首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   22篇
  国内免费   10篇
综合类   40篇
基础理论   3篇
污染及防治   5篇
评价与监测   1篇
  2023年   4篇
  2022年   2篇
  2021年   6篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   5篇
  2015年   1篇
  2014年   7篇
  2013年   2篇
  2012年   5篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
排序方式: 共有49条查询结果,搜索用时 108 毫秒
11.
乌鲁木齐市重污染期间PM_(2.5)污染特征与来源解析   总被引:1,自引:0,他引:1  
目前有关我国城市大气重污染期间PM2.5污染特征及其来源的研究较少,为深入了解典型城市大气重污染期间PM2.5的污染特征与来源构成,于2013年1月19—30日在乌鲁木齐市采集PM2.5样品,并依据相关划分标准,确定1月19—28日为重污染天气.分析了重污染天气下ρ(PM2.5)及主要化学组成(包括水溶性离子、无机元素和碳组分),运用统计学方法研究了重污染期间PM2.5的污染特征,并且采用富集因子法和CMB受体模型解析了PM2.5的来源构成.结果表明:大气重污染期间ρ(PM2.5)严重超标,其中米东区环境保护局采样点的ρ(PM2.5)最高,其次是铁路局、市监测站;PM2.5化学组分以SO42-、TC、Si和NO3-为主,其中二次离子占ρ(PM2.5)的43.1%;城市扬尘、煤烟尘和二次粒子是环境空气中PM2.5的主要污染源类,三者在乌鲁木齐市以及米东区的分担率分别为24.7%、15.6%、38.0%和20.8%、28.0%、36.2%,其中二次硫酸盐的分担率在两地更分别达到28.6%和27.0%.  相似文献   
12.
杭州市空气颗粒物污染特征及变化规律研究   总被引:3,自引:0,他引:3  
根据2006—2010年杭州市空气颗粒物的监测数据及2002、2006、2008年空气颗粒物来源解析结果,对杭州市空气颗粒物浓度、化学组分与污染来源等特征的变化规律进行分析,以期为空气颗粒物污染控制提供决策依据。结果表明,近年来杭州市PM10浓度有所下降,但一类功能区PM10仍超出《环境空气质量标准》(GB 3095—1996)的要求(≤0.04mg/m3),杭州市空气颗粒物污染以细颗粒物为主,空气颗粒物的二次转化、机动车尾气尘等产生的二次粒子污染相对严重;煤烟尘对杭州市PM10的贡献率下降明显,城市扬尘、二次粒子和机动车尾气尘对PM10的贡献率有所增加,是杭州市PM10的主要来源。  相似文献   
13.
大气颗粒物源成分谱可以表征源排放颗粒物的理化特征,为受体模型开展来源解析研究提供基础数据.餐饮油烟排放是室内外环境大气污染的来源之一,当前餐饮源排放PM2.5的化学成分谱仍然缺乏.该研究分别在成都市、武汉市和天津市采集了29组6种餐饮源(居民烹饪、火锅店、烧烤店、职工食堂、中餐馆、商场综合餐饮)排放的PM2.5样品,分析无机元素、离子、碳、多环芳烃(PAHs)等化学组分,并构建了餐饮源排放颗粒物化学成分谱.结果表明:①餐饮源排放PM2.5化学成分中的主要组分为OC(有机碳)、EC(元素碳)、Ca、Al、Fe、NH4+、SO42-、NO3-、Na+、K+、Mg2+和Cl-,其中w(OC)最高,为41.67%~57.91%.②餐饮源排放PM2.5的PAHs中,3环和4环占比较高,其中芴(Flu)、菲(Phe)、荧蒽(Fla)、芘(Pyr)的质量分数相对其他物质较高.研究显示:餐饮源排放PM2.5中OC/EC约为15.99~67.61,在一定程度上可以用来表征餐饮源排放;Fla/(Fla+Pyr)和InP/(InP+BghiP)多集中在0.45~0.55之间,或可作为标识餐饮源的特征比值.   相似文献   
14.
杭州市冬季环境空气PM2.5中碳组分污染特征及来源   总被引:1,自引:0,他引:1       下载免费PDF全文
为研究杭州市PM2.5中碳组分特征,于2013年12月-2014年2月在7个常规点位和2个对照点同步采集PM2.5样品,分析其污染特征及来源.结果表明:杭州市冬季有机碳(OC)、元素碳(EC)、二次有机碳(SOC)的平均质量浓度分别为(23.7±7.5)(5.0±2.4)和(9.2±4.5)μg/m3,OC/EC[ρ(OC)/ρ(EC)]和SOC/OC[ρ(SOC)/ρ(OC)]的平均值分别为5.3±1.9和0.4±0.2.对照点ρ(OC)、ρ(EC)、ρ(SOC)和OC/EC、SOC/OC分别为常规点位的0.8、0.6、1.2、1.2和1.3倍.采样期间,常规点位和对照点ρ(OC)和ρ(EC)的日均值具有相同的时间变化趋势.对照点ρ(OC)和ρ(EC)的相关性(0.49)低于常规点位(0.61),对照点PM2.5中OC和EC的来源差异性更明显.8个碳组分的丰度分析表明,常规点位和对照点PM2.5中碳组分的来源基本一致,主要来源于道路尘、燃煤、机动车和生物质燃烧.绝对主因子分析法源解析结果表明,杭州市冬季PM2.5中总碳(TC)的主要来源中,燃煤/汽油车排放/道路尘、柴油车排放和生物质燃烧的分担率为79.1%、13.1%和3.5%.   相似文献   
15.
为研究关中地区远郊背景点位大气PM2.5污染来源,于2014年12月-2015年10月在西安市区西南方向约34 km的背景点位(农村区域,108°44'13"E、34°00'53"N)开展样品采集,共获得218个有效样品,对29种化学组分进行了分析,并运用ME2和PMF模型进行同步解析、相互验证.结果表明:ME2和PMF模型各解析出5类因子,分别为二次无机盐、机动车尾气排放、生物质燃烧、煤烟尘和土壤尘.其中,二次无机盐分担率为42.23%~42.74%,是首要贡献源类,机动车尾气排放(22.40%~24.53%)、煤烟尘(14.57%~14.73%)、生物质燃烧(11.88%~13.42%)是另外3种主要贡献源,而土壤尘(6.28%~7.22%)分担率相对较小. 2种模型同步解析大气颗粒物来源对比表明,ME2和PMF模型同步解析结果一致,各源类的日贡献浓度均呈正相关,其中二次无机盐、机动车尾气排放、土壤尘的相关性较强,R2在0.876~0.960之间,表明解析结果可信.   相似文献   
16.
为研究菏泽市冬季大气颗粒物中碳组分的污染特征和来源,于2016年1月采集菏泽市冬季大气PM2.5和PM10样品,基于热光反射法分析样品中OC(有机碳)、EC(元素碳)及8个碳组分[OC1、OC2、OC3、OC4、EC1、EC2、EC3和OP(裂解碳)]的含量,并计算得到ρ(Char-EC)(Char-EC为燃料燃烧后固体残渣中的EC)和ρ(Soot-EC)(Soot-EC为燃烧后气相挥发物质再凝结形成的EC),以定性识别大气颗粒物中碳组分的来源.结果表明,菏泽市冬季大气颗粒物样品中碳组分浓度处于较高水平,PM2.5中的ρ(OC)、ρ(EC)分别为26.34、9.22 μg/m3,PM10中ρ(OC)、ρ(EC)分别为31.82、10.71 μg/m3.采样期间大气PM2.5中碳组分(OC、EC、OC1、OC2、OC3、OC4、EC1、EC2、EC3、Char-EC、Soot-EC)浓度与PM10中相应各组分浓度的比值均大于0.5(0.60~0.90),表明碳组分多集中于细粒子(PM2.5).大气颗粒物样品中各碳组分浓度具有明显空间差异,各点位大气PM2.5和PM10中ρ(OC)均显著高于ρ(EC)(T检验,P < 0.05).菏泽市冬季大气PM2.5和PM10中Char-EC/Soot-EC(二者质量浓度之比)分别为10.04、8.00,并且存在显著的空间差异性(T检验,P < 0.05).PMF(正定矩阵因子分解法)解析结果表明,菏泽市冬季大气PM2.5和PM10中碳组分来源主要有4类,包括两类柴油车(1类排放的碳组分中以EC2为主,定义为柴油车-1;1类排放的碳组分中以EC3为主,定义为柴油车-2)、汽油车、生物质燃烧和燃煤混合源,对大气PM2.5中碳组分的分担率分别为13.98%、5.13%、24.47%、41.97%,对大气PM10中碳组分的分担率分别为16.08%、8.21%、18.34%、47.35%.可见,菏泽市冬季大气PM2.5和PM10中碳的主要来源是柴油车、汽油车、生物质燃烧和燃煤.   相似文献   
17.
天津市大气颗粒物污染特征与来源构成变化   总被引:2,自引:0,他引:2  
对1985年、2001年和2011年天津市颗粒物的粒径、化学组分以及污染来源的变化趋势进行了对比分析. 结果表明:天津市PM10中细粒子所占比重逐渐增加,由1985年的<0.51升至2011年的0.57. PM10中化学组分发生了明显改变,主要组分由单一的地壳元素发展为二次粒子、碳和地壳元素并重,1985年以地壳元素(Si、Al、Mg、Ca等)为主要组分,2001年以TC、Si、SO42-、Al、Ca为主要组分,2011年主要组分除TC、Si、SO42-、Ca外,还新增了NO3-. 各主要组分质量浓度及其占ρ(PM10)比例的变化多样,ρ(Si)所占比例先显著下降后保持平稳,其由1985年的28.7%降至2011年7.6%;碳组分所占比例由2001年的24.9%降至2011年17.9%;二次粒子质量浓度〔即ρ(SO42-)、ρ(NO3-)之和〕所占比例由2001年的10.2%升至2011年的18.3%. 煤烟尘对天津市PM10的分担率由1985年的45%降至2011年的22%,而开放源、二次粒子和机动车尾气尘对PM10的分担率有所增加,三者分别由1985年的29%、6%和3%升至2011年的35%、16%和16%. 环境空气中对颗粒物有重要贡献的源类越来越多,颗粒物的污染特征由煤烟型过渡为混合型再过渡到复合型.   相似文献   
18.
乌鲁木齐市重污染期间PM2.5污染特征与来源解析   总被引:4,自引:0,他引:4  
目前有关我国城市大气重污染期间PM2.5污染特征及其来源的研究较少,为深入了解典型城市大气重污染期间PM2.5的污染特征与来源构成,于2013年1月19—30日在乌鲁木齐市采集PM2.5样品,并依据相关划分标准,确定1月19—28日为重污染天气. 分析了重污染天气下ρ(PM2.5)及主要化学组成(包括水溶性离子、无机元素和碳组分),运用统计学方法研究了重污染期间PM2.5的污染特征,并且采用富集因子法和CMB受体模型解析了PM2.5的来源构成.结果表明:大气重污染期间ρ(PM2.5)严重超标,其中米东区环境保护局采样点的ρ(PM2.5)最高,其次是铁路局、市监测站;PM2.5化学组分以SO42-、TC、Si和NO3-为主,其中二次离子占ρ(PM2.5)的43.1%;城市扬尘、煤烟尘和二次粒子是环境空气中PM2.5的主要污染源类,三者在乌鲁木齐市以及米东区的分担率分别为24.7%、15.6%、38.0%和20.8%、28.0%、36.2%,其中二次硫酸盐的分担率在两地更分别达到28.6%和27.0%.   相似文献   
19.
以天津市津南区为例,采用自下而上的方式基于工序工艺建立了2017年精细化工业源排放清单,并深入探讨其对于工业源管理治理的实践应用意义.结果表明,津南区全年排放SO2 1778.50 t、NOx 3972.40 t、PM 2331.35 t、VOCs 933.49 t.津南区涉气工业企业入园率为68.55%,园区内企业SO2、NOx、PM、VOCs排放总量分别占到全区的92.77%、80.70%、89.34%、72.06%,可极大便利推行网格化等管理模式,提高工业源管理治理效率.本研究基于精细化源排放清单中污染物工序工艺及末端治理特征,参考国家、地方环境保护相关标准,设计NOx、PM、VOCs减排情景,保守计算NOx、PM、VOCs可在现有基础上分别减排约10.32%、19.88%、18.74%.本研究探索了基于工序工艺建立精细化源排放清单的意义、可行性以及存在的问题,可以为大、中尺度排放清单的建立提供有益的参考.  相似文献   
20.
大气颗粒物源解析受体模型优化技术研究   总被引:8,自引:2,他引:6       下载免费PDF全文
针对大气颗粒物来源解析技术存在的2大问题:二次有机碳(SOC)对CMB模型的影响及源与受体不匹配程度对源成分谱共线性的影响,给出了解决方案.对于SOC影响的问题,提出从受体的角度扣除SOC,对CMB模型进行修正,降低SOC的影响;对于共线性问题,提出了PCA/MLR-CMB复合模型,复合模型首先进行PCA/MLR的解析,降低受体中未知源的影响,使得纳入CMB模型中的源和受体匹配程度大大提高,从而使得共线性源类能够得到理想的结果.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号