首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127篇
  免费   2篇
  国内免费   2篇
安全科学   6篇
废物处理   2篇
环保管理   10篇
综合类   30篇
基础理论   21篇
污染及防治   41篇
评价与监测   11篇
社会与环境   10篇
  2023年   4篇
  2021年   6篇
  2020年   5篇
  2019年   3篇
  2018年   7篇
  2017年   6篇
  2016年   6篇
  2015年   2篇
  2014年   9篇
  2013年   11篇
  2012年   5篇
  2011年   8篇
  2010年   3篇
  2009年   9篇
  2008年   6篇
  2007年   6篇
  2006年   3篇
  2005年   2篇
  2004年   2篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1995年   1篇
  1994年   3篇
  1993年   4篇
  1991年   1篇
  1989年   1篇
  1983年   2篇
  1978年   1篇
  1968年   1篇
排序方式: 共有131条查询结果,搜索用时 765 毫秒
21.
The nutrient enrichment of rivers and its consequences are among the most severe water quality problems in Europe, causing eutrophication and other problems. The decision-making processes involved in the management of these problems require extensive human expertise from people who deal directly with day-to-day stream problems, as well as empirical knowledge based on scientific research. This means that eutrophication is a complex problem, the optimal management of which requires an integrated and multidisciplinary approach. This approach can be taken using a Knowledge-Based System (KBS) built upon the concepts and methods of human reasoning. Accordingly, a KBS was developed within the STREAMES project. In this KBS most of the knowledge needed for managing eutrophication problems was organised and structured in the form of a decision tree (DT). The methodology specially developed to build this KBS, as well as the internal structure of the eutrophication decision tree, is presented here. The good DT obtained led to consider the KBS a suitable tool to support the management of eutrophication.  相似文献   
22.
Scanning electron microscopy coupled to energy-dispersive x-ray spectroscopy (SEM/EDX) was used to quantify individual bioparticles in PM2.5 samples collected during the Pittsburgh Air Quality Study. Microscopy-based estimates of primary biogenic organic aerosol (PBOA) mass were compared to carbohydrate mass associated with PM2.5. Carbohydrates show substantial seasonal variations, with higher concentrations in the spring and the fall. During the summer, carbohydrates were about 30% of the estimated PBOA concentrations, but in the winter carbohydrate concentrations often greatly exceeded the PBOA mass estimate. Spores and insect detritus were the most abundant PBOA types in the summer samples, while winter samples were comprised predominantly of a mixture of microorganisms, insect and vegetative detritus. During the summer PBOA contributed on average 6.9 ± 5.4% by mass of the PM2.5 versus 3.3 ± 1.4% of the PM2.5 mass during the winter.  相似文献   
23.

Background

Although breastfeeding is the ideal way of nurturing infants, it can be a source of exposure to toxicants. This study reports the concentration of Hg, Pb and Cd in breast milk from a sample of women drawn from the general population of the Madrid Region, and explores the association between metal levels and socio-demographic factors, lifestyle habits, diet and environmental exposures, including tobacco smoke, exposure at home and occupational exposures.

Methods

Breast milk was obtained from 100 women (20 mL) at around the third week postpartum. Pb, Cd and Hg levels were determined using Atomic Absorption Spectrometry. Metal levels were log-transformed due to non-normal distribution. Their association with the variables collected by questionnaire was assessed using linear regression models. Separate models were fitted for Hg, Pb and Cd, using univariate linear regression in a first step. Secondly, multivariate linear regression models were adjusted introducing potential confounders specific for each metal. Finally, a test for trend was performed in order to evaluate possible dose-response relationships between metal levels and changes in variables categories.

Results

Geometric mean Hg, Pb and Cd content in milk were 0.53 μg L−1, 15.56 μg L−1, and 1.31 μg L−1, respectively. Decreases in Hg levels in older women and in those with a previous history of pregnancies and lactations suggested clearance of this metal over lifetime, though differences were not statistically significant, probably due to limited sample size. Lead concentrations increased with greater exposure to motor vehicle traffic and higher potato consumption. Increased Cd levels were associated with type of lactation and tended to increase with tobacco smoking.

Conclusions

Surveillance for the presence of heavy metals in human milk is needed. Smoking and dietary habits are the main factors linked to heavy metal levels in breast milk. Our results reinforce the need to strengthen national food safety programs and to further promote avoidance of unhealthy behaviors such as smoking during pregnancy.  相似文献   
24.

Objective

The purpose of this study was to explore the diagnostic yield and clinical utility of trio-based rapid whole exome sequencing (rWES) in pregnancies of fetuses with a wide range of congenital anomalies detected by ultrasound imaging.

Methods

In this observational study, we analyzed the first 54 cases referred to our laboratory for prenatal rWES to support clinical decision making, after the sonographic detection of fetal congenital anomalies. The most common identified congenital anomalies were skeletal dysplasia (n = 20), multiple major fetal congenital anomalies (n = 17) and intracerebral structural anomalies (n = 7).

Results

A conclusive diagnosis was identified in 18 of the 54 cases (33%). Pathogenic variants were detected most often in fetuses with skeletal dysplasia (n = 11) followed by fetuses with multiple major fetal congenital anomalies (n = 4) and intracerebral structural anomalies (n = 3). A survey, completed by the physicians for 37 of 54 cases, indicated that the rWES results impacted clinical decision making in 68% of cases.

Conclusions

These results suggest that rWES improves prenatal diagnosis of fetuses with congenital anomalies, and has an important impact on prenatal and peripartum parental and clinical decision making.  相似文献   
25.
Mexico City frequently experiences high levels of air pollution. This is due mainly to its topography and meteorology that suppress pollutant diffusion and dispersion. The atmospheric mixing is extremely poor, especially during the dry winter months. The levels of certain pollutants, such as particulate matter, are of concern since they have severe effects on public health. Visibility deterioration is one of the most noticeable effects in large cities. Biological effects of particulate matter on man and animals, ranging from mild eye irritation to death, have been reported. The effects depend on the size of the particles, their solubility, and toxicity. The main objective of this paper is to present the results of a chemical mass balance receptor model applied to a well-characterized data set of particulate matter collected in the Mexico City Metropolitan Area (MCMA). Samples of particulate matter were collected using a denuder and a Hi-Vol system for the respi-rable fraction and total suspended particles, respectively. In this paper the analysis of a database consisting of the chemical composition of 33 samples of respirable particulate matter (aerosols with diameter less than 2.5 µm) is presented. The 12-hour samples were acquired during day and night periods in a typical medium-income neighborhood from December 19, 1989 through February 5, 1990.  相似文献   
26.
ABSTRACT

Non-methane organic compound (NMOC) profiles for on-road motor vehicle emissions were measured in a downtown tunnel and parking garages in Mexico City during 1996. Hydrocarbon samples from the tunnel and ambient air samples (C2-C12) were collected using stainless steel canisters, and carbonyl compounds were collected using 2,4-dinitrophenylhydrazine (DNPH) impregnated cartridges. Canister samples were analyzed by gas chromatog-raphy/flame ionization detection (GC/FID) to ascertain detailed hydrocarbon composition. DNPH samples were analyzed by high performance liquid chromatography (HPLC). NMOC source profiles were quantified for evaporative emissions from refueling, cold start, and hot soak, and on-road operating conditions. The ultimate purpose will be to determine the apportionment of ambient NMOC concentrations using the Chemical Mass Balance (CMB) model. The tunnel profile contained 42.3 ppbC% of alkanes, 20.6 ppbC% of unsaturated compounds, and 22.4 ppbC% of aromatics. The most abundant species were acetylene with 7.22 ppbC%, followed by ipentane with 5.69 ppbC%, and toluene with 5.42 ppbC%. These results were compared with those from studies in the United States. The cold start profile was found to be similar to the tunnel profile, although there were differences in the content of acetylene, isopentane, and oxygenates. The abundance of saturated NMOC in the hot soak profile was similar to gasoline head space profiles; it was also much larger than saturated NMOC in the roadway profile.  相似文献   
27.
Non-invasive spatially resolved monitoring techniques may hold the key to observe heterogeneous flow and transport behavior of contaminants in soils. In this study, time-lapse electrical resistivity tomography (ERT) was employed during an infiltration experiment with deicing chemical in a small field lysimeter. Deicing chemicals like potassium formate, which frequently impact soils on airport sites, were infiltrated during snow melt. Chemical composition of seepage water and the electrical response was recorded over the spring period 2010. Time-lapse electrical resistivity tomographs are able to show the infiltration of the melt water loaded with ionic constituents of deicing chemicals and their degradation product hydrogen carbonate. The tomographs indicate early breakthrough behavior in parts of the profile. Groundtruthing with pore fluid conductivity and water content variations shows disagreement between expected and observed bulk conductivity. This was attributed to the different sampling volume of traditional methods and ERT due to a considerable fraction of immobile water in the soil. The results show that ERT can be used as a soil monitoring tool on airport sites if assisted by common soil monitoring techniques.  相似文献   
28.
29.
The use of zeolitic material synthesized from coal fly ash for the immobilization of pollutants in contaminated soils was investigated in experimental plots in the Guadiamar Valley (SW Spain). This area was affected by a pyrite slurry spill in April 1998. Although reclamation activities were completed in a few months, residual pyrite slurry mixed with soil accounted for relatively high leachable levels of trace elements such as Zn, Pb, As, Cu, Sb, Co, Tl and Cd. Phytoremediation strategies were adopted for the final recovery of the polluted soils. The immobilization of metals had previously been undertaken to avoid leaching processes and the consequent groundwater pollution. To this end, 1100 kg of high NaP1 (Na6[(AlO2)6(SiO2)10] .15H2O) zeolitic material was synthesized using fly ash from the Teruel power plant (NE Spain), in a 10 m3 reactor. This zeolitic material was manually applied using different doses (10000-25000 kg per hectare), into the 25 cm topsoil. Another plot (control) was maintained without zeolite. Sampling was carried out 1 and 2 years after the zeolite addition. The results show that the zeolitic material considerably decreases the leaching of Cd, Co, Cu, Ni, and Zn. The sorption of metals in soil clay minerals (illite) proved to be the main cause contributing to the immobilization of these pollutants. This sorption could be a consequence of the rise in pH from 3.3 to 7.6 owing to the alkalinity of the zeolitic material added (caused by traces of free lime in the fly ash, or residual NaOH from synthesis).  相似文献   
30.
Polycyclic aromatic hydrocarbons (PAHs) were quantified in sediment, soil, and plant material from Hanoi, Vietnam, and an aquatic production system in peri-urban Hanoi. The sum of the concentration of 16 US-EPA priority PAHs ( summation PAH16) ranged between 0.44 and 6.21 mg kg(-1) dw in sediment and between 0.26 and 1.35 mg kg(-1) dw in soil, with decreasing concentrations from the urban area to the peri-urban area, indicating contributions from urban and industrial sources. Double plots of diagnostic source ratios indicate that PAHs originate from mixed petrogenic and pyrogenic sources, the latter being predominant. The predominance of low molecular weight (LMW) PAHs in the sediment samples suggests that petrogenic sources are more prevalent in the water environment than in the soil. In contrast, high molecular weight (HMW) PAHs dominated in water spinach which probably reflects the plant's uptake of particle-bound PAHs that originate from pyrogenic sources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号