首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 112 毫秒
1.
Land Use/Cover Changes, the Environment and Water Resources in Northeast China   总被引:15,自引:0,他引:15  
Land use/cover in Northeast China went through extensive changes during the 1990s. This report explores the interaction between these changes and the environment, and the implication of these changes for rational allocation of water resources. Two maps of land use/cover produced from 1990 and 2000 Landsat TM satellite images were overlaid in ArcInfo to reveal changes in land cover. Results indicate that farmland and grassland decreased by 386,195 and 140,075 ha, respectively, while water, built-up areas, and woodland increased by 238,596, 194,231, and 192,682 ha, respectively. These changes bore a mutual relationship with the environmental change. On the one hand, climate warming made some of these changes (e.g., conversion of woodland and grassland to farmland) possible. On the other hand, the changed surface cover modified the local climate. These changes, in turn, caused severe environmental degradation and increased flooding. The change between dry field and rice paddy, in particular, raised severe implications for the proper allocation of limited water resources in the Northeast. Efforts are needed to coordinate their rational allocation to reap maximum and sustainable return over the entire area, not just in some localities. Results obtained in this study should be of interest to the international audience of Environmental Management in that they highlight the interactive nature of human activities and the environment and the off-site impact of these activities on the environment.  相似文献   

2.
Urban land use and land cover change significantly affect spatial and temporal patterns of runoff, which in turn impacts surface water quality. With the exponential growth in urban areas over the past three decades, changes in land use and land cover to cater for the growth of cities has been a conspicuous spectacle in urban spaces. The main goal of this study was to assess the impacts of land cover change on runoff and surface water quality using a partial area hydrology framework. The study employed ArcHydro GIS extension and a modified version of Long-Term Hydrologic and Nonpoint Source Pollution model (L-THIA-NPS) in estimating runoff and nonpoint source pollutant concentration around Lake Calumet between 1992 and 2001. Data employed include National Land Cover Data set, rainfall data, digital elevation model (DEM), Soil Survey Geographic (SSURGO) data, and The United States Environmental Protection Agency’s STORET (storage and retrieval) water quality data. The model was able to predict surface water quality reasonably well over the study period. Sensitivity analysis facilitated a manual calibration of the model. Model validation was executed by comparing simulated results following calibration and observed water quality data for the study area. The study demonstrates that the level of concentration of nonpoint source pollutants in surface water within an urban watershed heavily depends on the spatiotemporal variations in areas that contribute towards runoff compared to the spatial extent of change in major land use/land cover.  相似文献   

3.
Within the NERC/ESRC Land Use Programme ecological change is assumed to be driven principally by agronomic activity. Land use change is defined as being of two types depending on whether there is a complete change of cover or a modification of an existing cover. Some agronomic activities lead to quantitative changes between land cover types and others to more subtle qualitative changes within land cover types. A modelling system based on three distinct models is described for predicting the effects of the two types of change in land cover on the distribution of plants, invertebrates and birds. The potential use of the system in analysing problems of land use change is illustrated using a simple scenario based on changing nitrogenous fertilizer regimes in lowland agriculture.  相似文献   

4.
Urban ecosystems are often sources of nonpoint source (NPS) nitrogen (N) pollution to aquatic ecosystems. However, N export from urban watersheds is highly variable. Examples of densely urbanized watersheds are not well studied, and these may have comparatively low export rates. Commonly used metrics of landscape heterogeneity may obscure our ability to discern relationships among landscape characteristics that can explain these lower export rates. We expected that differences not often captured by these metrics in the relative cover of vegetation, structures, and impervious surfaces would better explain observed variation in N export. We examined these relationships during storms in residential watersheds. Contrary to expectations, land cover did not directly predict variation in N or water export. Instead, N export was strongly linked to drainage infrastructure density. Our research highlights the role of fine‐scaled landscape attributes, mainly infrastructure, in explaining patterns of N export from densely urbanized watersheds. Changes to hydrologic flow paths by infrastructure explained more variation in N export than land cover. Our findings support further development of landscape ecological models of urban N export that focus on hydrologic modification by infrastructure rather than traditional landscape measures such as land use, as indicators for evaluating patterns of NPS nitrogen pollution in densely urbanized watersheds.  相似文献   

5.
/ Management of ecosystems has advanced by an improvement in our understanding not only of how ecosystems function, but of how people perceive their functioning and what they consider to be environmental problems within those systems. Central to such management is understanding how people view estuaries. In this article I explore the perceptions and attitudes of people about coastal recreation, environmental problems, and future land use along the New Jersey shore (USA) by interviewing people who attended a duck decoy and craft show on Barnegat Bay. The people who were interviewed engaged in more days of fishing than any other recreational activity and engaged in camping the least. There were significant differences in recreational rates as a function of gender and location of residence, with men hunting and fishing more than women and photographing less than women. Jet skis were perceived as the most severe environmental problem, with chemical pollution, junk, oil runoff and overfishing as second level problems. Birds were perceived as not an environmental problem at all. Fishing, hiking, preservation, and camping ranked as the highest preferred future land uses for the two sites examined (Oyster Creek Nuclear Generating Station, Naval Weapons Station Earle). The preferred future land uses for these two sites, which are not under consideration for land-use changes, were very similar to those of people living near the Department of Energy's Savannah River Site in South Carolina, despite the media attention and considerations of nuclear storage.KEY WORDS: Recreation; Perceptions; Environmental problem; Gender; Land use; Coastal  相似文献   

6.
This paper reviews progress on urban storm water management and pollution control, with emphasis on non- and low-structurally intensive techniques along with the total system approach encompassing control-treatment. Many of the U.S. Environmental Protection Agency's demonstration-evaluation projects are presented to exemplify: Land Management Techniques, i.e., land use planning, best use of natural drainage, dual use of retention and drainage facilities required for flood control designed concurrently or retrofitted for pollution control, porous pavement, surface sanitation, and chemical use control; Collection Systems Control, i.e., catchbasin cleaning, flow regulators (including swirl and helical devices), and the new concepts of elimination or reduction of unauthorized cross-connections, in-channel/conduit storage and/or other forms of storage for bleed-back to existing treatment plants; Storage including in-receiving water storage; Treatment, i.e., physical/chemical, disinfection, and a treatment-control planning and design guidebook; Sludge and Solids Residue from Treatment; and Integrated Systems, i.e., storage/treatment, dual-use wet-weather flow/dry-weather flow facilities, and reuse of stormwater for nonpotable purposes. Recommendations for the future in the areas of: control based on receiving water impacts, toxics characterization and their control, sewer system cross-connections, integrated stormwater management, and institutional/sociological/economic conflicts are also presented.  相似文献   

7.
8.
Nutrient inputs generally are increased by human-induced land use changes and can lead to eutrophication and impairment of surface waters. Understanding the scale at which land use influences nutrient loading is necessary for the development of management practices and policies that improve water quality. The authors assessed the relationships between land use and stream nutrients in a prairie watershed dominated by intermittent stream flow in the first-order higher elevation reaches. Total nitrogen, nitrate, and phosphorus concentrations were greater in tributaries occupying the lower portions of the watershed, closely mirroring the increased density of row crop agriculture from headwaters to lower-elevation alluvial areas. Land cover classified at three spatial scales in each sub-basin above sampling sites (riparian in the entire catchment, catchment land cover, and riparian across the 2 km upstream) was highly correlated with variation in both total nitrogen (r2 = 53%, 52%, and 49%, respectively) and nitrate (r2 = 69%, 65%, and 56%, respectively) concentrations among sites. However, phosphorus concentrations were not significantly associated with riparian or catchment land cover classes at any spatial scale. Separating land use from riparian cover in the entire watershed was difficult, but riparian cover was most closely correlated with in-stream nutrient concentrations. By controlling for land cover, a significant correlation of riparian cover for the 2 km above the sampling site with in-stream nutrient concentrations could be established. Surprisingly, land use in the entire watershed, including small intermittent streams, had a large influence on average downstream water quality although the headwater streams were not flowing for a substantial portion of the year. This suggests that nutrient criteria may not be met only by managing permanently flowing streams.  相似文献   

9.
Land cover change has always had a central role in land change science. This central role is largely the result of the possibilities to map and characterize land cover based on observations and remote sensing. This paper argues that more attention should be given to land use and land functions and linkages between these. Consideration of land functions that provide a wide range of goods and services makes more integrated assessments of land change possible. The increasing attention to multifunctional land use is another incentive to develop methods to assess changes in land functions. A number of methods to quantify and map the spatial extent of land use and land functions are discussed and the implications for modeling are identified based on recent model approaches in land change science. The mixed use of land cover, land use and land function in maps and models leads to inconsistencies in land change assessments. Explicit attention to the non-linear relations between land cover, land use and land function is essential to consistently address land change. New methods to map and quantify land function dynamics will enhance our ability to understand and model land system change and adequately inform policies and planning.  相似文献   

10.
Land abandonment is an important cause of changes in landscape patterns in the Mediterranean area. There is a need to monitor land use and land cover changes in order to provide quantitative evidence of the relationship between land abandonment and the formation of new landscape patterns. Appropriate management policies to encourage sustainable development can then be developed. This paper describes how to monitor landscape dynamics using different temporal land use and land cover data generated from field survey and airborne information. The results showed that the abandonment of agricultural land generally results in an increase of vegetation biomass. This process leads to homogenization of the landscape. In addition, abandonment promotes fragmentation of agricultural land. Based on these results, the paper discusses the implications for rural management policies concerning the abandonment of agricultural land and suggests recommendations for the development of such policies.  相似文献   

11.
ABSTRACT: A fundamental problem in protecting surface drinking water supplies is the identification of sites highly susceptible to soil erosion and other forms of nonpoint source (NPS) pollution. The New York City Department of Environmental Protection is trying to identify erodible sites as part of a program aimed at avoiding costly filtration. New York City's 2,000 square mile watershed system is well suited for analysis with geographic information systems (GIS); an increasingly important tool to determine the spatial distribution of sensitive NPS pollution areas. This study used a GIS to compare three land cover sources for input into the Modified Universal Soil Loss Equation (MUSLE), a model estimating soil loss from rangeland and forests, for a tributary watershed within New York City's water supply system. Sources included both conventional data (aerial photography) and Landsat data (MSS and TM images). Although land cover classifications varied significantly across these sources, location-specific and aggregate watershed predictions of the MUSLE were very similar. We conclude that using Landsat TM imagery with a hybrid classification algorithm provides a rapid, objective means of developing large area land cover databases for use in the MUSLE, thus presenting an attractive alternative to photo interpretation.  相似文献   

12.
The Kathmandu Valley in Nepal has experienced a very rapid increase in population resulting in considerable land use/land cover change and also a series of environmental problems. One of the results of the population increase is an expansion of brick manufacturing within the Valley because most structures are brick. The brick kilns are intense in several locations of the Valley and have an interesting pattern of using the same lands for bricks during the dry season and then conversion to rice during the wet, summer monsoon months. The increase in brick production has contributed to environmental problems including decreased soil productivity, lowered ground water levels, and particularly air pollution. Brick manufacturing has little, if any, effective regulation. There is a lack of current, accurate data on brick production that could be resolved by remote sensing methods. Controls should be established and more information acquired on the location and impacts of brick production.  相似文献   

13.
Watershed models often estimate annual nitrogen (N) or phosphorus (P) pollutant loads in rural areas with export coefficient (EC) (kg/ha/yr) values based on land cover, and in urban areas as the product of spatially uniform event mean concentration (EMC) (mg/L) values and runoff volume. Actual N and P nonpoint source (NPS) pollutant loading has more spatial complexity due to watershed variation in runoff likelihood and buffering likelihood along surface and subsurface pathways, which can be represented in a contributing area dispersal area (CADA) NPS model. This research develops a CADA NPS model to simulate how watershed properties of elevation, land cover, and soils upslope and downslope of each watershed pixel influence nutrient loading. The model uses both surface and subsurface runoff indices (RI), and surface and subsurface buffer indices (BI), to quantify the runoff and buffering likelihood for each watershed pixel, and generate maps of weighted EC and EMC values that identify NPS pollutant loading hotspots. The research illustrates how CADA NPS model maps and pixel loading values are sensitive to the spatial resolution and accuracy of elevation and land cover data, and model predictions can represent the lower and upper bounds of NPS loading. The model provides managers with a tool to rapidly visualize, rank, and investigate likely areas of high nutrient export.  相似文献   

14.
Landscape characteristics of a watershed are important variables that influence surface water quality. Understanding the relationship between these variables and surface water quality is critical in predicting pollution potential and developing watershed management practices to eliminate or reduce pollution risk. To understand the impacts of landscape characteristics on water quality in mine waste-located watersheds, we conducted a case study in the Tri-State Mining District which is located in the conjunction of three states (Missouri, Kansas and Oklahoma). Severe heavy metal pollution exists in that area resulting from historical mining activities. We characterized land use/land cover over the last three decades by classifying historical multi-temporal Landsat imagery. Landscape metrics such as proportion, edge density and contagion were calculated based on the classified imagery. In-stream water quality data over three decades were collected, including lead, zinc, iron, cadmium, aluminum and conductivity which were used as key water quality indicators. Statistical analyses were performed to quantify the relationship between landscape metrics and surface water quality. Results showed that landscape characteristics in mine waste-located watersheds could account for as much as 77% of the variation of water quality indicators. A single landscape metric alone, such as proportion of mine waste area, could be used to predict surface water quality; but its predicting power is limited, usually accounting for less than 60% of the variance of water quality indicators.  相似文献   

15.
A multicriteria analysis system was developed for producing risk maps of agricultural pollution due to alternative cultivation systems in the Watershed of the Lagoon of Venice (WLV) in Italy. Results of a field-scale simulation model for agricultural diffuse pollution were used to compile a matrix of environmental impacts, in terms of pollution indices. The most widespread combinations of typical environments (as defined by combinations of soil and climate variables) and alternative land uses (types of crops and cultivation systems) were described in the impact matrix. Land use in terms of crop distribution was based on census data. Two alternative cultivation systems were defined on the basis of the recent changes to the European Common Agricultural Policy: ordinary and eco-compatible. The effects of alternative scenarios were evaluated in terms of pollution risks for water resources. The evaluation procedure was built into the framework of a geographical information system to take into account the spatial features of pollution phenomena, vulnerability of the land and risk for water resources. The results demonstrated the great potential of eco-compatible practices for reducing the risks for surface and groundwater (−15 and −50%, respectively).  相似文献   

16.
ABSTRACT: ArcView Nonpoint Source Pollution Modeling (AVNPSM), an interface between ArcView GIS and AGNPS (Agricultural Nonpoint Source Pollution Model) is developed in support of agricultural watershed analysis and nonpoint source pollution management. The interface is PC‐based and operates in a Windows environment. It consists of seven modules: AGNPS utility, parameter generator, input file processor, model executor, output visualizer, statistical analyzer, and land use simulator. Basic input data to the interface include: soil, digital elevation model, land use/cover, water features, climate, and information on management practices. Application of the AVNPSM to a sample watershed indicates that it is user friendly, flexible, and robust, and it significantly improves the efficiency of the nonpoint source pollution modeling process.  相似文献   

17.
This paper develops an approach to modelling land use change that links model selection and multi-model inference with empirical models and GIS. Land use change is frequently studied, and understanding gained, through a process of modelling that is an empirical analysis of documented changes in land cover or land use patterns. The approach here is based on analysis and comparison of multiple models of land use patterns using model selection and multi-model inference. The approach is illustrated with a case study of rural housing as it has developed for part of Gallatin County, Montana, USA. A GIS contains the location of rural housing on a yearly basis from 1860 to 2000. The database also documents a variety of environmental and socio-economic conditions. A general model of settlement development describes the evolution of drivers of land use change and their impacts in the region. This model is used to develop a series of different models reflecting drivers of change at different periods in the history of the study area. These period specific models represent a series of multiple working hypotheses describing (a) the effects of spatial variables as a representation of social, economic and environmental drivers of land use change, and (b) temporal changes in the effects of the spatial variables as the drivers of change evolve over time. Logistic regression is used to calibrate and interpret these models and the models are then compared and evaluated with model selection techniques. Results show that different models are 'best' for the different periods. The different models for different periods demonstrate that models are not invariant over time which presents challenges for validation and testing of empirical models. The research demonstrates (i) model selection as a mechanism for rating among many plausible models that describe land cover or land use patterns, (ii) inference from a set of models rather than from a single model, (iii) that models can be developed based on hypothesised relationships based on consideration of underlying and proximate causes of change, and (iv) that models are not invariant over time.  相似文献   

18.
The aim of the study was to assess the impacts of quarrying activities on the environment and livelihood of people in the Border II sub-location. Primary data was collected through questionnaires, Key Informant Interviews, Focus Group Discussion, laboratory analysis and observations. Whereas, secondary data was obtained from Landsat satellite images, journals, articles, books and reports. The acquired data were analyzed using excel and Arc GIS; and presented into tables and figures. The Land use/cover change analysis from the satellite images of the area showed that quarry lands have increased by 5.2 Ha (0.26%). Quarrying activities in the area were perceived to have both positive and negative impacts on the livelihood of people and the environment. Some of the most serious environmental problems were; dust pollution (82%), noise (76%), land degradation (74%), vegetation loss (60%) and vibration (52%). Whereas, negative socioeconomic impacts were; building cracks (54%), injuries (36%), school dropouts (35%), roads damages (33%), child labor (31%) and crop effects (30%). Moreover, 45% of the area residents and 44% of the quarry workers have experienced health problems related to quarrying activities. Nevertheless, there was a significant relationship between quarrying activities and the environmental as well as human health problems in the area (p<0.05). The positive impacts identified are; employment, roads improvement, security, CSR, building materials, business opportunities, among others. To mitigate the negative impacts, the quarry operators should develop and implement an Environmental and Social management Plan, including fair compensation of the project which affect a person, relocation of near homes, environmental pollution control, public participation, scaling down blasting activities, and strict policies compliance and enforcement.  相似文献   

19.
Satellite images have been used extensively to study temporal changes in land use and land cover (LULC) in China. However, few studies have been conducted in the karst areas despite the large area and population involved and the fragile ecosystem. In this study, LULC changes were examined in part of Guizhou Province of southern China from 1991 to 2001 based on Landsat Thematic Mapper (TM) images of November 7, 1991, December 5, 1994, and December 19, 2001. Land surface temperature (LST) and normalized difference vegetation index (NDVI) were computed based on LULC types. The results show that agricultural land decreased, while urban areas expanded dramatically, and forest land increased slightly. Barren land increased from 1991 to 1994, and then decreased from 1994 to 2001. These changes in LULC widened the temperature difference between the urban and the rural areas. The change in LST was mainly associated with changes in construction materials in the urban area and in vegetation abundance both in the urban and rural areas. Vegetation had a dual function in the temperatures of different LULC types. While it could ease the warming trend in the urban or built-up areas, it helped to keep other lands warmer in the cold weather. The study also reveals that due to the government's efforts on reforestation, rural ecosystems in some of the study area were being restored. The time required for the karst ecosystem to recover was shorter than previously thought.  相似文献   

20.
Soil erosion associated with non-point source pollution is viewed as a process of land degradation in many terrestrial environments. Careful monitoring and assessment of land use variations with different temporal and spatial scales would reveal a fluctuating interface, punctuated by changes in rainfall and runoff, movement of people, perturbation from environmental disasters, and shifts in agricultural activities and cropping patterns. The use of multi-temporal remote sensing images in support of environmental modeling analysis in a geographic information system (GIS) environment leading to identification of a variety of long-term interactions between land, resources, and the built environment has been a highly promising approach in recent years. This paper started with a series of supervised land use classifications, using SPOT satellite imagery as a means, in the Kao-Ping River Basin, South Taiwan. Then, it was designed to differentiate the variations of eight land use patterns in the past decade, including orchard, farmland, sugarcane field, forest, grassland, barren, community, and water body. Final accuracy was confirmed based on interpretation of available aerial photographs and global positioning system (GPS) measurements. Finally, a numerical simulation model (General Watershed Loading Function, GWLF) was used to relate soil erosion to non-point source pollution impacts in the coupled land and river water systems. Research findings indicate that while the decadal increase in orchards poses a significant threat to water quality, the continual decrease in forested land exhibits a potential impact on water quality management. Non-point source pollution, contributing to part of the downstream water quality deterioration of the Kao-Ping River system in the last decade, has resulted in an irreversible impact on land integrity from a long-term perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号