首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: This study used an innovative GIS/remote sensing approach to study historical river channel changes in the Huron River, a wandering gravel‐bedded river in northern Ohio. Eight sets of historical aerial photographs (1958‐2003) span the construction of a low‐head dam (1969), removal of the spillway (1994), and removal of the dam itself (2002). Construction of the dam modified stream gradients >4 km upstream of the small impounded reservoir. This study tracked changes in the polygon size, shape, and centroid position of 12 sand‐gravel bars through a study reach 0.2‐4.1 km upstream of the dam. These bars were highly responsive, tending to migrate obliquely downstream and toward the outer bank at rates up to 9 m/year. Historical changes in the size and position of the bars can be interpreted as the downstream translation of one or more sediment waves. Prior to dam construction, a sediment wave moved downstream through the study reach. Following construction of the dam, this sediment wave became stationary and degraded in situ by dispersion. The growth of bars throughout the study reach during this time interval resulted in a progressive increase in channel sinuosity. Removal of the spillway rejuvenated downstream translation of a sediment wave through the study reach and was followed by a reduction in channel sinuosity. These results illustrate that important geomorphologic changes can occur upstream of low‐head dams. This may be a neglected area of research about the effects of dams and dam removals.  相似文献   

2.
One uncertainty associated with large dam removal is the level of downstream sediment deposition and associated short‐term biological effects, particularly on salmonid spawning habitat. Recent studies report downstream sediment deposition following dam removal is influenced by proximity to the source and river transport capacity. The impacts of dam removal sediment releases are difficult to generalize due to the relatively small number of dam removals completed, the variation in release strategies, and the physical nature of systems. Changes to sediment deposition and associated streambed composition in the Elwha River, Washington State, were monitored prior to (2010‐2011) and during (2012‐2014) the simultaneous removal of two large dams (32 and 64 m). Changes in the surface layer substrate composition during dam removal varied by year and channel type. Riffles in floodplain channels downstream of the dams fined and remained sand dominated throughout the study period, and exceeded levels known to be detrimental to incubating salmonids. Mainstem riffles tended to fine to gravel, but appear to be trending toward cobble after the majority of the sediment was released and transported through system. Thus, salmonid spawning habitats in the mainstem appear to have been minimally impacted while those in floodplain channels appear to have been severely impacted during dam removal.  相似文献   

3.
Dam removal has emerged as a critical issue in environmental management. Agencies responsible for dams face a drastic increase in the number of potential dam removals in the near future. Given limited resources, these agencies need to develop ways to decide which dams should be removed and in what order. The underlying science of dam removal is relatively undeveloped and most agencies faced with dam removal lack a coherent purpose for removing dams. These shortcomings can be overcome by the implementation of two policies by agencies faced with dam removal: (1) the development and adoption of a prioritization scheme for what constitutes an important dam removal, and (2) the establishment of minimum levels of analysis prior to decision-making about a dam removal. Federal and state agencies and the scientific community must encourage an initial experimental phase of dam removal during which only a few dams are removed, and these are studied intensively. This will allow for the development of the fundamental scientific understanding needed to support effective decision-making in the future and minimize the risk of disasters arising from poorly thought out dam removal decisions.  相似文献   

4.
/ There are tens of thousands of small dams in the United States; many of these aging structures are deteriorating. Governments and dam owners face decisions regarding repair or removal of these structures. Along with the many benefits society derives from dams and their impoundments, numerous recent ecological studies are revealing the extensive alteration and degradation of river ecosystems by dams. Dam removal-a principal restoration strategy-is an infrequent event. The major reasons for removal have been public safety and the high costs associated with repair; the goal of river ecosystem restoration now warrants greater attention. Substantial study is being given to the environmental aspects of dams and dam removals, but very little attention has been given to the socioeconomic and institutional dimensions associated with the removal of dams, although these factors play a significant role in the removal decision-making process. Based on a case study of dam removals in Wisconsin-where more than 30 of the state's 3600 small dams have been removed in the past few decades-legal, financial, and socioeconomic issues associated with dam removal are documented and assessed. Dam removal has been complex and contentious, with limited community-based support for removal and loss of the impounded waters. In cases examined here, the estimated costs of repairing a dam averaged more than three times the cost of removal. The availability of governmental financing has been a key determinant in removal decisions. Watershed-scale ecological considerations are not major factors for most local interests. As watershed management and restoration increasingly include dam removal options as part of an integrated strategy, more attention will need to be focused on socioeconomic factors and stakeholder perspectives-variables that strongly influence the viability of this management alternative.KEY WORDS: Dam removal; River restoration; Institutions; Stakeholders  相似文献   

5.
Abstract: We evaluate the effects of small dams (11 of 15 sites less than 4 m high) on downstream channels at 15 sites in Maryland and Pennsylvania by using a reach upstream of the reservoir at each site to represent the downstream reach before dam construction. A semi‐quantitative geomorphic characterization demonstrates that upstream reaches occupy similar geomorphic settings as downstream reaches. Survey data indicate that dams have had no measurable influence on the water surface slope, width, and the percentages of exposed bedrock or boulders on the streambed. The median grain diameter (D50) is increased slightly by dam construction, but D50 remains within the pebble size class. The percentage of sand and silt and clay on the bed averages about 35% before dam construction, but typically decreases to around 20% after dam construction. The presence of the dam has therefore only influenced the fraction of finer‐grained sediment on the bed, and has not caused other measurable changes in fluvial morphology. The absence of measurable geomorphic change from dam impacts is explicable given the extent of geologic control at these study sites. We speculate that potential changes that could have been induced by dam construction have been resisted by inerodible bedrock, relatively immobile boulders, well‐vegetated and cohesive banks, and low rates of bed material supply and transport. If the dams of our study are removed, we argue that long‐term changes (those that remain after a period of transient adjustment) will be limited to increases in the percentage of sand and silt and clay on the bed. Thus, dam removal in streams similar to those of our study area should not result in significant long‐term geomorphic changes.  相似文献   

6.
ABSTRACT: Dam removal has been proposed as an effective method of river restoration, but few integrative studies have examined ecological responses to the removal of dams. In 1999, we initiated an interdisciplinary study to determine ecological responses to the removal of a 2 m high dam on lower Manatawny Creek in southeastern Pennsylvania. We used an integrative monitoring program to assess the physical, chemical, and biological responses to dam removal. Following removal in 2000, increased sediment transport has led to major changes in channel form in the former impoundment and downstream reaches. Water quality did not change markedly following removal, probably because of the impoundment's short hydraulic residence time (less than two hours at base flow) and infrequent temperature stratification. When the impoundment was converted to a free flowing reach, the composition of the benthic macroinvertebrate and fish assemblages in this portion of Manatawny Creek shifted dramatically from lentic to lotic taxa. Some fish species inhabiting the free flowing reach downstream from the dam were negatively affected by large scale sediment transport and habitat alteration following dam removal, but this appears to be a short term response. Based on our observations and experiences in this study, we provide a list of issues to evaluate when considering future dam removals.  相似文献   

7.
Managers make decisions regarding if and how to remove dams in spite of uncertainty surrounding physical and ecological responses, and stakeholders often raise concerns about certain negative effects, regardless of whether these concerns are warranted at a particular site. We used a dam‐removal science database supplemented with other information sources to explore seven frequently raised concerns, herein Common Management Concerns (CMCs). We investigate the occurrence of these concerns and the contributing biophysical controls. The CMCs addressed are the following: degree and rate of reservoir sediment erosion, excessive channel incision upstream of reservoirs, downstream sediment aggradation, elevated downstream turbidity, drawdown impacts on local water infrastructure, colonization of reservoir sediments by nonnative plants, and expansion of invasive fish. Biophysical controls emerged for some of the concerns, providing managers with information to assess whether a given concern is likely to occur at a site. To fully assess CMC risk, managers should concurrently evaluate site conditions and identify the ecosystem or human uses that will be negatively affected if the biophysical phenomenon producing the CMC occurs. We show how many CMCs have one or more controls in common, facilitating the identification of multiple risks at a site, and demonstrate why CMC risks should be considered in the context of other factors such as natural watershed variability and disturbance history.  相似文献   

8.
We examined the effects of the Zemko Dam removal on the Eightmile River system in Salem, Connecticut, USA. The objective of this research was to quantify spatiotemporal variation in fish community composition in response to small dam removal. We sampled fish abundance over a 6-year period (2005–2010) to quantify changes in fish assemblages prior to dam removal, during drawdown, and for three years following dam removal. Fish population dynamics were examined above the dam, below the dam, and at two reference sites by indicator species analysis, mixed models, non-metric multidimensional scaling, and analysis of similarity. We observed significant shifts in fish relative abundance over time in response to dam removal. Changes in fish species composition were variable, and they occurred within 1 year of drawdown. A complete shift from lentic to lotic fishes failed to occur within 3 years after the dam was removed. However, we did observe increases in fluvial and transition (i.e., pool head, pool tail, or run) specialist fishes both upstream and downstream from the former dam site. Our results demonstrate the importance of dam removal for restoring river connectivity for fish movement. While the long-term effects of dam removal remain uncertain, we conclude that dam removals can have positive benefits on fish assemblages by enhancing river connectivity and fluvial habitat availability.  相似文献   

9.
Abstract:  The state of Michigan is interested in removing two low‐head dams in an 8.8 km reach of the Kalamazoo River between Plainwell and Otsego, Michigan, while minimizing impacts locally and to downstream reaches. The study was designed to evaluate the erosion, transport, and deposition of sediments over a 37.3‐year period using the channel evolution model CONCEPTS for three simulation scenarios: Dams In (DI), Dams Out (DO), and Design (D). The total mass of sediment emanating from the channel boundary, for the DI case, shows net deposition of 4,100 T/y for the study reach, with net transport (suspended and bed load) of 10,500 T/y passing the downstream boundary. For the DO case, net erosion is 19,200 T/y with net transport of 30,100 T/y (187% increase) passing the downstream boundary. For the D case, net deposition is 2,570 T/y (37% decrease) with transport of 14,200 T/y (35% increase) passing the downstream boundary. The most significant findings were: (1) removal of the low‐head dams will cause significant erosion of sediments stored behind the dams and increased sediment loads passing the downstream boundary and (2) sediment loads for the proposed channel design are similar to existing conditions and offer reduced fine‐sediment loadings.  相似文献   

10.
The Opuha Dam was designed for water storage, hydropower, and to augment summer low flows. Following its commissioning in 1999, algal blooms (dominated first by Phormidium and later Didymosphenia geminata) downstream of the dam were attributed to the reduced frequency and magnitude of high-flow events. In this study, we used a 20-year monitoring dataset to quantify changes associated with the dam. We also studied the effectiveness of flushing flows to remove periphyton from the river bed. Following the completion of the dam, daily maximum flows downstream have exceeded 100 m3 s?1 only three times; two of these floods exceeded the pre-dam mean annual flood of 203 m3 s?1 (compared to 19 times >100 m3 s?1 and 6 times >203 m3 s?1 in the 8 years of record before the dam). Other changes downstream included increases in water temperature, bed armoring, frequency of algal blooms, and changes to the aquatic invertebrate community. Seven experimental flushing flows resulted in limited periphyton reductions. Flood wave attenuation, bed armoring, and a shortage of surface sand and gravel, likely limited the effectiveness of these moderate floods. Floods similar to pre-dam levels may be effective for control of periphyton downstream; however, flushing flows of that magnitude are not possible with the existing dam infrastructure. These results highlight the need for dams to be planned and built with the capacity to provide the natural range of flows for adaptive management, particularly high flows.  相似文献   

11.
This is a study of the scientific component of an effort to restore an urban river by removing a low-head dam. The Secor Dam is owned by a local government entity near Toledo, Ohio. The proposed removal of the last structure impeding flow on the Ottawa River has broad appeal, but the owner is concerned about liability issues, particularly potential changes to the flood regime, the presence of contaminated sediments behind the dam, and possible downstream transport of reservoir sediments. Assessing sediment contamination involved sediment sampling and analysis of trace metals and organic contaminants. Forecasting sediment transport involved field methods to determine the volume and textural properties of reservoir and upstream sediment and calculations to determine the fate of reservoir sediments. Forecasting changes in the flood regime involved HEC-RAS hydrological models to determine before and after dam removal flood scenarios using LiDAR data imported into an ArcGIS database. The resulting assessment found potential sediment contamination to be minor, and modeling showed that the removal of the dam would have minimal impacts on sediment transport and flood hazards. Based on the assessment, the removal of the dam has been approved by its owners.  相似文献   

12.
Undamming Rivers: A Review of the Ecological Impacts of Dam Removal   总被引:26,自引:4,他引:22  
Dam removal continues to garner attention as a potential river restoration tool. The increasing possibility of dam removal through the FERC relicensing process, as well as through federal and state agency actions, makes a critical examination of the ecological benefits and costs essential. This paper reviews the possible ecological impacts of dam removal using various case studies. Restoration of an unregulated flow regime has resulted in increased biotic diversity through the enhancement of preferred spawning grounds or other habitat. By returning riverine conditions and sediment transport to formerly impounded areas, riffle/pool sequences, gravel, and cobble have reappeared, along with increases in biotic diversity. Fish passage has been another benefit of dam removal. However, the disappearance of the reservoir may also affect certain publicly desirable fisheries. Short-term ecological impacts of dam removal include an increased sediment load that may cause suffocation and abrasion to various biota and habitats. However, several recorded dam removals have suggested that the increased sediment load caused by removal should be a short-term effect. Preremoval studies for contaminated sediment may be effective at controlling toxic release problems. Although monitoring and dam removal studies are limited, a continued examination of the possible ecological impacts is important for quantifying the resistance and resilience of aquatic ecosystems. Dam removal, although controversial, is an important alternative for river restoration.  相似文献   

13.
We investigate stream response to the La Valle Dam removal and channel reconstruction by estimating channel hydraulic parameter values and changes in sedimentation within the reservoir. The designed channel reconstruction after the dam removal included placement of a riffle structure at the former dam site. Stream surveys undertaken in 1984 by Federal Emergency Management Agency and in 2001 by Doyle et al. were supplemented with surveys in 2009 and 2011 to study the effects of the instream structure. We created a model in HEC‐RAS IV and surface maps in Surfer© using the 1984, 2009, and 2011 surveys. The HEC‐RAS IV model for 2009 channel conditions indicates that the riffle structure decreases upstream channel shear stress and velocity, causing renewed deposition of sediment within the former reservoir. We estimate by 2009, 61% of former reservoir sediments were removed during dam removal and channel reconstruction. Between 2009 and 2011 renewed sedimentation within the former reservoir represented approximately 7.85% of the original reservoir volume. The HEC‐RAS IV models show the largest impacts of the dam and riffle structure occur at flood magnitudes at or below bankfull. Thus, the riffle and the dam similarly alter channel hydraulics and sediment transport. As such, our models indicate that the La Valle Dam project was a dam replacement rather than a removal. Our results confirm that channel reconstruction method can alter channel hydraulics, geomorphology, and sediment mobility.  相似文献   

14.
The Klamath River once supported large runs of anadromous salmonids. Water temperature associated with multiple mainstem hydropower facilities might be one of many factors responsible for depressing Klamath salmon stocks. We combined a water quantity model and a water quality model to predict how removing the series of dams below Upper Klamath Lake might affect water temperatures, and ultimately fish survival, in the spawning and rearing portions of the mainstem Klamath. We calibrated the water quantity and quality models and applied them for the hydrometeorological conditions during a 40-year postdam period. Then, we hypothetically removed the dams and their impoundments from the models and reestimated the rivers water temperatures. The principal thermal effect of dam and reservoir removal would be to restore the timing (phase) of the rivers seasonal thermal signature by shifting it approximately 18 days earlier in the year, resulting in river temperatures that more rapidly track ambient air temperatures. Such a shift would likely cool thermal habitat conditions for adult fall chinook (Oncorhynchus tshawytscha) during upstream migration and benefit mainstem spawning. By contrast, spring and early summer temperatures could be warmer without dams, potentially harming chinook rearing and outmigration in the mainstem. Dam removal might affect the rivers thermal regime during certain conditions for over 200 km of the mainstem.  相似文献   

15.
ABSTRACT: In Yegua Creek, a principal tributary of the Brazos River in Texas, surveys of a 19 km channel reach downstream of Somerville Dam show that channel capacity decreased by an average of 65 percent in a 34 year period following dam closure. The decrease corresponds with an approximately 85 percent reduction in annual flood peaks. Channel depth has changed the most, decreasing by an average of 61 percent. Channel width remained stable with an average decrease of only 9 percent, reflecting cohesive bank materials along with the growth of riparian vegetation resulting from increased low flows during dry summer months. Although large changes in stream channel geometry are not uncommon downstream of dams, such pronounced reductions in channel capacity could have long‐term implications for sediment delivery through the system.  相似文献   

16.
Abstract: This paper presents the results of an ex post survey of recreational anglers for the lower Kennebec River, post‐Edwards Dam removal. To the best of our knowledge, this study represents one of the first ex post analyses of fisheries restoration from dam removal. We find significant benefits have accrued to anglers using the restored fishery. Specifically, anglers are spending more to visit the fishery, a direct indication of the increased value anglers place on the improved fishery. Anglers are also willing to pay for increased angling opportunities on the river. These findings have policy implications for other privately owned dams that are currently undergoing relicensing and/or dam removal considerations. Our findings may also hold implications for fisheries that have deteriorated due to historic dam construction.  相似文献   

17.
Although dams have beneficial effects, they are also acknowledged as having serious environmental repercussions if they are not properly managed. The objective of this work was to examine the impact of the Barekese Dam in Ghana on the health status of three riparian communities downstream against a control. The environmental health status of the communities was analysed with reference to traditional endemic communicable water-related diseases in the catchment area, which were identified as malaria, urinary schistosomiasis, infectious hepatitis, diarrhoeal diseases and scabies. Case-control study was then conducted in the three phases of the dam (pre-construction, at the end of the construction and in the late operational phases) to analyse the health status of the communities as a function of the phases of the dam. The results showed that the control community consistently had a much better health status than two of the riparian communities, which were closer to the dam in all the three phases. However, it had a better health status than the third riparian community, which was farthest downstream, only in the first two phases. This community maintained a fairly constant health status retrospectively and did not appear to have been affected by the presence of the dam. On contrary, the health status of the two communities in close proximity to the dam deteriorated in the late operational phase. The study therefore showed that there was a strong association between the presence of the dam and poorer health status of the downstream communities in close proximity to it.  相似文献   

18.
ABSTRACT: This study evaluates the streamflow characteristics of the upper Allegheny River during the periods preceding (1936 to 1965) and following (1966 to 1997) completion of the Kinzua Dam in northwestern Pennsylvania. Inter‐period trends in seasonal patterns of discharge and peak flow at three downstream sites are compared to those at two upstream sites to determine the influence of this large dam on surface water hydrology. Climatic records indicate that significant changes in annual total and seasonal precipitation occurred over the twentieth century. Increased runoff during the late summer through early winter led to increased discharge both upstream and downstream during these months, while slightly less early‐year rainfall produced minor reductions in spring flood peaks since 1966. The Kinzua Dam significantly enhanced these trends downstream, creating large reductions in peak flow, while greatly augmenting low flow during the growing season. This reduction in streamflow variability, coupled with other dam‐induced changes, has important biodiversity implications. The downstream riparian zone contains numerous threatened/endangered species, many of which are sensitive to the type of habitat modifications produced by the dam. Flood dynamics under the current post‐dam conditions are likely to compound the difficulties of maintaining their long‐term viability.  相似文献   

19.
ABSTRACT: There is a pressing need for tools to predict the rates, magnitudes, and mechanisms by which sediment is removed from a reservoir following dam removal, as well as for tools to predict where this sediment will be deposited downstream and how it will impact downstream channel morphology. In the absence of adequate empirical data, a good initial approach is to examine the impacts of dam removal within the context of the geomorphic analogies of channel evolution models and sediment waves. Channel changes at two dam breaching sites in Wisconsin involved a succession of channel forms and processes consistent with an existing channel evolution model. Sediment transported downstream after removal of other dams suggests that reservoir sediment may be translated downstream either as a distinct wave or gradually eroded away. More extensive data collection on existing dam removals is warranted before undertaking the removal of a large number of dams. However, if removal is to proceed based on current knowledge, then geomorphic analogies can be used as the foundation for sediment management and stabilization schemes.  相似文献   

20.
The 4-year drawdown of Horsetooth Reservoir, Colorado, for dam maintenance, provides a case study analog of vegetation response on sediment that might be exposed from removal of a tall dam. Early vegetation recovery on the exposed reservoir bottom was a combination of (1) vegetation colonization on bare, moist substrates typical of riparian zones and reservoir sediment of shallow dams and (2) a shift in moisture status from mesic to the xeric conditions associated with the pre-impoundment upland position of most of the drawdown zone. Plant communities changed rapidly during the first four years of exposure, but were still substantially different from the background upland plant community. Predictions from the recruitment box model about the locations of Populus deltoides subsp. monilifera (plains cottonwood) seedlings relative to the water surface were qualitatively confirmed with respect to optimum locations. However, the extreme vertical range of water surface elevations produced cottonwood seed regeneration well outside the predicted limits of drawdown rate and height above late summer stage. The establishment and survival of cottonwood at high elevations and the differences between the upland plant community and the community that had developed after four years of exposure suggest that vegetation recovery following tall dam removal will follow a trajectory very different from a simple reversal of the response to dam construction, involving not only long time scales of establishment and growth of upland vegetation, but also possibly decades of persistence of legacy vegetation established during the reservoir to upland transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号