首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Abstract: The growing impact of urban stormwater on surface‐water quality has illuminated the need for more accurate modeling of stormwater pollution. Water quality based regulation and the movement towards integrated urban water management place a similar demand for improved stormwater quality model predictions. The physical, chemical, and biological processes that affect stormwater quality need to be better understood and simulated, while acknowledging the costs and benefits that such complex modeling entails. This paper reviews three approaches to stormwater quality modeling: deterministic, stochastic, and hybrid. Six deterministic, three stochastic, and three hybrid models are reviewed in detail. Hybrid approaches show strong potential for reducing stormwater quality model prediction error and uncertainty. Improved stormwater quality models will have wide ranging benefits for combined sewer overflow management, total maximum daily load development, best management practice design, land use change impact assessment, water quality trading, and integrated modeling.  相似文献   

2.
ABSTRACT: In a simulation experiment, stormwater flows are partially diverted, at various levels, to a detention basin in order to compare the recombined (i.e., undiverted flows and basin discharges) hydrograph to the response of the traditional, in-line design. The use of off-line detention basins is shown to be an effective technique for reducing peak flows from developed watersheds to pre-development levels with lower storage requirements. In addition, the discharge hydrographs produced by off-line detention are significantly different from those produced by the traditional design and may be more suited to certain stormwater management situations.  相似文献   

3.
Stephens, Daniel B., Mark Miller, Stephanie J. Moore, Todd Umstot, and Deborah J. Salvato, 2011. Decentralized Groundwater Recharge Systems Using Roofwater and Stormwater Runoff. Journal of the American Water Resources Association (JAWRA) 48(1): 134‐144. DOI: 10.1111/j.1752‐1688.2011.00600.x Abstract: Stormwater capture for groundwater recharge in urban areas is usually conducted at the regional level by water agencies. Field and modeling studies in New Mexico indicate that stormwater diverted to retention basins may recharge about 50% of precipitation that falls on the developed area, even in dry climates. Comparable volumes of recharge may be expected at homes, subdivisions, or commercial properties with low‐impact development (LID) technologies for stormwater control that promote recharge over evapotranspiration. Groundwater quality has not been significantly impacted at sites that have been recharging stormwater to aquifers for decades. Distributed recharge systems may be a good alternative to centralized regional facilities where there is limited land for constructing spreading basins or little funding for new infrastructure. LID technologies borrowed from stormwater managers are important tools for groundwater managers to consider to enhance recharge.  相似文献   

4.
Abstract: Runoff from urban catchments depends largely on the amount of impervious surface and the connectivity of these surfaces to the storm sewer drainage system. In residential areas, pervious lawns can be used to help manage stormwater runoff by intercepting and infiltrating runoff from impervious surfaces. The goal of this research was to develop and evaluate a simple method for estimating the reduction in stormwater runoff that results when runoff from an impervious surface (e.g., rooftop) is directed onto a pervious surface (e.g., lawn). Fifty‐two stormwater runoff reduction tests were conducted on six residential lawns in Madison, Wisconsin during the summer of 2004. An infiltration‐loss model that requires inputs of steady‐state infiltration rate, abstraction (defined here as surface storage, vegetation interception and cumulative total infiltration minus steady‐state infiltration during the period prior to steady‐state), and inundated area was evaluated using experimental data. The most accurate results were obtained using the observed steady‐state infiltration rates and inundated areas for each test, combined with a constant abstraction for all tests [root mean squared (RMS) difference = 1.0 cm]. A second case utilized lawn‐averaged steady‐state infiltration rates, a regression estimate of inundated area based on flow‐path length, and lawn‐specific abstractions based on infiltration rate (RMS difference = 2.2 cm). In practice, infiltration rates will likely be determined using double‐ring infiltration measurements (RMS difference = 3.1 cm) or soil texture (RMS difference = 5.7 cm). A generalized form of the model is presented and used to estimate annual stormwater runoff volume reductions for Madison. Results indicate the usefulness of urban lawns as a stormwater management practice and could be used to improve urban runoff models that incorporate indirectly connected impervious areas.  相似文献   

5.
Research increasingly highlights cause and effect relationships between urbanization and stream conditions are complex and highly variable across physical and biological regions. Research also demonstrates stormwater runoff is a key causal agent in altering stream conditions in urban settings. More specifically, thermal pollution and high salt levels are two consequences of urbanization and subsequent runoff. This study describes a demonstration model populated with data from a high gradient headwaters stream. The model was designed to explain surface water‐groundwater dynamics related to salinity and thermal pollution. Modeled scenarios show long‐term additive impacts from salt application and suggest reducing flow rates, as stormwater management practices are typically designed to do, have the potential to greatly reduce salt concentrations and simultaneously reduce thermal pollution. This demonstration model offers planners and managers reason to be confident that stormwater management efforts can have positive impacts.  相似文献   

6.
A system study was conducted on the use of a large number of small reservoirs dispersed throughout an urban community as a means of storm water pollution control. The study was based on an area within the “new city” of Columbia, Maryland. Water collected and stored in the reservoirs is treated for release or use in meeting sub-potable and potable water demands in the community. Design and performance criteria were developed for such a system. A simulation model and a computerized evaluation technique were used to select the optimal locations and system configurations. The results of this study indicated that such a system would be less expensive than a conventional engineering approach to storm water pollution control. Further, the benefits derived from use of the storm water as a water supply can offset a portion of the cost of pollution control. Several secondary benefits also result from this concept including erosion and sediment control, storm flow dampening, and recreational facilities. A program is now underway to demonstrate this concept in Columbia, Maryland.  相似文献   

7.
Abstract:  This research evaluated the effectiveness of regulations for stormwater pollutants originating from industrial facilities. Industrial facilities discharging stormwater are subject to General Permits implemented by state and federal agencies, which require facility operators to identify themselves and to implement pollution prevention measures. An overlying system of permits require Municipal Separate Storm Sewer System operators to identify and inspect facilities in their jurisdictions capable of discharging substantial pollutant loads into stormwater conveyances, introducing more active regulation and strategic prioritization, but with unequal implementation in different urban regions. This research evaluated the interaction between the regulations and ways in which the regulations succeed, or fail, at protecting water quality. The research evaluated potential for pollutant discharges at 136 industrial facilities in Pinellas County, Florida, using telephone interviews; off-site facility visits; and on-site facility inspections, targeting four industrial categories: wood products; stone, clay, glass, and concrete products; fabricated metal products; and electronic products. Results documented that a large proportion of facilities subject to General Permits conduct few or no activities likely to produce stormwater pollutants, indicating that the regulations’ equal treatment of all facilities may constitute overregulation. The research developed a methodology to assess facilities using intensity of industrial activities exposed to stormwater, a rational measurement that could regularize municipal agencies’ requirements and prioritize implementation toward facilities with the potential to impact receiving water quality.  相似文献   

8.
In contrast to spatial inequality, there are currently no methods for leveraging information on temporal inequality to improve conservation efficacy. The objective of this study was to use Lorenz curves to quantify temporal inequality in surface runoff and tile drainage, identify controls on nutrient loading in these flowpaths, and develop design flows for structural conservation practices. Surface runoff (n = 94 site‐years) and tile drainage (n = 90 site‐years) were monitored on 40 fields in Ohio. Results showed, on average, 80% of nitrate‐nitrogen, soluble reactive phosphorus (P), and total P loads occurred between 7 and 12 days per year in surface runoff and between 32 and 58 days per year in tile drainage. Similar temporal inequality between discharge and load provided evidence that loading was transport‐limited and highlighted the critical role hydrologic connectivity plays in nutrient delivery from tile‐drained fields. Design flow criterion for sizing structural practices based on load reduction goals was developed by combining Lorenz curves and flow duration curves. Comparing temporal inequality between fields and the Maumee River, the largest tributary to the western Lake Erie Basin, revealed challenges associated with achieving watershed load reduction goals with field‐scale conservation. In‐field (i.e., improved nutrient and water management), edge‐of‐field (i.e., structural practices), and instream practices will all be required to meet nutrient reduction goals from tile‐drained watersheds.  相似文献   

9.
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments.  相似文献   

10.
ABSTRACT: Watershed management strategies generally involve controlling nonpoint source pollution by implementing various best management practices (BMPs). Currently, stormwater management programs in most states use a performance‐based approach to implement onsite BMPs. This approach fails to link the onsite BMP performance directly to receiving water quality benefits, and it does not take into account the combined treatment effects of all the stormwater management practices within a watershed. To address these issues, this paper proposes a water quality‐based BMP planning approach for effective nonpoint source pollution control at a watershed scale. A coupled modeling system consisting of a watershed model (HSPF) and a receiving water quality model (CE‐QUAL‐W2) was developed to establish the linkage between BMP performance and receiving water quality targets. A Monte Carlo simulation approach was utilized to develop alternative BMP strategies at a watershed level. The developed methodology was applied to the Swift Creek Reservoir watershed in Virginia, and the results show that the proposed approach allows for the development of BMP strategies that lead to full compliance with water quality requirements.  相似文献   

11.
ABSTRACT: The City of Portland's stormwater management program, winner of EPA's Environmental Excellence Award for 1996, is committed to partnership-based, cost-effective, “green” approaches to healthy neighborhoods and water quality. The stormwater program encourages innovative, non-structural pollution reduction techniques like native landscaping, stormwater pollution reduction bioswales and ponds, and public involvement and education. Effectiveness of stormwater best management practices (BMPs) has been difficult to determine on a citywide basis. Recognizing this problem, the City of Portland launched the Parkrose Pilot Project in 1994 to test the effectiveness of a wide range of BMPs in a small watershed in north Portland, the Parkrose catchment, and monitor the results prior to citywide implementation. This catchment was selected because of its small size (144 acres), its representative mix of land uses, and an extensive record of water quality monitoring data. This paper examines the City's strategy in selecting the Parkrose study area as a pilot watershed, the BMPs chosen for use in the watershed, and the results of the program to date. Final success of the Parkrose project will be gauged by the attainment of measurable pollution reduction within the catchment while providing opportunities for meaningful participation by the local community in achieving water quality. Involvement by private citizens in the community is crucial to the success of the project and to ensure compliance with the federal mandate to reduce pollutants to the maximum extent practicable.  相似文献   

12.
ABSTRACT: Flash flooding is the rapid flooding of low lying areas caused by the stormwater of intense rainfall associated with thunderstorms. Flash flooding occurs in many urban areas with relatively flat terrain and can result in severe property damage as well as the loss of lives. In this paper, an integrated one‐dimensional (1‐D) and two‐dimensional (2‐D) hydraulic simulation model has been established to simulate stormwater flooding processes in urban areas. With rainfall input, the model simulates 2‐D overland flow and 1‐D flow in underground stormwater pipes and drainage channels. Drainage channels are treated as special flow paths and arranged along one or more sides of a 2‐D computational grid. By using irregular computation grids, the model simulates unsteady flooding and drying processes over urban areas with complex drainage systems. The model results can provide spatial flood risk information (e.g., water depth, inundation time and flow velocity during flooding). The model was applied to the City of Beaumont, Texas, and validated with the recorded rainfall and runoff data from Tropical Storm Allison with good agreement.  相似文献   

13.
A goal in urban water management is to reduce the volume of stormwater runoff in urban systems and the effect of combined sewer overflows into receiving waters. Effective management of stormwater runoff in urban systems requires an accounting of various components of the urban water balance. To that end, precipitation, evapotranspiration (ET), sewer flow, and groundwater in a 3.40‐hectare sewershed in Detroit, Michigan were monitored to capture the response of the sewershed to stormwater flow prior to implementation of stormwater control measures. Monitoring results indicate that stormflow in sewers was not initiated unless rain depth was 3.6 mm or greater. ET removed more than 40% of the precipitation in the sewershed, whereas pipe flow accounted for 19%–85% of the losses. Flows within the sewer that could not be associated with direct precipitation indicate an unexpected exchange of water between the leaky sewer and the groundwater system, pathways through abandoned or failing residential infrastructure, or a combination of both. Groundwater data indicate that groundwater flows into the leaky combined sewer rather than out. This research demonstrates that urban hydrologic fluxes can modulate the local water cycle in complex ways which affect the efficiency of the wastewater system, effectiveness of stormwater management, and, ultimately, public health.  相似文献   

14.
ABSTRACT: Urbanization of a drainage basin results in pervasive hydrologic changes that in turn initiate long-term changes in stream channels. Increases in peak discharges and in durations of high flows result in either quasi-equilibrium channel expansion, where cross-section area increases in near-proportion to the discharge increase, or catastrophic channel incision, where changes occur far out of proportion to the discharge increases that initiated them. Field data and hydrologic modeling of rapidly urbanizing basins in King County, Washington, define conditions of flow, topography, geology, and channel roughness that identify streams susceptible to incision. Channel slope and geologic material are particularly critical; thus simple map overlays, nearly irrespective of contributing drainage area, provide a valuable planning tool for identification of susceptible terrain. Where such conditions exist, basal shear stress provides a quantifiable parameter for predicting likely problems, although knickpoints are typical in such settings and confound simple calculation of sediment-transport rates. Where urbanization proceeds in such areas, effective mitigation of the incision hazards requires a degree of stormwater control far in excess of standards typically applied to present development activity.  相似文献   

15.
Non-point sources of pollution are difficult to identify and control, and are one of the main reasons that urban rivers fail to reach the water quality objectives set for them. Whilst sustainable drainage systems (SuDS) are available to help combat this diffuse pollution, they are mostly installed in areas of new urban development. However, SuDS must also be installed in existing built areas if diffuse loadings are to be reduced. Advice on where best to locate SuDS within existing built areas is limited, hence a semi-distributed stochastic GIS-model was developed to map small-area basin-wide loadings of 18 key stormwater pollutants. Load maps are combined with information on surface water quality objectives to permit mapping of diffuse pollution hazard to beneficial uses of receiving waters. The model thus aids SuDS planning and strategic management of urban diffuse pollution. The identification of diffuse emission 'hot spots' within a water quality objectives framework is consistent with the 'combined' (risk assessment) approach to pollution control advocated by the EU Water Framework Directive.  相似文献   

16.
This study examines the use of bioretention as a strategy to reduce the thermal impact associated with urban stormwater runoff in developing cold water stream watersheds. Temperature and flow data were collected during 10 controlled runs at a bioretention facility located in Blacksburg, Virginia. It was determined that bioretention has the ability to reduce the temperature of thermally charged stormwater runoff received from an asphalt surface. Significant reductions in peak and average temperatures (p < 0.001) were observed. However, this facility was unable to consistently reduce the temperature below the threshold for natural trout waters in Virginia. The ability of bioretention to reduce runoff volume and peak flow rate also serves to reduce the hydrothermal impact. An average thermal pollution reduction of nearly 37 MJ/m3 was calculated using an adopted threshold temperature of 20°C. Based on the results of this study, it was concluded that properly designed bioretention systems have the capability to reduce the thermal impact of urban stormwater runoff on cold water stream ecosystems.  相似文献   

17.
Abstract: The authors develop a model framework that includes a set of hydrologic modules as a water resources management and planning tool for the upper Santa Cruz River near the Mexican border, Southern Arizona. The modules consist of: (1) stochastic generation of hourly precipitation scenarios that maintain the characteristics and variability of a 45‐year hourly precipitation record from a nearby rain gauge; (2) conceptual transformation of generated precipitation into daily streamflow using varied infiltration rates and estimates of the basin antecedent moisture conditions; and (3) surface‐water to ground‐water interaction for four downstream microbasins that accounts for alluvial ground‐water recharge, and ET and pumping losses. To maintain the large inter‐annual variability of streamflow as prevails in Southern Arizona, the model framework is constructed to produce three types of seasonal winter and summer categories of streamflow (i.e., wet, medium, or dry). Long‐term (i.e., 100 years) realizations (ensembles) are generated by the above described model framework that reflects two different regimes of inter annual variability. The first regime is that of the historic streamflow gauge record. The second regime is that of the tree ring reconstructed precipitation, which was derived for the study location. Generated flow ensembles for these two regimes are used to evaluate the risk that the regional four ground‐water microbasins decline below a preset storage threshold under different operational water utilization scenarios.  相似文献   

18.
ABSTRACT: This paper describes the Continuous Stormwater Pollution Simulation System (CSPSS) as well as a site-specific application of CSPSS to the Philadelphia urban area and its receiving water, the Delaware Estuary. Conceptually, CSPSS simulates the quantity and quality or urban stormwater runoff, combined sewer overflow, municipal and industrial waste water effuent, and upstream flow on a continuous basis for each time step in the simulation period. In addition, receiving water dissolved oxygen, suspended solids, and lead concentrations resulting from these pollutant sources may be simulated. However, only rceiving water dissolved oxygen (DO) response is considered in this paper. The continuous Do receiving water response model was calibrated to existing conditions usinv observed data at Chester, Pennsylvnia, located on the Delaware Estuary approximately 10 miles down stream from the study area. Average annual pollutant loads to the receiving water were estimated for all major sources and receiving water quality improvements resulting from removal of various portions of these pollutant loads were estimated by application of the calibrated stimultion model. It was found that the removal of oxygen-demanding pollutants from combined sewer overflow and urban stormwater runoff would result in relatively minor improvements in the overall dissoved oxygen resources of the Delaware Estuary; whereas. removal of oxygen demanding pollutants from waste water treatment plant effluent would result in greater improvemens. The results of this investigation can be used along with appropriate economic techniques to identify the most cost-effective mix of point and nonpoint source pollution control measures.  相似文献   

19.
In urban and suburban areas, stormwater runoff is a primary stressor on surface waters. Conventional urban stormwater drainage systems often route runoff directly to streams and rivers, thus exacerbating pollutant inputs and hydrologic disturbance, and resulting in the degradation of ecosystem structure and function. Decentralized stormwater management tools, such as low impact development (LID) or water sensitive urban design (WSUD), may offer a more sustainable solution to stormwater management if implemented at a watershed scale. These tools are designed to pond, infiltrate, and harvest water at the source, encouraging evaporation, evapotranspiration, groundwater recharge, and re-use of stormwater. While there are numerous demonstrations of WSUD practices, there are few examples of widespread implementation at a watershed scale with the explicit objective of protecting or restoring a receiving stream. This article identifies seven major impediments to sustainable urban stormwater management: (1) uncertainties in performance and cost, (2) insufficient engineering standards and guidelines, (3) fragmented responsibilities, (4) lack of institutional capacity, (5) lack of legislative mandate, (6) lack of funding and effective market incentives, and (7) resistance to change. By comparing experiences from Australia and the United States, two developed countries with existing conventional stormwater infrastructure and escalating stream ecosystem degradation, we highlight challenges facing sustainable urban stormwater management and offer several examples of successful, regional WSUD implementation. We conclude by identifying solutions to each of the seven impediments that, when employed separately or in combination, should encourage widespread implementation of WSUD with watershed-based goals to protect human health and safety, and stream ecosystems.  相似文献   

20.
Geographically‐related information is needed for several elements of an integrated ground water quality management programme, including ground water monitoring planning, prioritization of pollution sources, usage of permits and inspections for source control, and planning and completion of remedial actions. Geographic Information Systems (GISs) can be used to support these elements along with delineating wellhead protection areas (WHPAs), prioritizing existing contaminant sources and evaluating proposed changes in land usage in such areas. Eight case studies of the use of GISs in wellhead protection programmes are summarized, including examples from Rhode Island, Mississippi, New Jersey, New York, Pennsylvania, Kansas, Massachusetts and Texas. Six additional examples are mentioned relative to the use of GISs for evaluating ground water pollution potential, facilitating data analysis for environmental restoration of a large area with numerous waste sites, evaluating trends in ground water nitrate contamination, establishing a national database for ground water vulnerability to agricultural chemicals, simulating water table altitudes from stream and drainage basin locations, and selecting radioactive waste dump sites. The applicability of GISs and their associated advantages in wellhead protection and other ground water management studies are demonstrated via the case studies. The GIS technology provides a unique opportunity for analysing and visualizing spatial data. Contaminant and source prioritization within WHPAs is needed for both extant conditions and in the evaluation of proposed land use changes. The coupling of a GIS with contaminant/source prioritization would provide a strategic tool which could be used to plan targeted ground water monitoring programmes, to identify appropriate management or mitigation measures, minimize introduction of contaminants from existing sources into the subsurface environment, and to evaluate the potential of proposed land use activities for causing ground water contamination. GISs can be useful in providing current information for policy makers, planners and managers engaged in ground water quality decision making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号