首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3292篇
  免费   172篇
  国内免费   1191篇
安全科学   198篇
废物处理   210篇
环保管理   220篇
综合类   1891篇
基础理论   577篇
污染及防治   1151篇
评价与监测   132篇
社会与环境   158篇
灾害及防治   118篇
  2024年   1篇
  2023年   42篇
  2022年   150篇
  2021年   120篇
  2020年   111篇
  2019年   85篇
  2018年   108篇
  2017年   157篇
  2016年   146篇
  2015年   222篇
  2014年   235篇
  2013年   303篇
  2012年   286篇
  2011年   278篇
  2010年   203篇
  2009年   224篇
  2008年   226篇
  2007年   208篇
  2006年   164篇
  2005年   114篇
  2004年   102篇
  2003年   116篇
  2002年   102篇
  2001年   98篇
  2000年   106篇
  1999年   109篇
  1998年   111篇
  1997年   106篇
  1996年   114篇
  1995年   73篇
  1994年   65篇
  1993年   54篇
  1992年   41篇
  1991年   20篇
  1990年   15篇
  1989年   12篇
  1988年   9篇
  1987年   7篇
  1986年   2篇
  1985年   5篇
  1983年   3篇
  1982年   2篇
排序方式: 共有4655条查询结果,搜索用时 656 毫秒
131.
Sorption and desorption kinetics are essential components for modeling the movement and retention of applied agricultural chemicals in soils and the fraction of chemicals susceptible to runoff. In this study, we investigated the retention characteristics of sugarcane (Saccharum spp. hybrid) mulch residue for atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) based on studies of sorption-desorption kinetics. A sorption kinetic batch method was used to quantify retention of the mulch residue for a wide range of atrazine concentrations and reaction times. Desorption was performed following 504 h of sorption using successive dilutions, followed by methanol extraction. Atrazine retention by the mulch residue was well described using a linear model where the partitioning coefficient (K(d)) increased with reaction time from 10.40 to 23.4 cm3 g(-1) after 2 and 504 h, respectively. Values for mulch residue K(d) were an order of magnitude higher than those found for Commerce silt loam (fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquepts) where the sugarcane crop was grown. A kinetic multireaction model was successful in describing sorption behavior with reaction time. The model was equally successful in describing observed hysteretic atrazine behavior during desorption for all input concentrations. The model was concentration independent where one set of model parameters, which was derived from all batch results, was valid for the entire atrazine concentration range. Average atrazine recovery following six successive desorption steps were 63.67 +/- 4.38% of the amount adsorbed. Moreover, a hysteresis coefficient based on the difference in the area between sorption and desorption isotherms was capable of quantifying hysteresis of desorption isotherms.  相似文献   
132.
133.
134.
Phosphorus (P) in agricultural ecosystems is an essential and limited element for plants and microorganisms. However, environmental problems caused by P accumulation as well as by P loss have become more and more serious. Oxygen isotopes of phosphate can trace the sources, migration, and transformation of P in agricultural soils. In order to use the isotopes of phosphate oxygen, appropriate extraction and purification methods for inorganic phosphate from soils are necessary. Here, we combined two different methods to analyze the oxygen isotopic composition of inorganic phosphate (δ18OP) from chemical fertilizers and different fractions (Milli-Q water, 0.5 mol L?1 NaHCO3 (pH = 8.5), 0.1 mol L?1 NaOH and 1 mol L?1 HCl) of agricultural soils from the Beijing area. The δ18OP results of the water extracts and NaHCO3 extracts in most samples were close to the calculated equilibrium value. These phenomena can be explained by rapid P cycling in soils and the influence of chemical fertilizers. The δ18OP value of the water extracts and NaHCO3 extracts in some soil samples below the equilibrium value may be caused by the hydrolysis of organic P fractions mediated by extracellular enzymes. The δ18OP values of the NaOH extracts were above the calculated equilibrium value reflecting the balance state between microbial uptake of phosphate and the release of intracellular phosphate back to the soil. The HCl extracts with the lowest δ18OP values and highest phosphate concentrations indicated that the HCl fraction was affected by microbial activity. Hence, these δ18Op values likely reflected the oxygen isotopic values of the parent materials. The results suggested that phosphate oxygen isotope analyses could be an effective tool in order to trace phosphate sources, transformation processes, and its utilization by microorganisms in agricultural soils.  相似文献   
135.
Biodiesel produced by transesterification of waste animal oil is a promising green fuel in the future. ZnO-Al2O3 and ZnO/Zn2Al composition oxides were prepared by co-precipitation method and impregnation method, respectively. The above catalysts were characterized by X-ray diffraction (XRD), Brunauer--Emmett--Teller (BET) and CO2 adsorption and temperature-programmed desorption (CO2-TPD) and show that the high activity for the catalyst is attributed to its high alkalinity. The reaction parameters were optimized and the results show that the transesterification ratio of waste animal oil can reach 98.7% with 10% ZnO/Zn2Al catalyst after 2 h. Moreover, 10%ZnO/Zn2Al compound oxides can be active for the successive cycles. The glycerol as a predominant by-product after transesterification is of high purity with high use value.  相似文献   
136.
土壤生物的学习行为是一种综合性的神经高级活动,对土壤中的神经毒性污染物生态风险监测具有重要价值.本研究设计了一套试验装置,基于蚯蚓对白光刺激的厌恶本性,通过振动-白光配对刺激,对蚯蚓进行学习训练,使蚯蚓领会借助加速移动阻止白光刺激的策略,通过蚯蚓到达移动位移阈值的时间测定,对蚯蚓的学习行为进行测试,建立了蚯蚓的学习行为测试方法.采用建立的测试方法,对土壤中东莨菪碱和毒死蜱诱导下蚯蚓的学习行为进行了测试,结果表明,1~3 mg·kg-1东莨菪碱与4~12 mg·kg-1毒死蜱污染处理均对蚯蚓的学习能力造成了损伤,污染浓度越高,蚯蚓的学习能力损伤越严重.该测试方法可以快速有效地检测土壤污染导致的蚯蚓学习行为变化,有望用于低浓度神经毒性农药污染土壤的神经毒性快速诊断.  相似文献   
137.
Environmental Science and Pollution Research - The traditional mixing ventilation is not an energy effective approach to remove indoor air pollutants, maintain breath zone air quality, and control...  相似文献   
138.
Biomass is recognized as an important solution to energy and the environmental problems related to fossil fuel usage. The rational utilization of biomass waste is important not only for the prevention of environmental issues, but also for the effective utilization of natural resources. Pyrolysis and hyrolysis in subcritical water are promising processes for biomass waste conversion. This paper deals with hydrolysis and pyrolysis of peanut shells. Hydrolysis and pyrolysis kinetics of peanut shell wastes were investigated for the in-depth exploration of process mechanisms and for the control of the reactions. Hydrolysis kinetics was conducted in a temperature range of 180–240 °C. A simplified kinetic model to describe the hydrolysis of peanut shells was proposed. Hydrolysis activation energy as well as the pre-exponential factor was determined according to the model. The target products of peanut shell hydrolysis, reducing sugars, can reach up to 40.5 % (maximum yield) at 220 °C and 180 s. Pyrolysis characteristics were investigated. The results showed that three stages appeared in this thermal degradation process. Kinetic parameters in terms of apparent pyrolysis activation energy and pre-exponential factor were obtained by the Coats–Redfern method.  相似文献   
139.
Fomesafen is a diphenyl ether herbicide that has an important role in the removal of broadleaf weeds in bean and fruit tree fields. However, very little information is known about the effects of this herbicide on soil microbial community structure and activities. In the present study, laboratory experiments were conducted to examine the effects of different concentrations of fomesafen (0, 10, 100, and 500 μg/kg) on microbial community structure and activities during an exposure period of 60 days, using soil enzyme assays, plate counting, and denaturing gradient gel electrophoresis (DGGE). The results of enzymatic activity experiments showed that fomesafen had different stimulating effects on the activities of acid phosphatase, alkaline phosphatase, and dehydrogenase, with dehydrogenase being most sensitive to fomesafen. On the tenth day, urease activity was inhibited significantly after treatment of different concentrations of fomesafen; this inhibiting effect then gradually disappeared and returned to the control level after 30 days. Plate counting experiments indicated that the number of bacteria and actinomycetes increased in fomesafen-spiked soil relative to the control after 30 days of incubation, while fungal number decreased significantly after only 10 days. The DGGE results revealed that the bacterial community varied in response to the addition of fomesafen, and the intensity of these six bands was greater on day 10. Sequencing and phylogenetic analyses indicated that the six excised DGGE bands were closely related to Emticicia, Bacillus, and uncultured bacteria. After 10 days, the bacterial community exhibited no obvious change compared with the control. Throughout the experiment, we concluded that 0–500 μg/kg of fomesafen could not produce significant toxic effects on soil microbial community structure and activities.  相似文献   
140.
The removal of 12 pharmaceuticals and personal care products (PPCPs) in two full-scale wastewater treatment plants (WWTPs) and a tertiary treatment system was studied. The ecological risks of effluents from both secondary and tertiary treatment systems as well as excess sludge were evaluated. Primary treatment and ultraviolet light disinfection showed limited ability to remove most selected PPCPs. The combination of an anaerobic process and triple-oxidation ditches can eliminate DEET better than the anaerobic/anoxic/oxic process. Adsorption to sludge played a key role in the removal of triclocarban. Multistage constructed wetlands as a tertiary treatment efficiently removed caffeine and ibuprofen from wastewater and could decrease the risk of partial selected PPCPs. Selected PPCPs residues in excess sludge generally produced higher risks to the ecological environment than effluents from WWTPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号