首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  国内免费   30篇
综合类   33篇
基础理论   2篇
污染及防治   2篇
  2024年   4篇
  2023年   4篇
  2022年   3篇
  2021年   5篇
  2020年   7篇
  2019年   6篇
  2018年   3篇
  2006年   2篇
  1995年   2篇
  1988年   1篇
排序方式: 共有37条查询结果,搜索用时 78 毫秒
21.
为研究郑州市细颗粒物(PM2.5)时空分布差异及秋冬季管控措施影响,于2017年秋季至2018年冬季选取5个点位采集PM2.5样品并进行组分分析,利用正定矩阵因子分解模型(PMF)解析PM2.5污染来源,评估郑州市秋冬季管控效果,并基于源解析结果为下一阶段秋冬季管控提供支撑.郑州市PM2.5浓度冬季 > 秋季 > 春季 > 夏季,郑州大学(ZZU)PM2.5浓度最高[(83.1±44.7)μg·m-3],高出平均浓度[(76.5±46.1)μg·m-3]的8.7%.SO42-、NO3-和NH4+在9种水溶性离子中平均占比高达22.5%、43.6%和23.4%,受燃煤影响Cl-两年冬季占比高于其他季节(6.7%和6.6%).秋冬季二次有机碳(SOC)污染严重,浓度占有机碳的一半以上,2018年市监测站(JCZ)和ZZU点位SOC/OC比2017年有所下降,但其他3个点位大幅度升高,说明这些地区不同的排放基础应对管控措施的表现不尽相同.重构结果表明硫酸盐占比在夏季最高(25.0%),硝酸盐两年秋季占比较高(23.1%和25.1%),地壳物质春季占比最高(18.2%),二次有机气溶胶(SOA)冬季最高(14.1%和20.5%);JCZ和航空港(HKG)点位SOA贡献较大(16.9%和16.4%),ZZU点位受到一次有机气溶胶和地壳物质影响较大(14.3%和12.1%).PMF结果表明二次无机盐(37.5%)、SOA(15.4%)、交通源(14.9%)、工艺过程源(4.8%)、燃煤源(16.0%)、扬尘源(6.5%)和生物质燃烧源(2.8%)是郑州市PM2.5的主要污染源,SOA和燃煤源在冬季贡献最大,扬尘源和生物质燃烧源在春季和秋季贡献较大;市区点位JCZ、ZZU和临近机场的HKG受到交通源的影响高于其他点位,非市区点位新密和HKG受到生物质燃烧源的影响较大.对比两年秋冬季,2018年秋冬季SOA、交通源和工艺过程源的贡献有所升高,而二次无机盐、燃煤源和生物质燃烧源有所下降,冬季扬尘源也有所下降.结果表明秋冬季管控措施对一次源中的扬尘、燃煤和工业效果显著,同时SOA前体物挥发性有机物是进一步减排管控的方向.  相似文献   
22.
郑州市PM2.5化学组分的季节变化特征及来源解析   总被引:1,自引:0,他引:1  
张剑飞  姜楠  段时光  孙有昌  郝祺  张瑞芹 《环境科学》2020,41(11):4813-4824
为了解析郑州市PM2.5的污染特征和来源,同时为了研究不同季节以及市区和市郊之间的差异,本研究于2018年四季在郑州市环境保护监测中心站(市区)和郑州大学(市郊)点位共计采集环境PM2.5有效样品1284个.通过离子色谱仪、碳分析仪和X射线荧光光谱仪分别测试得到9种无机水溶性离子、两种碳组分和27种元素浓度,分析了郑州市城郊PM2.5中化学组分的季节变化特征,使用富集因子法、地累积指数法、化学质量平衡模型、后向轨迹法和潜在源贡献因子法,研究了郑州市城郊不同季节PM2.5的来源差异.结果表明,市区和市郊点位年平均PM2.5浓度达到(59.7±24.0)μg ·m-3和(74.7±13.5)μg ·m-3,郊区点位(除冬季外)季节平均浓度均高于市区点位,季节均值呈现冬季 > 秋季 > 春季 > 夏季的变化.市郊春季受地壳物质的影响较大,夏秋两季全部组分浓度均高于市区;冬季市区受燃煤源和机动车源影响更大.Cu、As、Zn、Pb和Sb受到人为源的影响强烈,市区富集程度更大,Zn、Cu、As和Pb存在一定的潜在生态风险.源解析结果显示,两点位春夏秋冬四季均分别受到扬尘源、二次硫酸盐、二次硝酸盐和燃煤源的较大影响,此外,市区四季受二次污染源和机动车源的影响较大,而市郊秋冬季受生物质源影响较大.来自山东的气团、西北方向的气团(除夏季外)、南方气团(除冬季外)对郑州市PM2.5的污染水平影响较大,其潜在来源区域主要为省内及与邻省的交界处.  相似文献   
23.
用天然白云石制备了半焙烧白云石和全焙烧白云石,并在固定床上对这些白云石进行硫化氢的高温脱除性能研究,同时考察了反应温度、空速、粒子粒径对白云石脱硫性能的影响。用X射线衍射(XRD)、热重分析(TG)和气体吸附等测试手段,对脱硫剂的物相组成、结构、比表面积和孔容进行了表征。结果表明,白云石是一种很好的吸硫剂。在同样条件下,3种白云石中半焙烧白云石具有最好的脱硫效果;而对于同一种白云石,反应条件的差异也会导致其脱硫效果的变化。白云石的脱硫性能与其微观结构有密切关系。  相似文献   
24.
工业园区由于资源能源消耗和污染排放总量大,能量梯级利用水平普遍较低,在我国推进生态文明建设的过程中受到了重点关注.本研究以河南省一个典型的高能耗工业园区(永城经济技术开发区)为研究对象,对能量梯级利用措施带来的节能效果和大气污染物减排效益进行了定量的研究,并且结合CALPUFF模型分析园区能量梯级利用措施对周边城市大气环境质量的影响.结果表明:①通过应用能量梯级利用措施,有效地提高了能源的使用效率,并减少了SO2、NOx以及颗粒物等主要大气污染物的排放量.园区12条能量梯级利用链条的节能总量为10000 TJ, SO2和NOx排放量分别减少为611 t和1407 t, PM10 和PM2.5分别减少为82 t和45 t.②CALPUFF模拟结果显示园区采用能量梯级利用措施在一定程度上改善了城市大气环境的空气质量.永城市2017年4种污染物的最大1 h平均浓度在有能量梯级利用措施情景(S2)下和无能量梯级利用情景(S1)相比均有所降低,其中NOx降幅最为明显,在春秋两季为70 μg·m-3左右.  相似文献   
25.
为了研究挥发性有机物(VOCs)的污染特征,于2021年6月和12月在郑州市对两个污染过程中的VOCs进行了连续监测.结合气象条件,对比分析了VOCs冬夏季污染过程的污染特征、来源贡献和活性差异.结果显示,两个污染过程φ(VOCs)分别为(27.92±12.68)×10-9和(24.30±5.93)×10-9.冬季雾-霾污染过程相较于夏季O3污染过程,VOCs体积分数变化范围更大.冬季污染过程源解析结果:工业源(27.0%)、机动车源(22.5%)、燃烧源(20.1%)、溶剂使用源(16.3%)和油气挥发源(14.1%);夏季污染过程源解析结果:机动车源(24.8%)、工业源(24.1%)、溶剂使用源(17.4%)、油气挥发源(14.2%)、燃烧源(11.2%)和植物源(8.4%).光化学烟雾产量模型结果显示,两个污染过程中夏季臭氧生成处于VOCs控制区的天数占比(66.7%)小于冬季(100.0%).二次反应活性结果显示,冬季和夏季污染过程·OH自由基反应活性(L·OH)均值分别为4.12 s-1和4.76 s-1.夏季污染过程臭氧生成潜势(OFP)均值108.36 μg·m-3,L·OH和OFP贡献率排名前10名物种夏季污染过程以烯烃为主.郑州市冬季污染过程的总二次有机气溶胶生成潜势(SOAFP)为54.38 μg·m-3,冬季污染过程SOAFP贡献率前10名物种中芳香烃占9个.  相似文献   
26.
针对郑州市2017年12月~2018年2月的冬季气象数据和大气污染物质量浓度在线监测数据,分析了气象条件对颗粒物浓度的影响.通过混合型单粒子拉格朗日综合轨迹(HYSPLIT)方法模拟了郑州市冬季48 h的气流后向轨迹,同时进行了聚类分析,并使用潜在源贡献因子(PSCF)方法和浓度权重轨迹(CWT)方法分析了郑州市冬季PM_(2.5)的潜在污染来源和不同潜在源区对郑州市大气PM_(2.5)浓度的贡献.结果表明,低风速、高湿度和较少的降水是造成颗粒物污染严重的重要气象因素;超过60%的后向轨迹来自西北方向,其次是来自京津地区的轨迹占比为25.6%,而来自南边和东边的轨迹只占7.5%和6.1%,但对应着较高的PM_(2.5)浓度;郑州市冬季PM_(2.5)的潜在源区主要是北部的京津冀传输通道城市,包括焦作、开封、新乡、鹤壁、濮阳、安阳、邯郸和邢台,此外,相邻省份包括山西省、湖北省和安徽省部分区域对郑州市大气PM_(2.5)污染水平也有着较大的影响和贡献.  相似文献   
27.
硝酸根(NO3-)、硫酸根(SO42-)和铵根离子(NH4+)是PM2.5中重要组分,研究三者的污染特征及其影响因素对空气质量的持续改善至关重要.于郑州市2020年夏季利用一系列在线PM2.5化学组分仪器开展连续观测.结果表明,郑州市2020年夏季ρ(PM2.5)平均值为(28±13)μg·m-3,呈现夜间高白天低的日变化特征.ρ(NO3-)、ρ(SO42-)和ρ(NH4+)的平均值分别为(7.8±6.7)、(7.2±3.7)和(5.5±3.1)μg·m-3,在PM2.5中的占比分别达到22%、 21%和16%.分析不同情景下组分变化规律发现,随着PM2.5浓度的上升,NO3-  相似文献   
28.
于2017年11月21~29日利用在线金属分析仪及气象仪器在郑州大学站点进行连续观测,识别郑州市秋冬季节典型灰霾重污染爆发的成因.结果表明:观测期间采样点大气PM2.5中As,Mn,Fe,Cu和Zn等元素浓度相比其他城市较高;基于气象数据统计分析可知,来自郑州市东北方向污染气团的传输,以及低风速、高湿度的静稳天气造成的本地排放污染物积聚是这两次重污染形成的主要气象因素;同时,利用正矩阵因子分解法(PMF)定量解析出观测期间主要贡献源:扬尘源(36.8%),机动车源(27.6%),工业源(21.0%)和燃烧源(14.6%).其中,扬尘源在清洁天的贡献占比较高,而重污染期间机动车源和燃烧源的贡献显著增大.  相似文献   
29.
为研究以河南省为代表的受大气污染传输影响显著省份的大气环境容量,本文基于CMAQ模型,采用嵌套迭代模拟的方法,计算了在周边省份区域联防联控的前提下河南省PM2.5浓度达标(GB 3095-2012《环境空气质量标准》二级标准限值)时17个地级市SO2、NOx、一次PM2.5和NH3的大气环境容量.结果表明:(1)省外传输对河南省PM2.5浓度的贡献率为50.29%,其中周边7个省份传输贡献率为36.19%,可见周边省份实施大气污染联防联控是河南省实现空气质量达标的必要条件.(2)在省级PM2.5浓度达标时,河南省周边7个省份SO2、NOx、一次PM2.5和NH3的大气环境容量分别为279.07×104、465.61×104、172.67×104和182.96×104  相似文献   
30.
为探究安阳市燃煤源排放特征,基于实地调研、抽样调查和部门座谈等方法,利用排放因子法自下而上的估算了2016年安阳市燃煤源颗粒物和碳组分排放清单,利用经纬度坐标和所属乡镇信息,进行了全市PM_(10)、PM_(2.5)、PM_1、EC和OC排放空间分配,并通过对2017年燃煤源相关政策的搜集整理,结合2016年调研情况,对2017年安阳市主要燃煤相关政策颗粒物减排效果进行了估算。结果表明:安阳市2016年燃煤源PM_(10)、PM_(2.5)、PM_1、EC和OC排放总量分别为5 735.03、2 986.61、1 049.40、718.05和385.29 t;散煤燃烧源是PM_(10)、PM_(2.5)、PM_1、EC和OC的主要贡献源,分别贡献了各污染物的70.71%、76.98%、91.81%、85.14%和71.83%;从空间分布来看,排放主要集中在林州市的河顺镇、龙安区的东风乡以及殷都区的纱厂路街道,而排放强度较高的乡镇(街道)主要集中在市区的纱厂路街道、北大街街道、洹北街道、豆腐营街道和东风乡;通过对2017年燃煤源相关政策的搜集整理,结合2016年调研情况,估算2017年燃煤源PM_(10)、PM_(2.5)和PM_1减排量分别为2 735.15、1 410.08和457.61t,分别占2016年燃煤源排放总量的47.69%、47.21%和43.61%。研究显示,2016年安阳市燃煤源颗粒物排放量较大,2017年安阳市采取的燃煤相关政策措施对安阳市燃煤源颗粒物减排效果显著。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号