首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The tsunami of 26 December 2004 struck the Nagapattinam District, Tamil Nadu, India. Sea water inundation from the tsunami caused salinization problems for soil and groundwater in coastal areas of the district, and also induced salt injuries in crops. To document the recovery of the agricultural environment from the tsunami, we conducted observations of the soil, groundwater, and vegetation. Soil electrical conductivity increased sharply after the tsunami, but returned to pre-tsunami levels the following year. Groundwater salinity returned to pre-tsunami levels by 2006. These rapid rates of recovery were due to the monsoon rainfall leaching salt from the highly permeable soils in the area. MODIS NDVI values measured before and after the tsunami showed that vegetation damaged by the tsunami recovered to its pre-tsunami state by the next rice cropping season, called samba, which starts from August to February. From these results, we conclude that the agricultural environment of the district has now fully recovered from the tsunami. Based on the results, we have also identified important management implications for soil, groundwater, and vegetation as follows: 1) due to the heavy monsoon rainfall and the high permeability of soils in this region, anthropogenic inputs like fertilizers should be applied carefully to minimize pollution, and the use of green manure is recommended; 2) areas that were contaminated by sea water extended up to 1000 m from the sea shore and over pumping of groundwater should be carefully avoided to prevent inducing sea water intrusion; and 3) data from a moderate resolution sensor of 250 m, such as MODIS, can be applied to impact assessment in widespread paddy field areas like the Nagapattinam District.  相似文献   

2.
Jang, Cheng‐Shin, Chen‐Wuing Liu, Shih‐Kai Chen, and Wen‐Sheng Lin, 2011. Using a Mass Balance Model to Evaluate Groundwater Budget of Seawater‐Intruded Island Aquifers. Journal of the American Water Resources Association (JAWRA) 48(1): 61‐73. DOI: 10.1111/j.1752‐1688.2011.00593.x Abstract: The study developed a mass balance model to evaluate the groundwater budget of seawater‐intruded island aquifers using limited available data. The Penghu islands were selected as a study area. As sparse observed data were available in the islands, methods of combining water and chloride balances were used to determine the amounts of groundwater pumping, seawater intrusion, aquifer storages, and safe yields in the shallow and deep aquifers. The groundwater budget shows that seawater intrusion to freshwater aquifers was 1.38 × 106 and 0.29 × 106 m3/year in the shallow and deep aquifers, respectively, indicating that the seawater intrusion is severe in the both aquifers. The safe yield of the shallow aquifer was 14.56 × 106 m3/year in 2005 which was four times higher than that of the deep aquifer (3.70 × 106 m3/year). However, the annual pumping amounts in the shallow and deep aquifers were 4.77 × 106 and 3.63 × 106 m3/year, respectively. Although the safe yield of the shallow aquifer is enough for all water resources demands, only 55% of exploitation amount was extracted from the shallow aquifer due to its poor water quality. Groundwater exploitation in the deep aquifer should be significantly reduced and regulated by a dynamic management of pumping scheme because the annual pumping amounts are close to the safe yield and seawater intrusion occurs continually. Additionally, to alleviate further aquifer salination, at least half of the current annual groundwater abstraction should be reduced.  相似文献   

3.
Liu, Clark C.K. and John J. Dai, 2012. Seawater Intrusion and Sustainable Yield of Basal Aquifers. Journal of the American Water Resources Association (JAWRA) 48(5): 861‐870. DOI: 10.1111/j.1752‐1688.2012.00659.x Abstract: Basal aquifers, in which freshwater floats on top of saltwater, are the major freshwater supply for the Hawaiian Islands, as well as many other coastal regions around the world. Under unexploited or natural conditions, freshwater and the underlying seawater are separated by a relatively sharp interface located below mean sea level at a depth of about 40 times the hydraulic head. With forced draft, the hydraulic head of a basal aquifer would decline and the sharp interface would move up. It is a serious problem of seawater intrusion as huge amounts of freshwater storage is replaced by saltwater. Also, with forced draft, the sharp interface is replaced by a transition zone in which the salinity increases downward from freshwater to saltwater. As pumping continues, the transition zone expands. The desirable source‐water salinity in Hawaii is about 2% of the seawater salinity. Therefore, the transition zone expansion is another serious problem of seawater intrusion. In this study, a robust analytical groundwater flow and salinity transport model (RAM2) was developed. RAM2 has a simple mathematical structure and its model parameters can be determined satisfactorily with the available field monitoring data. The usefulness of RAM2 as a viable management tool for coastal ground water management is demonstrated by applying it to determine the sustainable yield of the Pearl Harbor aquifer, a principal water supply source in Hawaii.  相似文献   

4.
The traditional concept of Aquifer Storage and Recovery (ASR) has been emphasized and extensively applied for water resources conservation in arid and semi-arid regions using groundwater systems as introduced in Pyne's book titled Groundwater Recharge and Wells. This paper extends the ASR concept to an integrated level in which either treated or untreated surface water or reclaimed wastewater is stored in a suitable aquifer through a system of spreading basins, infiltration galleries and recharge wells; and part or all of the stored water is recovered through production wells, dual function recharge wells, or by streams receiving increased discharge from the surrounding recharged aquifer as needed. In this paper, the author uses the El Paso Water Utilities (EPWU) ASR system for injection of reclaimed wastewater into the Hueco Bolson aquifer as an example to address challenges and resolutions faced during the design and operation of an ASR system under a new ASR system definition. This new ASR system concept consists of four subsystems: source water, storage space-aquifer, recharge facilities and recovery facilities. Even though facing challenges, this system has successfully recharged approximately 74.7 million cubic meters (19.7 billion gallons) of reclaimed wastewater into the Hueco Bolson aquifer through 10 recharge wells in the last 18 years. This ASR system has served dual purposes: reuse of reclaimed wastewater to preserve native groundwater, and restoration of groundwater by artificial recharge of reclaimed wastewater into the Hueco Bolson aquifer.  相似文献   

5.
未来地下水资源短缺,特别是由于地面沉降、地表退化、海平面上升等引起的地下水位下降,将对沿海地区的地质环境及人类的生存发展产生极大的影响。通过对崇明地区地下水资源利用现状以及影响地下水位下降的影响因素分析,提出了改善传统的灌溉系统来减少地下水资源的使用、海岸沿线修建人工湖泊防止海水入侵、鼓励农民大面积种植水稻、制定管理措施严格控制地下水的开采总量、进一步加强崇明岛地面沉降动态监测与研究等相应的防范措施。强调控制地下水位的下降,以减轻淡水资源短缺所造成的危害,具有特殊而重要的意义。  相似文献   

6.
ABSTRACT: The Ogallala aquifer in the Oklahoma Panhandle is in need of better management because of increased groundwater demand which has caused declines in static water levels at an alarming rate. A groundwater management computer model was developed for the Ogallala aquifer in the Texas Panhandle and treats the aquifer as a homogeneous system. In this study, the computer model has been modified in order to evaluate the effects of vertical layering on semi-static water level changes which occur during the dewatering of a single unconfined aquifer. The modified model was applied to a study area near Guymon, Oklahoma, using both the homogeneous and the multilayered cases. The aquifer is characterized by a saturated thickness of 400 feet. The accumulated drawdown values of the homogeneous and the multilayered cases demonstrate that an average difference of approximately 22% of the original saturated thickness occurs between the two cases before the base of the aquifer is encountered. Approximately 25% more time is required to dewater the layered aquifer. Thus, vertical variations of lithology in an aquifer such as the Ogallala should be considered when prediction is made relative to groundwater management.  相似文献   

7.
Coastal subsystems formed by interaction of various processes, impacted by natural hazards like tsunami and storms, pose irreversible morphological changes. Vellar estuary, located on the southeast coast of India, with huge sand dunes (of 3-6m height and spread to 560ha) and barrier islands, has undergone extensive morphological changes due to the giant Indian Ocean tsunami that occurred on 26th December 2004. The damage caused by the tsunami has been quantified using extensive field data collected during pre- and post-tsunami periods through Real Time Kinematic GPS (for mapping coastal features and beach profiles) and Geographic Information System (GIS) couple. The tsunami with a wave height as high as 4m not only inundated the entire coastal land up to a maximum of 2km but also eroded the sand dunes and deposited the eroded material at the inlet, which ultimately formed as a vast tidal flat spread over 31ha. The estuary has suffered immensely due to the tsunami especially in terms of (i) loss of natural protection barriers (sand dunes), which made this coastal area more vulnerable to storm attack, and (ii) shallowness of inlet creating hindrance to navigation of fishing vessels. Based on the observations made at Vellar coast and past recovery experiences of tsunami/hurricanes elsewhere in the world, we contend that the morphological loss might take at least two annual cycles to regain its original form and the rebuilding of sand dunes may even take a decade.  相似文献   

8.
Evidence of groundwater management by aquifer users emerging under Integrated Water Resources Management (IWRM) initiatives is presented, by analyzing the Consejos Técnicos de Aguas (COTAS; Technical Water Councils or Aquifer Management Councils) in the state of Guanajuato, Mexico, established between 1998 and 2000 by the Guanajuato State Water Commission (CEAG). Two contrasting models influenced this attempt to promote user self-regulation of groundwater extractions: locally autonomous aquifer organizations with powers to regulate groundwater extractions versus aquifer organizations with advisory powers only. The COTAS were conceived as locally autonomous IWRM organizations consisting of all aquifer users that would work together to reduce groundwater over-extraction and stabilize aquifer levels, at a later stage. CEAG followed an expedient IWRM approach to develop the COTAS, setting achievable targets for their development and explicitly focusing on active stakeholder participation. The article shows that, due to struggles between the state and federal levels, the COTAS have become advisory bodies that have not led to reductions in groundwater extractions. It concludes that achieving user self-regulation of groundwater extractions requires a fuller delegation of responsibilities to the COTAS which would not be possible without addressing the institutional struggles over water governance at the state and federal levels.  相似文献   

9.
This paper presents an understanding of groundwater salinity by identification of effective factors using chemometric methods (cluster analysis and multiple linear regressions) in Manukan Island, Sabah. Local groundwater and environmental properties were used to explore the effective factors of groundwater salinity. Cluster analysis showed salinity and chloride illustrated the highest similarities. Electrical conductivity and total dissolved solids were also grouped in the same cluster. Seawater is the only chloride source in groundwater of Manukan Island demonstrated an indication of seawater mixing in freshwater. It is an effect of upward movement of the seawater by pumping activities. Precipitation and evapotranspiration (environmental condition) with hydraulic heads were clustered together to show that they also influence salinity concentration in groundwater. Multiple linear regressions showed descending order of the factors from chloride (the largest contribution) to evapotranspiration (the smallest contribution) and illustrated the contribution to groundwater salinity in Manukan Island. The integrated results using chemometric methods have provided a way to identify the effective factors on groundwater salinity. This similar approach and resulting equation can be applied in other small tropical islands with alike hydrogeological condition and limited information available for a better understanding of its groundwater salinity.  相似文献   

10.
A tsunami, triggered by a massive undersea earthquake off Sumatra in Indonesia, greatly devastated the lives, property and infrastructure of coastal communities in the coastal states of India, Andaman and Nicobar Islands, Indonesia, Sri Lanka, Malaysia and Thailand. This event attracted the attention of environmental managers at all levels, local, national, regional and global. It also shifted the focus from the impact of human activities on the environment to the impacts of natural hazards. Recovery/reconstruction of these areas is highly challenging. A clear understanding of the complex dynamics of the coast and the types of challenges faced by the several stakeholders of the coast is required. Issues such as sustainability, equity and community participation assume importance. The concept of ICZM (integrated coastal zone management) has been effectively used in most parts of the world. This concept emphasizes the holistic assessment of the coast and a multidisciplinary analysis using participatory processes. It integrates anthropocentric and eco-centric approaches. This paper documents several issues involved in the recovery of tsunami-affected areas and recommends the application of the ICZM concept to the reconstruction efforts.  相似文献   

11.
ABSTRACT: The Fort Walton Beach area is presently faced with an excessive drawdown of the potentiometric level in the upper Floridan aquifer. Based on available data, the potentiometric level in the Floridan aquifer has dropped 162 feet since 1936. This declining potentiometric level can lead to problems and possible loss of the natural resource on a long-term basis. However, if corrective measures or programs for proper management of groundwater resources are undertaken at this time, the potential problems may be averted.  相似文献   

12.
The coal mining industries influence hydro-geological parameters, which affect the aquifer recharge in the coal mining areas. This research aimed to evaluate the impact of various hydro-geological parameters on fluctuation of groundwater level in the study area. The various hydro-geological parameters such as soil, geology, drainage pattern, elevation and slope have been considered to accomplish the objective. A comparative analysis was performed by comparing the groundwater level fluctuation (WLF) map with the GIS-based various hydro-geological parameter maps to assess the combined influence of different hydro-geological parameters on groundwater level fluctuation. A total of eighty-six (86) dug-wells were chosen to monitor the level of the groundwater for around ten blocks of Singrauli coalfield, and these wells were examined during the months of dry and wet seasons for 2016. Based on the comparative analysis between the WLF map and thematic maps of various hydro-geological parameters, it has been found that WLF in the south-western and some portions of the north-eastern showed moderate to a higher value. This may be because most of the non-hilly areas come under gentle to moderate slope category, with lower elevation in the area forming the suitable hydro-geological condition for recharging groundwater. It was observed that the northwest, south-east and central part of the study area showed lower WLF, which may be due to the presence of overburden dump, presence of higher elevation and steep slope. Thus, the combined effect of slope, elevation, geology, drainage and mining activities on the WLF in the study region is moderate.  相似文献   

13.
The water resources of the atolls of the Republic of Maldives are under continual threat from climatic and anthropogenic stresses, including land surface pollution, increasing population, drought, and sea‐level rise (SLR). These threats are particularly acute for groundwater resources due to the small land surface area and low elevation of each island. In this study, the groundwater resources, in terms of freshwater lens thickness, total volume of fresh groundwater, and safe yield are estimated for the 52 most populous islands of the Maldives for current conditions and for the year 2030, with the latter accounting for projected SLR and associated shoreline recession. An algebraic model, designed in previous studies to estimate the lens thickness of atoll islands, is expanded in this study to also estimate volume of groundwater. Results indicate that average current lens thickness, groundwater volume, and per capita safe yield are approximately 4.6 m, 1,300 million liters, and 300 l/day, and that these values will decrease by approximately 10, 11, and 34%, respectively, by the year 2030. Based on results, it is demonstrated that groundwater, in terms of quantity, is a viable source of water for the islands of the Maldives both now and in coming decades, particularly for islands with large surface area and low population. Study results can provide water resource managers and government officials with valuable data for consideration in water security measures.  相似文献   

14.
Abstract: One of the largest karst springs in North China, the Jinci Springs, dried up and has remained dry since 1994. We develop a correlation analysis with time‐lag and a regression analysis with time‐lag to study the relation between spring flow and precipitation. This allows us to obtain a better understanding of karst hydrological processes by differentiating the contribution of variation in precipitation from anthropogenic impacts on the dry‐up of Jinci Springs. We divided the karstic hydrological processes into two phases: pre‐1961 and post‐1961. In the first phase (i.e., 1954‐1960) the groundwater recharge was affected by precipitation alone, and in the second phase (i.e., 1961‐1994) the groundwater recharge was influenced by both precipitation and human activities. Using precipitation and groundwater recharge data in the first phase, we set up a groundwater recharge model with time‐lags. By running the time‐lags model, we acquired the groundwater recharge likely to occur under the sole effect of precipitation in the second phase. Using a water‐balance calculation, we conclude that the groundwater recharge exhibited statistical stationarity, and the Jinci Springs dry‐up was the result of anthropogenic activities. At least three specific types of anthropogenic activities contributed to the drying‐up of Jinci Springs: (1) groundwater pumping accounts for 51%, (2) the dewatering from coal mining accounts for 33%, (3) and dam‐building 14%. The drying‐up of Jinci Springs meant that the groundwater drained from the aquifer’s fractures, and subsequently changed the structure of the karst aquifer. Although groundwater exploitation has been reduced, the flow at Jinci Springs has not reoccurred.  相似文献   

15.
In this article, the authors explore their recent study, which introduces the concept of extracting saline water and fresh water simultaneously from groundwater aquifers to produce water that is suitable for irrigation. To achieve these results, multiwell modeling concepts are used to exploit both the saline and nonsaline aquifer domains from geologic formations where a freshwater aquifer domain is either underlain or overlain by a saline aquifer domain. The water from these domains are either mixed to an acceptable salinity level after independent withdrawal from separate, saline or nonsaline domains present within the same aquifer, or mixed from the domains to achieve acceptable levels of salinity before withdrawal.  相似文献   

16.
The objective of this work is to analyze and interpret the components or hydrogeological, physical, and chemical variables of the San Diego aquifer to describe it and explain its influence on the sustainable use of groundwater for the providing of this locality. The San Diego municipality covers most of the area of the aquifer and is an area of high urban development that currently needs the contribution of groundwater due to the deficit presented by the main supply from the Central Regional System. Said aquifer is a set of geological strata located within the limits of the San Diego River basin, in the state of Carabobo, which are capable of storing groundwater and transmitting it. Data on lithology, porosity, and pumping level were investigated, which allows calculating an estimate of the volume of water available in the aquifer. Regarding the quality of the water, the data on hardness, chlorides, sulfates, nitrates, conductivity, calcium, magnesium, and pH, show that the water towards the center and north of the aquifer is of good quality, being able to classify it as type 1A, while toward the southern end—this is of lower quality, where the mineral parameters are higher, which is related to the probable intrusion of brackish water from Lake Valencia. It is concluded by establishing that the volume of groundwater, its availability, extraction feasibility, and its quality, make it suitable for urban supply and that said extraction is sustainable. But a better-integrated type of management must be designed, considering the contribution of the Regional System of the Center and the adequacy of the distribution networks.  相似文献   

17.
A procedure to optimize the design of a Permeable Adsorptive Barrier (PAB) for the remediation of a contaminated aquifer is presented in this paper. A computer code, including different routines that describe the groundwater contaminant transport and the pollutant capture by adsorption in unsteady conditions over the barrier solid surface, has been developed. The complete characterization of the chemical–physical interactions between adsorbing solids and the contaminated water, required by the computer code, has been obtained by experimental measurements. A case study in which the procedure developed has been applied to a tetrachloroethylene (PCE)-contaminated aquifer near a solid waste landfill, in the district of Napoli (Italy), is also presented and the main dimensions of the barrier (length and width) have been evaluated. Model results show that PAB is effective for the remediation of a PCE-contaminated aquifer, since the concentration of PCE flowing out of the barrier is everywhere always lower than the concentration limit provided for in the Italian regulations on groundwater quality.  相似文献   

18.
The Mersin-Kazanli region is a densely industrialized region. The factories and towns cover their water demand from groundwater. With the increased water demand, saltwater intrusion has occurred. The chloride concentration of the water samples from some wells has been analysed periodically since these wells were drilled. The results of these analyses and electrical conductivity measurements were used to show the history and development of saltwater intrusion up to the year 2000. The Cl(-) concentration of the water within the alluvial aquifer increased to over 3000 mg/l in 1999 and the wells were closed completely. In 2001 new wells were drilled more than 1 km away from the sea and old well field. With the results of the analyses conducted in 2001, the current groundwater quality was determined. The ground water is of the magnesium-calcium-bicarbonate type and this composition is controlled by the interaction of the water with the sediments of alluvial deposits.  相似文献   

19.
The Ta'iz region of Yemen is facing serious water problems. Total water use has become unsustainable. While agriculture places a heavy demand on the region's water resources, supplies for the fast growing city and the industrial sector are severely rationed despite their much higher willingness-to-pay for water relative to the returns on most agricultural uses. The article considers several decentralized management options for enhancing sustainability and improving intersectoral water allocation. These include, taxing groundwater extractions, taxing inputs used in pumping groundwater, and implementing a tradable water rights regime. The first two options could lead to resource conservation but are politically difficult to implement and may not necessarily result in better intersectoral water allocation. The tradable water rights regime has potential for achieving the twin objectives of resource conservation and improved intersectoral resource allocation. If farmers' de facto water rights were legitimized, this option would be more acceptable to them. However, the following additional conditions need to be met for making the option viable: (a) a set-aside allocation is made for lifeline supplies for the poor; ( b) the water law provides for separation of water rights from land rights; and (c) community organizations are involved as co-managers of the region's water resources.  相似文献   

20.
The High Plains Aquifer (HPA) underlies parts of eight states and 208 counties in the central area of the United States (U.S.). This region produces more than 9% of U.S. crops sales and relies on the aquifer for irrigation. However, these withdrawals have diminished the stock of water in the aquifer. In this paper, we investigate the aggregate county‐level effect on the HPA of groundwater withdrawal for irrigation, of climate variables, and of energy price changes. We merge economic theory and hydrological characteristics to jointly estimate equations describing irrigation behavior and a generalized water balance equation for the HPA. Our simple water balance model predicts, at average values for irrigation and precipitation, an HPA‐wide average decrease in the groundwater table of 0.47 feet per year, compared to 0.48 feet per year observed on average across the HPA during this 1985–2005 period. The observed distribution and predicted change across counties is in the (?3.22, 1.59) and (?2.24, 0.60) feet per year range, respectively. The estimated impact of irrigation is to decrease the water table by an average of 1.24 feet per year, whereas rainfall recharges the level by an average of 0.76 feet per year. Relative to the past several decades, if groundwater use is unconstrained, groundwater depletion would increase 50% in a scenario where precipitation falls by 25% and the number of degree days above 36°C doubles. Editor’s note : This paper is part of the featured series on Optimizing Ogallala Aquifer Water Use to Sustain Food Systems. See the February 2019 issue for the introduction and background to the series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号