首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42640篇
  免费   395篇
  国内免费   262篇
安全科学   1054篇
废物处理   1981篇
环保管理   5941篇
综合类   5939篇
基础理论   12322篇
环境理论   25篇
污染及防治   10049篇
评价与监测   2984篇
社会与环境   2768篇
灾害及防治   234篇
  2022年   198篇
  2021年   212篇
  2020年   211篇
  2019年   274篇
  2018年   1923篇
  2017年   1836篇
  2016年   1812篇
  2015年   697篇
  2014年   795篇
  2013年   2413篇
  2012年   1453篇
  2011年   2710篇
  2010年   1927篇
  2009年   1792篇
  2008年   2302篇
  2007年   2734篇
  2006年   1348篇
  2005年   1241篇
  2004年   1169篇
  2003年   1169篇
  2002年   1194篇
  2001年   1335篇
  2000年   937篇
  1999年   606篇
  1998年   495篇
  1997年   489篇
  1996年   488篇
  1995年   539篇
  1994年   496篇
  1993年   436篇
  1992年   450篇
  1991年   404篇
  1990年   404篇
  1989年   434篇
  1988年   369篇
  1987年   317篇
  1986年   292篇
  1985年   332篇
  1984年   321篇
  1983年   363篇
  1982年   345篇
  1981年   302篇
  1980年   260篇
  1979年   287篇
  1978年   243篇
  1977年   199篇
  1976年   206篇
  1975年   199篇
  1974年   175篇
  1972年   206篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
11.
Abstract

Objective: With the overall goal to harmonize prospective effectiveness assessment of active safety systems, the specific objective of this study is to identify and evaluate sources of variation in virtual precrash simulations and to suggest topics for harmonization resulting in increased comparability and thus trustworthiness of virtual simulation-based prospective effectiveness assessment.

Methods: A round-robin assessment of the effectiveness of advanced driver assistance systems was performed using an array of state-of-the-art virtual simulation tools on a set of standard test cases. The results were analyzed to examine reasons for deviations in order to identify and assess aspects that need to be harmonized and standardized. Deviations between results calculated by independent engineering teams using their own tools should be minimized if the research question is precisely formulated regarding input data, models, and postprocessing steps.

Results: Two groups of sources of variations were identified; one group (mostly related to the implementation of the system under test) can be eliminated by using a more accurately formulated research question, whereas the other group highlights further harmonization needs because it addresses specific differences in simulation tool setups. Time-to-collision calculations, vehicle dynamics, especially braking behavior, and hit-point position specification were found to be the main sources of variation.

Conclusions: The study identified variations that can arise from the use of different simulation setups in assessment of the effectiveness of active safety systems. The research presented is a first of its kind and provides significant input to the overall goal of harmonization by identifying specific items for standardization. Future activities aim at further specification of methods for prospective assessments of the effectiveness of active safety, which will enhance comparability and trustworthiness in this kind of studies and thus contribute to increased traffic safety.  相似文献   
12.
Considerable empirical evidence supports recovery of reef fish populations with fishery closures. In countries where full exclusion of people from fishing may be perceived as inequitable, fishing‐gear restrictions on nonselective and destructive gears may offer socially relevant management alternatives to build recovery of fish biomass. Even so, few researchers have statistically compared the responses of tropical reef fisheries to alternative management strategies. We tested for the effects of fishery closures and fishing gear restrictions on tropical reef fish biomass at the community and family level. We conducted 1,396 underwater surveys at 617 unique sites across a spatial hierarchy within 22 global marine ecoregions that represented 5 realms. We compared total biomass across local fish assemblages and among 20 families of reef fishes inside marine protected areas (MPAs) with different fishing restrictions: no‐take, hook‐and‐line fishing only, several fishing gears allowed, and sites open to all fishing gears. We included a further category representing remote sites, where fishing pressure is low. As expected, full fishery closures, (i.e., no‐take zones) most benefited community‐ and family‐level fish biomass in comparison with restrictions on fishing gears and openly fished sites. Although biomass responses to fishery closures were highly variable across families, some fishery targets (e.g., Carcharhinidae and Lutjanidae) responded positively to multiple restrictions on fishing gears (i.e., where gears other than hook and line were not permitted). Remoteness also positively affected the response of community‐level fish biomass and many fish families. Our findings provide strong support for the role of fishing restrictions in building recovery of fish biomass and indicate important interactions among fishing‐gear types that affect biomass of a diverse set of reef fish families.  相似文献   
13.
14.
The purpose of the research is to identify the critical challenges that are impeding the adoption of e-mobility in India. It also aims to give a roadmap how to address these challenges while taking into considerations concerns of all the relevant stakeholders. Based on an in-depth literature review, an exploratory research design is employed to delve deep into various aspects of e-mobility. This is followed by a three-phase Delphi technique to identify and rate the e-mobility challenges in the Indian context. The study successfully identifies four different categories of challenges and proposes integrative framework for e-mobility. Further, the research goes on to lay out the future roadmap for mass adoption of electric vehicles (EVs) in India. The research is novel in terms of presenting a holistic viewpoint on e-mobility in India. Its originality lies in identifying the major inhibitors obstructing EVs adoption in India and then suggesting the roadmap how to overcome these impediments for mass adoption of e-mobility.  相似文献   
15.
16.
Journal of Material Cycles and Waste Management - The traditional Chinese medicinal plant Magnolia officinalis has a wide range of applications; including more than 200 kinds of patented Chinese...  相似文献   
17.
18.
Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia   总被引:4,自引:0,他引:4  
Port Phillip Bay (PPB) is a large (1,930 km2), temperate embayment in southern Victoria, Australia. Extensive bay-wide surveys of PPB have occurred since 1840. In 1995/1996 the Commonwealth Scientific and Industrial Research Organization (CSIRO) Centre for Research on Introduced Marine Pests (CRIMP) undertook an intensive evaluation of the region with the aims of developing a comprehensive species list of native and introduced biota and contrasting previous bay-wide assessments with a current field survey in order to detect new incursions and discern alterations to native communities. Two methods were used to meet these aims: a re-evaluation of regional museum collections and published research in PPB to identify and determine the timing of introductions; and field surveys for benthic (infauna, epifauna and encrusting) organisms between September 1995 to March 1996. One hundred and sixty introduced (99) and cryptogenic (61) species were identified representing over 13% of the recorded species of PPB. As expected, the majority of these are concentrated around the shipping ports of Geelong and Melbourne. Invasions within PPB appear to be increasing, possibly due to an increase in modern shipping traffic and an increase in aquaculture (historically associated with incidental introductions); however the records of extensive biological surveys suggest that this may, in part, be an artefact of sampling effort. In contrast to Northern Hemisphere studies, PPB (and Southern Hemisphere introductions in general) have significantly different suites of successfully invading taxa. PPB is presented as one of the most invaded marine ecosystems in the Southern Hemisphere.Communicated by M.S. Johnson, Crawley  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号