of minor inaccuracies in the water-flow simulation and the model's inability to modify degradation rates with changing climatic conditions.  相似文献   

17.
The main physical and chemical controls on nitrogen (N) fluxes between the root zone and the water table were determined for agricultural sites in California, Indiana, Maryland, Nebraska, and Washington from 2004 to 2005. Sites included irrigated and nonirrigated fields; soil textures ranging from clay to sand; crops including corn, soybeans, almonds, and pasture; and unsaturated zone thicknesses ranging from 1 to 22 m. Chemical analyses of water from lysimeters and shallow wells indicate that advective transport of nitrate is the dominant process affecting the flux of N below the root zone. Vertical profiles of (i) nitrogen species, (ii) stable isotopes of nitrogen and oxygen, and (iii) oxygen, N, and argon in unsaturated zone air and correlations between N and other agricultural chemicals indicate that reactions do not greatly affect N concentrations between the root zone and the capillary fringe. As a result, physical factors, such as N application rate, water inputs, and evapotranspiration, control the differences in concentrations among the sites. Concentrations of N in shallow lysimeters exhibit seasonal variation, whereas concentrations in lysimeters deeper than a few meters are relatively stable. Based on concentration and recharge estimates, fluxes of N through the deep unsaturated zone range from 7 to 99 kg ha(-1) yr(-1). Vertical fluxes of N in ground water are lower due to spatial and historical changes in N inputs. High N fluxes are associated with coarse sediments and high N application rates.  相似文献   

18.
Drainable lysimeters offer the possibility to integrate heterogeneous solute leaching conditions caused by row crops and transient water regime, and to conveniently measure water and solute fluxes at the drainage outlet. To compare solute leaching behavior in and around drainable lysimeters operating under a transient water regime in potato (Solanum tuberosum L.) fields, parameters of the convective lognormal transfer (CLT) function model were fitted using bromide (Br-) flux concentrations (Cf) measured in lysimeters and from Br- resident concentrations (Cr) measured in adjacent soil cores. Expected mean values Ez(I) obtained from Cr and Cf CLT parameters were equivalent and well correlated (R2 = 0.78). However, estimated median values mu of the CLT function were smaller when derived from Cr (1.05 to 1.28) compared with Cf (1.23 to 2.14). Most mu values were also smaller than previously reported values for a 30-cm reference depth, indicating that 50% of solute mass would leach more readily in these coarse sandy soils. Higher variance and dispersion of Cr compared with those of Cf could be related to a smaller sampling support (sample size/sampling area) in the case of Cr measured by soil coring, or to disruption of solute transport mechanisms in the repacked lysimeter. Retained Br- in the top soil layer after 12 to 17 cm of cumulative drainage was indicated by measured Cr. Neither CLT function simulated well residual topsoil Cr values, indicating that Br- plant cycling or preferential flow probably interfered even though tuber Br- uptake was relatively small.  相似文献   

19.
Application of organic manure (OM) amendments and nitrogen fertilizers can affect the sorption and movement of pesticides in soil. This study summarizes the sorption and leaching of metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(2-methoxy-1-methylphenyl) acetamide] in soils after cow (Bos taurus) manure (2.5 and 5.0%) and urea (60 and 120 kg N ha(-1)) amendments in batch and column experiments. Both cow manure and urea applications increased metolachlor sorption in soils. The values of the Freundlich adsorption parameter K(r)(1/n) for treatments T0, T1 (OM), and T2 (OM) were 2.31, 3.32, and 3.96 in Soil 1; 2.02, 2.77, and 3.32 in Soil 2; and 1.10, 1.46, and 2.02 in Soil 3, respectively. Similarly, K(f)(1/n) values for treatment T1 (urea) and T2 (urea) were 2.37 and 2.84 in Soil 1; 2.16 and 2.83 in Soil 2; and 1.50 and 1.70 in Soil 3, respectively. Column leaching studies using Soil 1 indicated that OM application drastically reduced the metolachlor leaching losses from 50% (natural soil) to < 1.0% (5.0% OM amendment). Likewise, urea application also decreased metolachlor mobility and leaching losses in columns treated with 60 and 120 kg N ha(-1) urea were 33 and 20%, respectively. The reduction in the metolachlor leaching losses was achieved through the increase in the sorption capability of the OM- and urea-amended soil. Therefore, coapplication of metolachlor with cow manure or urea fertilizers will not enhance metolachlor mobility and reduces metolachlor leaching losses in low-organic-matter soil.  相似文献   

20.
Nutrient leaching in a Colombian savanna Oxisol amended with biochar   总被引:3,自引:0,他引:3  
Nutrient leaching in highly weathered tropical soils often poses a challenge for crop production. We investigated the effects of applying 20 t ha biochar (BC) to a Colombian savanna Oxisol on soil hydrology and nutrient leaching in field experiments. Measurements were made over the third and fourth years after a single BC application. Nutrient contents in the soil solution were measured under one maize and one soybean crop each year that were routinely fertilized with mineral fertilizers. Leaching by unsaturated water flux was calculated using soil solution sampled with suction cup lysimeters and water flux estimates generated by the model HYDRUS 1-D. No significant difference ( > 0.05) was observed in surface-saturated hydraulic conductivity or soil water retention curves, resulting in no relevant changes in water percolation after BC additions in the studied soils. However, due to differences in soil solution concentrations, leaching of inorganic N, Ca, Mg, and K measured up to a depth of 0.6 m increased ( < 0.05), whereas P leaching decreased, and leaching of all nutrients (except P) at a depth of 1.2 m was significantly reduced with BC application. Changes in leaching at 2.0 m depth with BC additions were about one order of magnitude lower than at other depths, except for P. Biochar applications increased soil solution concentrations and downward movement of nutrients in the root zone and decreased leaching of Ca, Mg, and Sr at 1.2 m, possibly by a combination of retention and crop nutrient uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号