首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32039篇
  免费   4948篇
  国内免费   30366篇
安全科学   2562篇
废物处理   1663篇
环保管理   2587篇
综合类   39619篇
基础理论   5529篇
环境理论   8篇
污染及防治   11076篇
评价与监测   2158篇
社会与环境   887篇
灾害及防治   1264篇
  2024年   3篇
  2023年   350篇
  2022年   1038篇
  2021年   846篇
  2020年   1239篇
  2019年   2495篇
  2018年   2820篇
  2017年   2975篇
  2016年   2731篇
  2015年   3273篇
  2014年   4038篇
  2013年   4839篇
  2012年   4200篇
  2011年   4047篇
  2010年   3378篇
  2009年   3483篇
  2008年   3306篇
  2007年   3056篇
  2006年   2611篇
  2005年   1954篇
  2004年   1564篇
  2003年   1433篇
  2002年   1254篇
  2001年   1164篇
  2000年   1337篇
  1999年   1308篇
  1998年   993篇
  1997年   898篇
  1996年   911篇
  1995年   792篇
  1994年   584篇
  1993年   471篇
  1992年   453篇
  1991年   360篇
  1990年   281篇
  1989年   239篇
  1988年   175篇
  1987年   91篇
  1986年   83篇
  1985年   56篇
  1984年   60篇
  1983年   45篇
  1982年   48篇
  1981年   37篇
  1979年   3篇
  1978年   6篇
  1976年   3篇
  1975年   4篇
  1972年   6篇
  1971年   6篇
排序方式: 共有10000条查询结果,搜索用时 343 毫秒
81.
制备了以KNbO3为载体材料的Co(OH)2复合材料并对其进行了详细的表征,分析了材料的组成成分、组成形态进而确定了其为核壳结构形貌的KNbO3@Co(OH)2.利用合成的样品作为催化剂活化过一硫酸盐(peroxymonosulfate,PMS)来降解帕珠沙星(pazufloxacin,PZF),结果表明制备的催化剂对PZF的去除效率显著增加.讨论了不同初始PMS剂量对降解效率的影响,发现随着PMS增加可活化生成更多的硫酸根自由基(sulfate radicals,SO4·-)和羟基自由基(hydroxyl radicals,HO·)来降解PZF,但继续增大PMS用量降解效率未见明显提升.酸性和中性pH值条件下利于反应活化PMS降解PZF,而碱性体系减缓反应,甚至强碱体系更易形成Co(OH)2沉淀不利于反应体系中活性组分CoOH+的形成,大大抑制了催化性能.此外,在体系中加入淬灭剂叔丁醇(tert-Butanol,TBA)或者乙醇(ethanol,ETOH)进行自由基的淬灭实验,结果表明SO4·-自由基为体系降解PZF过程中主要贡献的自由基,而HO·自由基的贡献较少.催化剂具有较好的稳定性5次循环之后仍能在10 min之内完全去除PZF.本研究提出了新的思路为制备其他载体的Co(OH)2核壳结构提供参考依据,同时将该催化剂结合高级氧化技术应用到水体新兴有机污染物净化领域具有很好的应用前景.  相似文献   
82.
To clarify the aerosol hygroscopic growth and optical properties of the Pearl River Delta(PRD)region,integrated observations were conducted in Heshan City of Guangdong Province from October 19 to November 17,2014.The concentrations and chemical compositions of PM_(2.5),aerosol optical properties and meteorological parameters were measured.The mean value of PM_(2.5) increased from less than 35(excellent) to 35-75 μg/m~3(good) and then to greater than 75 μg/m~3(pollution),corresponding to mean PM_(2.5) values of 24.9,51.2,and 93.3 μg/m~3,respectively.The aerosol scattering hygroscopic growth factor(f(RH = 80%)) values were 2.0,2.12,and 2.18 for the excellent,good,and pollution levels,respectively.The atmospheric extinction coefficient(σext)and the absorption coefficient of aerosols(σ_(ap)) increased,and the single scattering albedo(SSA)decreased from the excellent to the pollution levels.For different air mass sources,under excellent and good levels,the land air mass from northern Heshan had lower f(RH) and σ_(sp) values.In addition,the mixed aerosol from the sea and coastal cities had lower f(RH) and showed that the local sources of coastal cities have higher scattering characteristics in pollution periods.  相似文献   
83.
The performance of Ce-OMS-2 catalysts was improved by tuning the fill percentage in the hydrothermal synthesis process to increase the oxygen vacancy density. The Ce-OMS-2 samples were prepared with different fill percentages by means of a hydrothermal approach (i.e. 80%, 70%, 50% and 30%). Ce-OMS-2 with 80% fill percentage (Ce-OMS-2-80%) showed ozone conversion of 97%, and a lifetime experiment carried out for more than 20?days showed that the activity of the catalyst still remained satisfactorily high (91%). For Ce-OMS-2-80%, Mn ions in the framework as well as K ions in the tunnel sites were replaced by Ce4+, while for the others only Mn ions were replaced. O2-TPD and H2-TPR measurements proved that the Ce-OMS-2-80% catalyst possessed the greatest number of mobile surface oxygen species. XPS and XAFS showed that increasing the fill percentage can reduce the AOS of Mn and augment the amount of oxygen vacancies. The active sites, which accelerate the elimination of O3, can be enriched by increasing the oxygen vacancies. These findings indicate that increasing ozone removal can be achieved by tuning the fill percentage in the hydrothermal synthesis process.  相似文献   
84.
On-road driving emissions of six liquefied natural gas(LNG) and diesel semi-trailer towing vehicles(STTVs) which met China Emission Standard IV and V were tested using Portable Emission Measurement System(PEMS) in northern China.Emission characteristics of these vehicles under real driving conditions were analyzed and proved that on-road emissions of heavy-duty vehicles(HDVs) were underestimated in the past.There were large differences among LNG and diesel vehicles, which also existed between China V vehicles and China IV vehicles.Emission factors showed the highest level under real driving conditions, which probably be caused by frequent acceleration, deceleration, and start-stop.NOx emission factors ranged from 2.855 to 20.939 g/km based on distance-traveled and 6.719–90.557 g/kg based on fuel consumption during whole tests, which were much higher than previous researches on chassis dynamometer.It was inferred from tests that the fuel consumption rate of the test vehicles had a strong correlation with NOx emission, and the exhaust temperature also affected the efficiency of Selected Catalytic Reduction(SCR) aftertreatment system, thus changing the NOx emission greatly.THC emission factors of LNG vehicles were 2.012–10.636 g/km, which were much higher than that of diesel vehicles(0.029–0.185 g/km).Unburned CH_4 may be an important reason for this phenomenon.Further on-road emission tests, especially CH_4 emission test should be carried out in subsequent research.In addition, the Particulate Number(PN) emission factors of diesel vehicles were at a very high level during whole tests, and Diesel Particulate Filter(DPF)should be installed to reduce PN emission.  相似文献   
85.
Wastewater reclamation and reuse has been proved to be an effective way to relieve the fresh water crisis. However, toxic contaminants remaining in reclaimed water could lead to potential risk for reuse, and the conventional water quality standards have difficulty guaranteeing the safety of reclaimed water. Bioassays can vividly reflect the integrated biological effects of multiple toxic substances in water as a whole, and could be a powerful tool for evaluating the safety of reclaimed water. Therefore, in this study, the advantages and disadvantages of using bioassays for evaluating the safety of reclaimed water were compared with those of conventional water quality standards. Although bioassays have been widely used to describe the toxic effects of reclaimed water and treatment efficiency of reclamation techniques, a single bioassay cannot reflect the complex toxicity of reclaimed water, and a battery of bioassays involving multiple biological effects or in vitro tests with specific toxicity mechanisms would be recommended. Furthermore, in order to evaluate the safety of reclaimed water based on bioassay results, various methods including potential toxicology, the toxicity unit classification system, and a potential eco-toxic effects probe are summarized as well. Especially, some integrated ranking methods based on a bioassay battery involving multiple toxicity effects are recommended as useful tools for evaluating the safety of reclaimed water, which will benefit the promotion and guarantee the rapid development of the reclamation and reuse of wastewater.  相似文献   
86.
Glycine(Gly) is ubiquitous in the atmosphere and plays a vital role in new particle formation(NPF).However,the potential mechanism of its on sulfuric acid(SA)-ammonia(A)clusters formation under various atmospheric conditions is still ambiguous.Herein,a(Gly)_x·(SA)_y·(A)_z(z≤x+y≤3) multicomponent system was investigated by using density functional theory(DFT) combined with Atmospheric Cluster Dynamics Code(ACDC) at different temperatures and precursor concentrations.The results show that Gly,with one carboxyl(-COOH) and one amine(-NH_2) group,can interact strongly with SA and A in two directions through hydrogen bonds or proton transfer.Within the relevant range of atmospheric concentrations,Gly can enhance the formation rate of SA-A-based clusters,especially at low temperature,low [SA],and median [A].The enhancement(R) of Gly on NPF can be up to 340 at T=218.15 K,[SA]=10~4,[A]=10~9,and [Gly]=10~7 molecules/cm~3.In addition,the main growth paths of clusters show that Gly molecules participate into cluster formation in the initial stage and eventually leave the cluster by evaporation in subsequent cluster growth at low [Gly],it acts as an important "transporter" to connect the smaller and larger cluster.With the increase of [Gly],it acts as a "participator" directly participating in NPF.  相似文献   
87.
Cake layer formation is inevitable over time for ultrafiltration (UF) membrane-based drinking water treatment. Although the cake layer is always considered to cause membrane fouling, it can also act as a “dynamic protection layer”, as it further adsorbs pollutants and dramatically reduces their chance of getting to the membrane surface. Here, the UF membrane fouling performance was investigated with pre-deposited loose flocs in the presence of humic acid (HA). The results showed that the floc dynamic protection layer played an important role in removing HA. The higher the solution pH, the more negative the floc charge, resulting in lower HA removal efficiency due to the electrostatic repulsion and large pore size of the floc layer. With decreasing solution pH, a positively charged floc dynamic protection layer was formed, and more HA molecules were adsorbed. The potential reasons were ascribed to the smaller floc size, greater positive charge, and higher roughness of the floc layer. However, similar membrane fouling performance was also observed for the negative and positive floc dynamic protection layers due to their strong looseness characteristics. In addition, the molecular weight (MW) distribution of HA also played an important role in UF membrane fouling behavior. For the small MW HA molecules, the chance of forming a loose cake layer was high with a negatively charged floc dynamic protection layer, while for the large MW HA molecules it was high with a positively charged floc dynamic protection layer. As a result, slight UF membrane fouling was induced.  相似文献   
88.
Hydrilla verticillata(waterthyme) has been successfully used for phytoremediation in arsenic(As) contaminated water.To evaluate the effects of environmental factors on phytoremediation,this study conducted a series of orthogonal design experiments to determine optimal conditions,including phosphorus(P),nitrogen(N),and arsenate(As(Ⅴ))concentrations and initial pH levels,for As accumulation and biotransformation using this aquatic plant species,while also analyzing As species transformation in culture media after 96-hr exposure.Analysis of variance and the signal-to-noise ratio were used to identify both the effects of these environmental factors and their optimal conditions for this purpose.Results indicated that both N and P significantly impacted accumulation,and N was essential in As species transformation.High N and intermediate P levels were critical to As accumulation and biotransformation by H.verticillata,while high N and low P levels were beneficial to As species transformation in culture media.The highest total arsenic accumulation was(197.2±17.4) μg/g dry weight when As(V) was at level 3(375μg/L),N at level 2(4 mg/L),P at level 1(0.02 mg/L),and pH at level 2(7).Although H.verticillata is highly efficient in removing As(Ⅴ) from aquatic environments,its use could be potentially harmful to both humans and the natural environment due to its release of highly toxic arsenite.For cost-effective and ecofriendly phytoremediation of As-contaminated water,both N and P are helpful in regulating As accumulation and transformation in plants.  相似文献   
89.
Water-uptakes of pure sodium carbonate(Na_2CO_3),pure β-alanine and internally mixedβ-alanine/Na_2CO_3 aerosol particles with different mole ratios are first monitored using attenuated total reflectance Fourier transform infrared spectroscopy(ATR-FTIR) technique.For pure Na_2CO_3 aerosol particles,combining the absorptions at 877 and 1422 cm-1 with abrupt water loss shows the efflorescence relative humidity(ERH) of 62.9%–51.9%.Upon humidifying,solid Na_2CO_3 firstly absorbs water to from Na_2CO_3·H2 O crystal at 72.0% RH and then deliquesces at 84.5% RH(DRH).As for pure β-alanine particles,the crystallization takes place in the range of 42.4%–33.2% RH and becomes droplets at ~ 88.2% RH.When β-alanine is mixed with Na_2CO_3 at various mole ratios,it shows no efflorescence of Na_2CO_3 whenβ-alanine to Na_2CO_3 mole ratio(OIR) is 2:1.For 1:1 and 1:2 β-alanine/Na_2CO_3 aerosols,the ERHs of Na_2CO_3 are 51.8%–42.3% and 57.1%–42.3%,respectively.While β-alanine crystal appears from 62.7% RH for 2:1 and 59.4% RH for both 1:1 and 1:2 particles and lasts to driest state.On hydration,the DRH is 44.7%–75.2% for Na_2CO_3 with the OIR of 1:1 and 44.7%–69.0%for 1:2 mixture,and those of β-alanine are 74.8% for 2:1 mixture and 68.9% for two others.After the first dehumidification–humidification,all the water contents decrease despite of constituent fraction.And at ~ 92% RH,the remaining water contents are 92%,89% and 82%at ~ 92% RH,corresponding to OIR of 2:1,1:1 and 1:2 mixed system,respectively.  相似文献   
90.
Released Ag ions or/and Ag particles are believed to contribute to the cytotoxicity of Ag nanomaterials, and thus, the cytotoxicity and mechanism of Ag nanomaterials should be dynamic in water due to unfixed Ag particle:Ag+ ratios. Our recent research found that the cytotoxicity of PVP-Ag nanoparticles is attributable to Ag particles alone in 3 hr bioassays, and shifts to both Ag particles and released Ag+ in 48 hr bioassays. Herein, as a continued study, the cytotoxicity and accumulation of 50 and 100 nm Ag colloids in Escherichia coli were determined dynamically. The cytotoxicity and mechanisms of nano-Ag colloids are dynamic throughout exposure and are derived from both Ag ions and particles. Ag accumulation by E. coli is derived mainly from extracellular Ag particles during the initial 12 hr of exposure, and thereafter mainly from intracellular Ag ions. Fe3+ accelerates the oxidative dissolution of nano-Ag colloids, which results in decreasing amounts of Ag particles and particle-related toxicity. Na+ stabilizes nano-Ag colloids, thereby decreasing the bioavailability of Ag particles and particle-related toxicity. Humic acid (HA) binds Ag+ to form Ag+-HA, decreasing ion-related toxicity and binding to the E. coli surface, decreasing particle-related toxicity. HA in complex conditions showed a stronger relative contribution to toxicity and accumulation than Na+ or Fe3+. The results highlighted the cytotoxicity and mechanism of nano-Ag colloids are dynamic and affected by environmental factors, and therefore exposure duration and water chemistry should be seriously considered in environmental and health risk assessments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号