首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A study was conducted to investigate hydrological impacts of land cover changes in the degradation of the hydrological on flow regimes of the Upper Shire river, Malawi. Remote sensing techniques were used to inventory temporal changes of land cover changes in the catchment. Hydrological data were analyzed to reveal the alterations and trends for two periods; 1989 and 2002. The study revealed significant changes in magnitude and direction that have occurred in the catchment between 1989 and 2002, mainly in areas of human habitation. Trends in land cover change in the Upper Shire river catchment depict land cover transition from woodlands to mostly cultivated/grazing and built-up areas. The land cover mapping showed that 23% of the land was covered by agricultural land in 1989. Subsistence agricultural area has increased by 18%, occupying 41% of the study area in 2002. The effects of the derived land cover changes on river flow in the Upper Shire river were investigated using the semi distributed soil and water assessment tool (SWAT) model. River flows were found to be highly variable and sensitive to land cover changes. Simulation results show that 2002 land cover data produces higher flow peaks and faster travel times compared to the 1989 land cover data. The changes detected indicate the effects of land use pressure in the catchment. The study highlights the importance of considering effects of land use and land cover changes on ecosystems, and water resources for an informed decision on proper catchment planning and management.  相似文献   

2.

Explorations of future land use change are important to understand potential conflicts between competing land uses, trade-offs associated with particular land change trajectories, and the effectiveness of policies to steer land systems into desirable states. Most model-based explorations and scenario studies focused on conversions in broad land use classes, but disregarded changes in land management or focused on individual sectors only. Using the European Union (EU) as a case study, we developed an approach to identifying typical combinations of land cover and management changes by combining the results of multimodel simulations in the agriculture and forest sectors for four scenarios from 2000 to 2040. We visualized land change trajectories by mapping regional hotspots of change. Land change trajectories differed in extent and spatial pattern across the EU and among scenarios, indicating trajectory-specific option spaces for alternative land system outcomes. In spite of the large variation in the area of change, similar hotspots of land change were observed among the scenarios. All scenarios indicate a stronger polarization of land use in Europe, with a loss of multifunctional landscapes. We analyzed locations subject to change by comparing location characteristics associated with certain land change trajectories. Results indicate differences in the location conditions of different land change trajectories, with diverging impacts on ecosystem service provisioning. Policy and planning for future land use needs to account for the spatial variation of land change trajectories to achieve both overarching and location-specific targets.

  相似文献   

3.
Environment, Development and Sustainability - Land use and land cover change (LULCC) is one of the problems that the world has been facing for the last few decades despite political attention....  相似文献   

4.
District Swat is part of the high mountain Hindu-Kush Himalayan region of Pakistan. Documentation and analysis of land use change in this region is challenging due to very disparate accounts of the state of forest resources and limited accessible data. Such analysis is, however, important due to concerns over the degradation of forest land leading to deterioration of the protection of water catchments and exposure of highly erodible soils. Furthermore, the area is identified as hotspot for biodiversity loss. The aim of this paper is to identify geophysical and geographical factors related to land use change and model how these relationships vary across the district. For three selected zones across the elevation gradient of the district, we analyse land use change by studying land use maps for the years 1968, 1990 and 2007. In the high-altitude zone, the forest area decreased by 30.5 %, a third of which was caused by agricultural expansion. In the mid-elevation zone, agriculture expanded by 70.3 % and forests decreased by 49.7 %. In the lower altitudes, agriculture expansion was 129.9 % consuming 31.7 % of the forest area over the forty-year time period. Annual deforestation rates observed were 0.80, 1.28 and 1.86 % in high, mid and low altitudes, respectively. In the high-altitude ecosystems, accessibility (distance to nearest road and city) had no significant role in agriculture expansion; rather land use change appears significantly related to geophysical factors such as slope, aspect and altitude. In the low-elevation zone, accessibility was the factor showing the closest association with agriculture expansion and abandonment. The analysis illustrates that land use change processes vary quite considerably between different altitudinal and vegetation cover zones of the same district and that environmental constraints and stage of economic development provide important contextual information.  相似文献   

5.
Land use and cover changes trigger multi-factorial responses with tangible and intangible effects. Driving forces governing changes are scale-, place- and time-dependent; because of their complexity, a multi-scalar analysis is required to determine conjoint causation. Studies using multi-scalar approach in semiarid scrubland ecosystems are scanty. This paper investigates land use changes on the largest semiarid scrubland ecosystem of Mexico, the Baja California Peninsula, using a multi-scalar analysis approach. It further provides insight into the likely underlying causes for land use trends. Multi-temporal databases were compiled for 1978, 1990, 2000 and 2003 from various sources; population was projected for the same years. Land cover processes were validated through intensive fieldwork. Map overlapping with the aid of geographic information systems allowed computation of land cover transformation rates. New algorithms were developed to better understand land cover trends. Multi-variate analysis was also performed to provide a synthetic statistical overview. Results showed that land cover change occurred at different times, at variable scales, due to distinct drivers. As a consequence, the current regional scenario has been shaped by distinguishable socio-economic changes. The semiarid scrubland ecosystems in the Baja California Peninsula experienced contrasting trends detectable only at site and local scales. Regionally, the replacement of original vegetation (scrubland) for other land cover category is following trends similar to those in the rest of Mexico and most semiarid ecosystems worldwide. These findings support the hypothesis that land use and cover changes must be analyzed at different times and scales to deeply understand underlying forces.  相似文献   

6.
This study quantifies and spatially characterizes land use and land cover changes in the Segara Anakan lagoon (SAL), Java, Indonesia, from 1987–2006. Classification of four satellite (SPOT) images from the years 1987, 1995, 2004 and 2006 and field ground truth data from 2004 and 2005 were used for map generation. The results show major changes in the western area of the SAL, with large area increases of rice fields, dry land agriculture, aquaculture and rural areas, and decreases in mangrove cover, mud flat and lagoon area. In the eastern area, minor decreases in mangrove area and increase in aquaculture, rural and industrial areas were also observed. Changes are due to the filling of the lagoon with riverine sediments derived from the hinterland and to mangrove conversion and resources exploitation. The results of this study provide basic information which is required for developing measures towards a sustainable management and conservation of the SAL.  相似文献   

7.
Environment, Development and Sustainability - Land use and land cover (LULC) changes, climate variability and climate change (CC) contribute hydrological response in tropical catchments, but their...  相似文献   

8.
Environment, Development and Sustainability - The study has been conducted at Agartala Municipal area (AMA) of Tripura, which exhibits rapid population growth and faster land use land cover...  相似文献   

9.
The drastic socio-economic and political changes that occurred after the breakdown of socialism in Eastern Europe triggered widespread land use change, including cropland abandonment and forest cover changes. Yet the rates and spatial patterns of post-socialist land use change remain largely unclear. We used Landsat TM/ETM+ images to classify land cover maps and assess landscape pattern changes from 1990 to 2005 in Argeş County, Southern Romania. Cropland abandonment was the most widespread change (21.1% abandonment rate), likely due to declining returns from farming, tenure insecurity, and demographic developments during transition. Forest cover and forest fragmentation remained remarkably stable during transition, despite widespread ownership transfers. Cropland abandonment provides opportunities for increased carbon sequestration, but threatens cultural landscapes and biodiversity. Continued monitoring is important for assessing whether abandoned croplands will eventually reforest or be put back into production and to better understand the consequences of post-socialist land use change for ecosystems and biodiversity.  相似文献   

10.
Land cover change in the Brazilian Amazon depends on the spatial variability of political, socioeconomic and biophysical factors, as well as on the land use history and its actors. A regional scale analysis was made in Rondônia State to identify possible differences in land cover change connected to spatial policies of land occupation, size and year of establishment of properties, accessibility measures and soil fertility. The analysis was made based on remote sensing data and household level data gathered with a questionnaire. Both types of analyses indicate that the highest level of total deforestation is found inside agrarian projects, especially in those established more than 20 years ago. Even though deforestation rates are similar inside and outside official settlements, inside agrarian projects forest depletion can exceed 50% at the property level within 10–14 years after establishment. The data indicate that both small-scale and medium to large-scale farmers contribute to deforestation processes in Rondônia State encouraged by spatial policies of land occupation, which provide better accessibility to forest fringes where soil fertility and forest resources are important determinants of location choice.  相似文献   

11.
This study quantified land use/land cover (LULC) changes in Pearl River Delta (PRD) of South China and its impact on regional climate over the last two decades. The LULC change analyses were accomplished by applying a change detection method to a set of Landsat imagery and ancillary data acquired from 1970s to 2000. The results indicate that the urban expansion is the prevailing LULC change in the PRD. Impact of LULC change on regional climate was simulated by using a mesoscale climate model. Two different land cover datasets circa 1990 and 2000 were input to the model to investigate the impact of urbanization on regional weather and climate condition in summer 2005. The simulation results show that rapid urban expansion can substantially alter regional climate conditions in the PRD region including monthly mean temperature, precipitation, moisture, and surface heat fluxes.  相似文献   

12.
Regional Environmental Change - Better understanding the pathways through which future socioeconomic changes might influence land use and land cover changes (LULCCs) is a crucial step in accurately...  相似文献   

13.
Environment, Development and Sustainability - Land use land cover change (LULCC) is a global environmental trend that plays a key role in worldwide environmental change and sustainable development....  相似文献   

14.
As in many other developing countries, cities in Bangladesh have witnessed rapid urbanization, resulting in increasing amounts of land being taken over and therefore land cover changing at a faster rate. Until now, however, few efforts have been made to document the impact of land use and land cover changes on the climate, environment, and ecosystem of the country because of a lack of geospatial data and time-series information. By using open source Landsat data integrated with GIS technologies and other ancillary data, this study attempts to classify land use and create land cover maps, enabling post-classification change detection analysis. By this method, we document the spatial and temporal trajectory of urban expansion in Chittagong, the second largest city in Bangladesh, over a 36-year period. The findings suggest that, over the study period, 56 % of the land cover has undergone change, mainly because of the expansion of built-up areas and other human activities. During the 36-year period, the built-up area around Chittagong city has expanded by 618 %, with an average annual rate of increase of 17.5 %. As a result of rapid urbanization, the vegetated hills near urban development areas face serious threats of further encroachment and degradation, given that 2178 ha of hills have already been intruded over the study period. Because urbanization processes in Bangladesh have traditionally been viewed as the result of population growth and economic development, very little work has been done to track the potential growth trajectory in a physical or spatial context. This study, therefore, will contribute to the current understanding of urban development in Bangladesh from a temporal and spatial point of view. Findings will be able to assist planners, stakeholders, and policy makers in appreciating the dynamism of urban growth and therefore will facilitate better planning for the future to minimize environmental impacts.  相似文献   

15.
Land capability classification systems define and communicate biophysical limitations on land use, including climate, soils and topography. They can therefore provide an accessible format for both scientists and decision-makers to share knowledge on climate change impacts and adaptation. Underlying such classifications are complex interactions that require dynamic spatial analysis, particularly between soil and climate. These relationships are investigated using a case study on drought risk for agriculture in Scotland, which is currently considered less significant than wetness-related issues. The impact of drought risk is assessed using an established empirical system for land capability linking indicator crops with water availability. This procedure is facilitated by spatial interpolation of climate and soil profile data to provide soil moisture deficits and plant available water on a regular 1-km grid. To evaluate potential impacts of future climate change, land capability classes are estimated using both large-scale ensemble (multi-simulation) data from the HadRM3 regional climate model and local-scale weather generator data (UKCP09) derived from multiple climate models. Results for the case study suggest that drought risk is likely to have a much more significant influence on land use in the future. This could potentially act to restrict the range of crops grown and hence reduce land capability in some areas unless strategic-level adaptation measures are developed that also integrate land use systems and water resources with the wider environment.  相似文献   

16.
The present research focuses on estimating forest area change with respect to the ongoing forest land conversion. The study tests the hypothesis that forest land is being converted to the selected land use categories with high growth tendency and controlling deforestation rate to its half of the present level would significantly improve the land cover under forest. The rate of forest land conversion to other land use categories is analyzed and then compared with the total area expanded under three land use classes. We used Systems dynamic modeling approach to estimate forest area by simulating forest land conversion in Pakistan, projecting to 2030. The results show that rangeland, built-up area and cultivated land have increased over time; growth rate of built-up area (9%) is highest followed by rangeland area (1.7%) and cultivated area (0.3%), respectively; rangeland is the dominant category in terms of area expanded (0.74 m. ha). Sensitivity analysis showed that reducing deforestation rate to half of the past level of 1% could not significantly improve forest area; therefore, it is suggested that controlling deforestation alone is not an effective strategy unless drastic measures, e.g., demarcation of forest boundaries, land use control policy and afforestation campaign would be started in the country.  相似文献   

17.
This paper assesses the relative importance of socioeconomic factors linked to fire occurrence through the simulation of future land use/land cover (LULC) change scenarios in the Madrid region (Spain). This region is a clear example of the socioeconomic changes that have been occurring over recent decades in the European Mediterranean as well as their impact on LULC and fire occurrence. Using the LULC changes observed between 1990 and 2006 as a reference, future scenarios were run up to 2025 with the conversion of land use and its effects model. Simultaneously, the relationship between LULC arrangement (interfaces) and historical fire occurrence was calculated using logistic regression analysis and used to quantify changes in future fire occurrence due to projected changes in LULC interfaces. The results revealed that it is possible to explain the probability of fire occurrence using only variables obtained from LULC maps, although the explanatory power of the model is low. In this context, border areas between some LULC types are of particular interest (i.e., urban/forest, grassland/forest and agricultural/forest interfaces). Results indicated that expected LULC changes in Euro-Mediterranean regions, particularly given the foreseeable increase in the wildland–urban interface, will substantially increase fire occurrence (up to 155 %). This underlines the importance of future LULC scenarios when planning fire prevention measures.  相似文献   

18.
Regional Environmental Change - Land use and land cover (LULC), as well as their geographical and temporal variations, affect landslide occurrence and the related risk, in ways that are difficult...  相似文献   

19.
利用1985、1995和20D0年的TM数据及水质资料,运用GIS和水质指数法研究西苔溪流域的土地利用/覆被变化及其水环境效应。结果表明:流域内耕地不断减少,建设用地持续扩大,林地前期减少后期缓慢增加;林地和耕地是流域内的主要土地利用类型,二者面积之和占流域面积的比例在三个时段均在92%以上;空间集中性及斑块碎化是土地利用空间格局变化的主要表现,建设用地斑块数量增多且斑块面积明显增大,饼地面积减少但斑块数量增多。研究时段内流域水质在时间上呈逐步恶化趋势,在空间上则表现为自上游至下游逐渐下降,其中,1996-2000年,研究河段内水质指数下降幅度达30%左右;只治理点污染源仅使水质指数增加6.5%左右,表明影响水质的主要因素是土地利用变化导致的面源污染。  相似文献   

20.
The study presents three scenarios of land use and cover change (LUCC), the most important factor for environmental degradation in southern Mexico. We developed story lines and quantitative projections for regional scenarios based on historic LUCC processes, environmental policies, socioeconomic drivers, stakeholder consultations and official planning documents to gain a better understanding of drivers of LUCC, and quantitative scenarios were modeled with DINAMICA-EGO. Regionally specific interactions between social and natural systems are recognized, and detrimental policies and policy options for landscape conservation and management for sustainability are acknowledged in a base line, variant and alternative scenario. Incongruent policies and ineffective ground implementation of conservation actions were identified as the critical underlying drivers of deforestation and forest degradation that could lead to a severe reduction in natural forests, while the local socioeconomic situation stays precarious. The baseline scenario parts from an analysis of historic LUCC processes and shows the consequences of LUCC tendencies: 73% of temperate forests and 50% of tropical forests would get deforested until 2030. In the variant scenario, these tendencies are adjusted to planning goals extracted from official documents and recent changes in public policies. The alternative scenario further addresses policy options for fostering conservation and sustainable development, but because of the time lag of implementation, still 59% of temperate forests and 36% of tropical forest would get lost until 2030. Nevertheless, this represents a reduction of 13% of forest loss and 11% less pastureland due to the proposed measures of conservation, and sustainable management, including strategies for reforming agricultural systems, agricultural and forestry policies and trade, land tenure and livelihood risk management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号