首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: A renewed emphasis on source water protection and watershed management has resulted from recent amendments and initiatives under the Safe Drinking Water Act and the Clean Water Act. Knowledge of the impact of land use choices on source water quality is critical for efforts to properly manage activities within a watershed. This study evaluated qualitative relationships between land use and source water quality and the quantitative impact of season and rainfall events on water quality parameters. High levels of specific conductance tended to be associated with dense residential development, while organic carbon was elevated at several forested sites. Turbidity was generally higher in more urbanized areas. Source tracking indicators were detected in samples where land use types would predict their presence. Coliform levels were statistically different at the 95 percent confidence levels for winter versus summer conditions and dry versus wet weather conditions. Other water quality parameters that varied with season were organic carbon, turbidity, dissolved oxygen, and specific conductance. These results indicate that land use management can be effective for mitigating impacts to a water body; however, year‐ round, comprehensive data are necessary to thoroughly evaluate the water quality at a particular site.  相似文献   

2.
Abstract: In efforts to control the degradation of water quality in Lake Tahoe, public agencies have monitored surface water discharge and concentrations of nitrogen, phosphorus, and suspended sediment in two separate sampling programs. The first program focuses on 20 watersheds varying in size from 162 to 14,000 ha, with continuous stream gaging and periodic sampling; the second focuses on small urbanized catchments, with automated sampling during runoff events. Using data from both programs, we addressed the questions (1) what are the fluxes and concentrations of nitrogen and phosphorus entering the lake from surface runoff; (2) how do the fluxes and concentrations vary in space and time; and (3) how are they related to land use and watershed characteristics? To answer these questions, we calculated discharge‐weighted average concentrations and annual fluxes and used multiple regression to relate those variable to a suite of GIS‐derived explanatory variables. The final selected regression models explain 47‐62% of the variance in constituent concentrations in the stormwater monitoring catchments, and 45‐72% of the variance in mean annual yields in the larger watersheds. The results emphasize the importance of impervious surface and residential density as factors in water quality degradation, and well‐developed soil as a factor in water quality maintenance.  相似文献   

3.
Abstract

This study examined trends in population redistribution and residential land use changes in northeast Scotland during 1988 to 2003. We utilised a geographical information system (GIS) tool to bring together data from interrelated sources and to analyse population settlement and land use changes at detailed spatial scale. This analysis revealed that substantial land conversion had taken place in the region; particularly conversion of agricultural lands to built-up and residential areas. It also drew attention to policy conflicts, discrepancies between policy rhetoric and policy implementations. More specifically, it was shown that substantial farm land conversion had taken place in suburban areas and rural Aberdeenshire with little change in the size of derelict land in Aberdeen City. The reason given for this was that it was costly to rehabilitate and reuse derelict lands and this conflicted with the objective of providing affordable housing in the City region. The implication of this study is that if the declared policy objectives of integrated and sustainable land use and transport policies are to be achieved, then local authorities may need to cooperate to minimise conflicts between economic and environmental objectives.  相似文献   

4.
Studies that evaluate determinants of residential water demand typically use data from a single spatial scale. Although household‐scale data are preferred, especially when econometric models are used, researchers may be limited to aggregate data. There is little, if any, empirical analysis to assess whether spatial scale may lead to ecological fallacy problems in residential water use research. Using linear mixed‐effects models, we compare the results for the relationship of single‐family water use with its determinants using data from the household and census tract scales in the city of Phoenix. Model results between the household and census tract scale are similar suggesting the ecological fallacy may not be significant. Common significant determinants on these two spatial scales include household size, household income, house age, pool size, irrigable lot size, precipitation, and temperature. We also use city/town scale data from the Phoenix metropolitan area to parameterize the linear mixed‐effects model. The difference in the parameter estimates of those common variables compared to the first two scales indicates there is spatial heterogeneity in the relationship between single‐family water use and its determinants among cities and towns. The negative relationship between single‐family house density and residential water use suggests that residential water consumption could be reduced through coordination of land use planning and water demand management.  相似文献   

5.
Abstract: We describe relationships between pH, specific conductance, calcium, magnesium, chloride, sulfate, nitrogen, and phosphorus and land‐use patterns in the Mullica River basin, a major New Jersey Pinelands watershed, and determine the thresholds at which significant changes in water quality occur. Nonpoint sources are the main contributors of pollutants to surface waters in the basin. Using multiple regression and water‐quality data for 25 stream sites, we determine the percentage of variation in the water‐quality data explained by urban land and upland agriculture and evaluate whether the proximity of these land uses influences water‐quality/land‐use relationships. We use a second, independently collected water‐quality dataset to validate the statistical models. The multiple‐regression results indicate that water‐quality degradation in the study area is associated with basin‐wide upland land uses, which are generally good predictors of water‐quality conditions, and that both urban land and upland agriculture must be included in models to more fully describe the relationship between watershed disturbance and water quality. Including the proximity of land uses did not improve the relationship between land use and water quality. Ten‐percent altered‐land cover in a basin represents the threshold at which a significant deviation from reference‐site water‐quality conditions occurs in the Mullica River basin.  相似文献   

6.
Impact of Urban Sprawl on Water Quality in Eastern Massachusetts,USA   总被引:5,自引:0,他引:5  
A study of water quality, land use, and population variations over the past three decades was conducted in eastern Massachusetts to examine the impact of urban sprawl on water quality using geographic information system and statistical analyses. Since 1970, eastern Massachusetts has experienced pronounced urban sprawl, which has a substantial impact on water quality. High spatial correlations are found between water quality indicators (especially specific conductance, dissolved ions, including Ca, Mg, Na, and Cl, and dissolved solid) and urban sprawl indicators. Urbanized watersheds with high population density, high percentage of developed land use, and low per capita developed land use tended to have high concentrations of water pollutants. The impact of urban sprawl also shows clear spatial difference between suburban areas and central cities: The central cities experienced lower increases over time in specific conductance concentration, compared to suburban and rural areas. The impact of urban sprawl on water quality is attributed to the combined effects of population and land-use change. Per capita developed land use is a very important indicator for studying the impact of urban sprawl and improving land use and watershed management, because inclusion of this indicator can better explain the temporal and spatial variations of more water quality parameters than using individual land use or/and population density.  相似文献   

7.
The watershed of the Neuse River, a major tributary of the largest lagoonal estuary on the U.S. mainland, has sustained rapid growth of human and swine populations. This study integrated a decade of available land cover and water quality data to examine relationships between land use changes and surface water quality. Geographic Information Systems (GIS) analysis was used to characterize 26 subbasins throughout the watershed for changes in land use during 1992–2001, considering urban, agricultural (cropland, animal as pasture, and densities of confined animal feed operations [CAFOs]), forested, grassland, and wetland categories and numbers of wastewater treatment plants (WWTPs). GIS was also used together with longitudinal regression analysis to identify specific land use characteristics that influenced surface water quality. Total phosphorus concentrations were significantly higher during summer in subbasins with high densities of WWTPs and CAFOs. Nitrate was significantly higher during winter in subbasins with high numbers of WWTPs, and organic nitrogen was higher in subbasins with higher agricultural coverage, especially with high coverage of pastures fertilized with animal manure. Ammonium concentrations were elevated after high precipitation. Overall, wastewater discharges in the upper, increasingly urbanized Neuse basin and intensive swine agriculture in the lower basin have been the highest contributors of nitrogen and phosphorus to receiving surface waters. Although nonpoint sources have been emphasized in the eutrophication of rivers and estuaries such as the Neuse, point sources continue to be major nutrient contributors in watersheds sustaining increasing human population growth. The described correlation and regression analyses represent a rapid, reliable method to relate land use patterns to water quality, and they can be adapted to watersheds in any region.  相似文献   

8.
Soil erosion associated with non-point source pollution is viewed as a process of land degradation in many terrestrial environments. Careful monitoring and assessment of land use variations with different temporal and spatial scales would reveal a fluctuating interface, punctuated by changes in rainfall and runoff, movement of people, perturbation from environmental disasters, and shifts in agricultural activities and cropping patterns. The use of multi-temporal remote sensing images in support of environmental modeling analysis in a geographic information system (GIS) environment leading to identification of a variety of long-term interactions between land, resources, and the built environment has been a highly promising approach in recent years. This paper started with a series of supervised land use classifications, using SPOT satellite imagery as a means, in the Kao-Ping River Basin, South Taiwan. Then, it was designed to differentiate the variations of eight land use patterns in the past decade, including orchard, farmland, sugarcane field, forest, grassland, barren, community, and water body. Final accuracy was confirmed based on interpretation of available aerial photographs and global positioning system (GPS) measurements. Finally, a numerical simulation model (General Watershed Loading Function, GWLF) was used to relate soil erosion to non-point source pollution impacts in the coupled land and river water systems. Research findings indicate that while the decadal increase in orchards poses a significant threat to water quality, the continual decrease in forested land exhibits a potential impact on water quality management. Non-point source pollution, contributing to part of the downstream water quality deterioration of the Kao-Ping River system in the last decade, has resulted in an irreversible impact on land integrity from a long-term perspective.  相似文献   

9.
ABSTRACT: A simple procedure for estimating pre- and post-development water quality loadings from residential communities is discussed. The procedure deals with: (a) gathering basic water quality loading numbers observed by others at several watersheds with various land uses; (b) obtaining the breakdown of proposed land uses at various phases of the community development; and (c) estimating pre- and post-development water quality loading numbers by taking the weighted average of the basic loading numbers in terms of areal coverages of different land uses at various phases of development. Results of this simplified procedure have been verified indirectly by comparing them with the estimates derived independently through a more fundamental but time-consuming approach. The procedure was used to evaluate the anticipated water quality impact of two future residential communities in South Florida by analyzing four water quality parameters: Suspended Soils (SS), Total Nitrogen (TN), Total Phosphorus (TP), and Biochemical Oxygen Demand (BOD5). Although computation of loading numbers with mixed land uses is not an exact science at the present time, the recommended approach appears to be the best available technique to analyze quantitatively the water quality-quantity-land use interactions.  相似文献   

10.
ABSTRACT: Under the Clean Water Act (CWA) program, the Texas Commission on Environmental Quality (TCEQ) listed 110 stream segments in the year 2000 with pathogenic bacteria impairment. A study was conducted to evaluate the probable sources of pollution and characterize the watersheds associated with these impaired water bodies. The primary aim of the study was to group the water bodies into clusters having similar watershed characteristics and to examine the possibility of studying them as a group by choosing models for total maximum daily load (TMDL) development based on their characteristics. This approach will help to identify possible sources and determine appropriate models and hence reduce the number of required TMDL studies. This in turn will help in reducing the effort required to restore the health of the impaired water bodies in Texas. The main characteristics considered for the classification of water bodies were land use distribution within the watershed, density of stream network, average distance of land of a particular use to the closest stream, household population, density of on‐site sewage facilities (OSSFs), bacterial loading from different types of farm animals and wildlife, and average climatic conditions. The climatic data and observed instream fecal coliform bacteria concentrations were analyzed to evaluate seasonal variability of instream water quality. The grouping of water bodies was carried out using the multivariate statistical techniques of factor analysis/principal component analysis, cluster analysis, and discriminant analysis. The multivariate statistical analysis resulted in six clusters of water bodies. The main factors that differentiated the clusters were found to be bacterial contribution from farm animals and wildlife, density of OSSFs, density of households connected to public sewers, and land use distribution.  相似文献   

11.
This study applied hydrogeological characterization and isotope investigation to identify source locations and to trace a plume of ground water contaminated by nitrate. Most of the study site is agricultural fields with the remainder being residential. A poultry farm is also within the study area, so that potential point and nonpoint sources were present. Estimates of seasonal ground water recharge from irrigation and precipitation, leakage of sewage, and the regional ground water flow were linked to the seasonal changes in isotopic values. Ground water recharge largely occurred in spring and summer following precipitation or irrigation, depending on the locations. Natural and fertilized soils were identified as nonpoint sources of nitrate contamination in this area, while septic and animal wastes were identified as small point sources. The seasonal changes in the relative impact of these sources on ground water contamination were related to such factors as source distribution, the aquifer confining condition, precipitation rate, infiltration capacity, recharge rate, and the land use pattern.  相似文献   

12.
ABSTRACT: Protecting surface water quality in watersheds undergoing demographic change requires both the management of existing threats and planning to address potential future stresses arising from changing land use. Many reservoirs and threatened waterbodies are located in areas undergoing rapid population growth, and increases in density of residential and commercial land use, accompanied by increased amount of impervious surface area, can result in increased pollutant loading and degradation of water quality. Effective planning to address potential threats, including zoning and growth management, requires analytical tools to predict and compare the impacts of different management options. The focus of this paper is not on developing demographic projections, but rather the translation of such projections into changes in land use which form the basis for assessment of future watershed loads. Land use change can be forecast at a variety of spatial and temporal scales. A semi-lumped, GIS-based, transition matrix approach is recommended as consistent with the level of complexity achievable in most watershed models. Practical aspects of forecasting future land use for watershed assessment are discussed. Several recent reservoir water supply projection studies are used to demonstrate a general framework for simulating changes in land use and resulting impacts on water quality. In addition to providing a technical basis for selecting optimal management alternatives, such a tool is invaluable for demonstrating to different stakeholder groups the trade-offs among management alternatives, both in terms of water quality and future land use patterns within the watershed.  相似文献   

13.
Despite an array of policies at the federal and state level aimed at regulating stormwater discharges, engineered solutions enforced by local governments often fall short of meeting water quality standards. Although the implications of land use planning and development regulations are important for stormwater management, they are often overlooked as critical initial steps to improving water quality. This study explores the role of ‘form-based’ regulations as tools for achieving urban planning and water quality objectives. Form-based codes are a new generation of development codes aimed at regulating urban development based on urban form and density, rather than land use. We present an exploratory case study of the feasibility of form-based codes in the Jordan Lake Watershed in North Carolina, a rapidly growing region where fragmented local governments face stringent nutrient reduction standards under new state regulations. Through program analysis and interviews, we explore the viability of form-based codes for reducing development impacts on Jordan Lake’s water quality. We consider the legal feasibility of code enforcement, regional and local barriers and opportunities, and implementation given existing regulatory frameworks. Our findings suggest that high quality information and data modeling are foundational to gaining support for a consensus agreement on the sources and degree of water quality impairment. Furthermore, implementing form-based solutions for water quality is greatly aided by (1) experienced regional planning bodies that have regulatory authority, and (2) local governments whose staff are experienced in implementing complex development ordinances, reviewing architectural renderings, and communicating development requirements with the public and developers.  相似文献   

14.
Urban ecosystems are often sources of nonpoint source (NPS) nitrogen (N) pollution to aquatic ecosystems. However, N export from urban watersheds is highly variable. Examples of densely urbanized watersheds are not well studied, and these may have comparatively low export rates. Commonly used metrics of landscape heterogeneity may obscure our ability to discern relationships among landscape characteristics that can explain these lower export rates. We expected that differences not often captured by these metrics in the relative cover of vegetation, structures, and impervious surfaces would better explain observed variation in N export. We examined these relationships during storms in residential watersheds. Contrary to expectations, land cover did not directly predict variation in N or water export. Instead, N export was strongly linked to drainage infrastructure density. Our research highlights the role of fine‐scaled landscape attributes, mainly infrastructure, in explaining patterns of N export from densely urbanized watersheds. Changes to hydrologic flow paths by infrastructure explained more variation in N export than land cover. Our findings support further development of landscape ecological models of urban N export that focus on hydrologic modification by infrastructure rather than traditional landscape measures such as land use, as indicators for evaluating patterns of NPS nitrogen pollution in densely urbanized watersheds.  相似文献   

15.
/ We used linear regression to independently and jointly relate specific conductance and pH measured at New Jersey Pinelands stream sites to the percentage of altered land in a watershed. Percentage altered land included developed and agricultural land uses and represented watershed disturbance for a given site. Median values calculated for a 2-year period (September 1992 through August 1994) characterized pH and specific conductance at the study sites. We found the relationships between the median values for both water-quality measures and percentage altered land for a site to be consistent across subregion and dominant altered-land use. Our results also demonstrated that the water-quality/altered-land relationships developed using median values were similar to relationships developed using data from any single-sample period within the entire study period. Individually, pH and specific conductance explained 48% and 56%, respectively, of the variability in watershed disturbance among study sites. The joint use of pH and specific conductance explained 79% of the watershed disturbance variability among sites. The joint use of these easily obtained water-quality measures can provide a quick assessment of instream water-quality impacts from upstream watershed disturbance at any Pinelands stream site. Additionally, a range in pH and specific conductance, and hence a range in ambient water quality, can be predicted for a given altered-land percentage or a change in existing altered-land conditions.  相似文献   

16.
Geographically‐related information is needed for several elements of an integrated ground water quality management programme, including ground water monitoring planning, prioritization of pollution sources, usage of permits and inspections for source control, and planning and completion of remedial actions. Geographic Information Systems (GISs) can be used to support these elements along with delineating wellhead protection areas (WHPAs), prioritizing existing contaminant sources and evaluating proposed changes in land usage in such areas. Eight case studies of the use of GISs in wellhead protection programmes are summarized, including examples from Rhode Island, Mississippi, New Jersey, New York, Pennsylvania, Kansas, Massachusetts and Texas. Six additional examples are mentioned relative to the use of GISs for evaluating ground water pollution potential, facilitating data analysis for environmental restoration of a large area with numerous waste sites, evaluating trends in ground water nitrate contamination, establishing a national database for ground water vulnerability to agricultural chemicals, simulating water table altitudes from stream and drainage basin locations, and selecting radioactive waste dump sites. The applicability of GISs and their associated advantages in wellhead protection and other ground water management studies are demonstrated via the case studies. The GIS technology provides a unique opportunity for analysing and visualizing spatial data. Contaminant and source prioritization within WHPAs is needed for both extant conditions and in the evaluation of proposed land use changes. The coupling of a GIS with contaminant/source prioritization would provide a strategic tool which could be used to plan targeted ground water monitoring programmes, to identify appropriate management or mitigation measures, minimize introduction of contaminants from existing sources into the subsurface environment, and to evaluate the potential of proposed land use activities for causing ground water contamination. GISs can be useful in providing current information for policy makers, planners and managers engaged in ground water quality decision making.  相似文献   

17.
The Houston-Galveston Area (HGA) is one of the most severe ozone non-attainment regions in the US. To study the effectiveness of controlling anthropogenic emissions to mitigate regional ozone nonattainment problems, it is necessary to utilize adequate datasets describing the environmental conditions that influence the photochemical reactivity of the ambient atmosphere. Compared to the anthropogenic emissions from point and mobile sources, there are large uncertainties in the locations and amounts of biogenic emissions. For regional air quality modeling applications, biogenic emissions are not directly measured but are usually estimated with meteorological data such as photo-synthetically active solar radiation, surface temperature, land type, and vegetation database. In this paper, we characterize these meteorological input parameters and two different land use land cover datasets available for HGA: the conventional biogenic vegetation/land use data and satellite-derived high-resolution land cover data. We describe the procedures used for the estimation of biogenic emissions with the satellite derived land cover data and leaf mass density information. Air quality model simulations were performed using both the original and the new biogenic emissions estimates. The results showed that there were considerable uncertainties in biogenic emissions inputs. Subsequently, ozone predictions were affected up to 10 ppb, but the magnitudes and locations of peak ozone varied each day depending on the upwind or downwind positions of the biogenic emission sources relative to the anthropogenic NOx and VOC sources. Although the assessment had limitations such as heterogeneity in the spatial resolutions, the study highlighted the significance of biogenic emissions uncertainty on air quality predictions. However, the study did not allow extrapolation of the directional changes in air quality corresponding to the changes in LULC because the two datasets were based on vastly different LULC category definitions and uncertainties in the vegetation distributions.  相似文献   

18.
Urbanization has transformed natural landscapes into anthropogenic impervious surfaces. Urban land use has become a major driving force for land cover and land use change in the Tampa Bay watershed of west-central Florida. This study investigates urban land use change and its impact on the watershed. The spatial and temporal changes, as well as the development density of urban land use are determined by analyzing the impervious surface distribution using Landsat satellite imagery. Population distribution and density are extracted from the 2000 census data. Non-point source pollution parameters used for measuring water quality are analyzed for the sub-drainage basins of Hillsborough County. The relationships between 2002 urban land use, population distribution and their environmental influences are explored using regression analysis against various non-point source pollutant loadings in these sub-drainage basins. The results suggest that strong associations existed between most pollutant loadings and the extent of impervious surface within each sub-drainage basin in 2002. Population density also exhibits apparent correlations with loading rates of several pollutants. Spatial variations of selected non-point source pollutant loadings are also assessed.  相似文献   

19.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

20.
Models that accurately predict fecal coliform bacteria (FCB) concentrations, one of the most widely used measures of estuarine water quality, are needed to improve land use decision-making. Rapidly occurring changes in coastal land uses and the influence on water quality increases the urgency of having improved decision tools. For this study, samples were collected monthly from six coastal ponds, two tidal creeks and four shallow water wells for up to 212 years. These data were used along with other measures of environmental conditions and land classes within each watershed to construct quantitative relationships between combinations of variables and both total and presumed wildlife sources of FCB. Linear regression, bootstrapping and generalized additive modeling that incorporates both linear and nonlinear terms were used. Results of repeated simultaneous sampling on the same tide stage of ponds and downstream estuarine creeks suggest that most FCB come from wildlife and that the ponds effectively remove these bacteria except immediately following heavy rainfall. Predictive models for concentrations of total and presumed wildlife bacteria are provided along with simple measures to estimate watershed boundaries. It is proposed that these tools can be used to minimize impacts on receiving water body quality. The models can be used to test alternative development approaches within coastal watersheds similar to that found in the southeastern USA coastal zone as well as to evaluate specific proposed landscape alterations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号