首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37737篇
  免费   428篇
  国内免费   538篇
安全科学   1219篇
废物处理   1755篇
环保管理   4720篇
综合类   5982篇
基础理论   9971篇
环境理论   20篇
污染及防治   9960篇
评价与监测   2590篇
社会与环境   2257篇
灾害及防治   229篇
  2023年   171篇
  2022年   376篇
  2021年   370篇
  2020年   291篇
  2019年   337篇
  2018年   594篇
  2017年   577篇
  2016年   906篇
  2015年   695篇
  2014年   1053篇
  2013年   3039篇
  2012年   1271篇
  2011年   1784篇
  2010年   1432篇
  2009年   1483篇
  2008年   1772篇
  2007年   1818篇
  2006年   1574篇
  2005年   1364篇
  2004年   1234篇
  2003年   1338篇
  2002年   1190篇
  2001年   1573篇
  2000年   1102篇
  1999年   658篇
  1998年   456篇
  1997年   456篇
  1996年   460篇
  1995年   542篇
  1994年   528篇
  1993年   423篇
  1992年   471篇
  1991年   435篇
  1990年   481篇
  1989年   442篇
  1988年   366篇
  1987年   343篇
  1986年   272篇
  1985年   318篇
  1984年   336篇
  1983年   322篇
  1982年   308篇
  1981年   280篇
  1980年   226篇
  1979年   252篇
  1978年   211篇
  1977年   163篇
  1975年   181篇
  1972年   160篇
  1971年   163篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Removal of selenate from water by zerovalent iron   总被引:1,自引:0,他引:1  
Zerovalent iron (ZVI) has been widely used in the removal of environmental contaminants from water. In this study, ZVI was used to remove selenate [Se(VI)] at a level of 1000 microg L(-1) in the presence of varying concentrations of Cl-, SO(2-)4, NO(-)3, HCO(-)3, and PO(3-)4. Results showed that Se(VI) was rapidly removed during the corrosion of ZVI to iron oxyhydroxides (Fe(OH)). During the 16 h of the experiments, 100 and 56% of the added Se(VI) was removed in 10 mM Cl- and SO(2-)4 solutions under a closed contained system, respectively. Under an open condition, 100 and 93% of the added Se(VI) were removed in the Cl- and SO(2-)4 solutions, respectively. Analysis of Se species in ZVI-Fe(OH) revealed that selenite [Se(IV)] and nonextractable Se increased during the first 2 to 4 h of reaction, with a decrease of Se(VI) in the Cl- experiment and no detection of Se(VI) in the SO(2-)4 experiment. Two mechanisms can be attributed to the rapid removal of Se(VI) from the solutions. One is the reduction of Se(VI) to Se(IV), followed by rapid adsorption of Se(IV) to Fe(OH). The other is the adsorption of Se(VI) directly to Fe(OH), followed by its reduction to Se(IV). The results also show that there was little effect on Se(VI) removal in the presence of Cl- (5, 50, and 100 mM), NO(-)3 (1, 5, and 10 mM), SO(2-)4 (5 mM), HCO(-)3 (1 and 5 mM), or PO(3-)4 (1 mM) and only a slight effect in the presence of SO(2-)4 (50 and 100 mM), HCO(-)3 (10 mM), and PO(3-)4 (5 mM) during a 2-d experiment, whereas 10 mM PO(3-)4 significantly inhibited Se(VI) removal. This work suggests that ZVI may be an effective agent to remove Se from Se-contaminated agricultural drainage water.  相似文献   
992.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decline with depth in glacial outwash vs. negligible decline with depth in alluvium). We measured in situ ground water denitrification rates at three depths (65, 150, and 300 cm) within hydric soils at four riparian sites (two per setting) using a 15N-enriched nitrate "push-pull" method. No significant difference was found in the pattern and magnitude of denitrification when grouping sites by setting. At three sites there was no significant difference in denitrification among depths. Correlations of site characteristics with denitrification varied with depth. At 65 cm, ground water denitrification correlated with variables associated with the surface ecosystem (temperature, dissolved organic carbon). At deeper depths, rates were significantly higher closer to the stream where the subsoil often contains organically enriched deposits that indicate fluvial geomorphic processes. Mean rates ranged from 30 to 120 microg N kg(-1) d(-1) within 10 m versus <1 to 40 microg N kg(-1) d(-1) at >30 m from the stream. High denitrification rates observed in hydric soils, down to 3 m within 10 m of the stream in both alluvial and glacial outwash settings, argue for the importance of both settings in evaluating the significance of riparian wetlands in catchment-scale N dynamics.  相似文献   
993.
Sorption and desorption kinetics are essential components for modeling the movement and retention of applied agricultural chemicals in soils and the fraction of chemicals susceptible to runoff. In this study, we investigated the retention characteristics of sugarcane (Saccharum spp. hybrid) mulch residue for atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) based on studies of sorption-desorption kinetics. A sorption kinetic batch method was used to quantify retention of the mulch residue for a wide range of atrazine concentrations and reaction times. Desorption was performed following 504 h of sorption using successive dilutions, followed by methanol extraction. Atrazine retention by the mulch residue was well described using a linear model where the partitioning coefficient (K(d)) increased with reaction time from 10.40 to 23.4 cm3 g(-1) after 2 and 504 h, respectively. Values for mulch residue K(d) were an order of magnitude higher than those found for Commerce silt loam (fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquepts) where the sugarcane crop was grown. A kinetic multireaction model was successful in describing sorption behavior with reaction time. The model was equally successful in describing observed hysteretic atrazine behavior during desorption for all input concentrations. The model was concentration independent where one set of model parameters, which was derived from all batch results, was valid for the entire atrazine concentration range. Average atrazine recovery following six successive desorption steps were 63.67 +/- 4.38% of the amount adsorbed. Moreover, a hysteresis coefficient based on the difference in the area between sorption and desorption isotherms was capable of quantifying hysteresis of desorption isotherms.  相似文献   
994.
Tillage erosion and its effect on soil properties and crop yield in Denmark   总被引:1,自引:0,他引:1  
Tillage erosion had been identified as a major process of soil redistribution on sloping arable land. The objectives of our study were to investigate the extent of tillage erosion and its effect on soil quality and productivity under Danish conditions. Soil samples were collected to a 0.45-m depth on a regular grid from a 1.9-ha site and analyzed for 137Cs inventories, as a measure of soil redistribution, soil texture, soil organic carbon (SOC) contents, and phosphorus (P) contents. Grain yield was determined at the same sampling points. Substantial soil redistribution had occurred during the past decades, mainly due to tillage. Average tillage erosion rates of 2.7 kg m(-2) yr(-1) occurred on the shoulderslopes, while deposition amounted to 1.2 kg m(-2) yr(-1) on foot- and toeslopes. The pattern of soil redistribution could not be explained by water erosion. Soil organic carbon and P contents in soil profiles increased from the shoulder- toward the toeslopes. Tillage translocation rates were strongly correlated with SOC contents, A-horizon depth, and P contents. Thus, tillage erosion had led to truncated soils on shoulderslopes and deep, colluvial soils on the foot- and toeslopes, substantially affecting within-field variability of soil properties. We concluded that tillage erosion has important implications for SOC dynamics on hummocky land and increases the risk for nutrient losses by overland flow and leaching. Despite the occurrence of deep soils across the study area, evidence suggested that crop productivity was affected by tillage-induced soil redistribution. However, tillage erosion effects on crop yield were confounded by topography-yield relationships.  相似文献   
995.
Sustainable land application: an overview   总被引:1,自引:0,他引:1  
Man has land-applied societal nonhazardous wastes for centuries as a means of disposal and to improve the soil via the recycling of nutrients and the addition of organic matter. Nonhazardous wastes include a vast array of materials, including manures, biosolids, composts, wastewater effluents, food-processing wastes, industrial by-products; these are collectively referred to herein as residuals. Because of economic restraints and environmental concerns about land-filling and incineration, interest in land application continues to grow. A major lesson that has been learned, however, is that the traditional definition of land application that emphasizes applying residuals to land in a manner that protects human and animal health, safeguards soil and water resources, and maintains long-term ecosystem quality is incomplete unless the earning of public trust in the practices is included. This overview provides an introduction to a subset of papers and posters presented at the conference, "Sustainable Land Application," held in Orlando, FL, in January 2004. The USEPA, USDA, and multiple national and state organizations with interest in, and/or responsibilities for, ensuring the sustainability of the practice sponsored the conference. The overriding conference objectives were to highlight significant developments in land treatment theory and practice, and to identify future research needs to address critical gaps in the knowledge base that must be addressed to ensure sustainable land application of residuals.  相似文献   
996.
The restoration of river environments has been of growing importance to river management and planning in the UK. The extension of ecological restoration to floodplains as well as river channels is more complex, partly because of the range of stakeholders and the diversity of relevant management institutions. This paper draws on a qualitative survey of river managers in the UK to identify institutional factors relevant to the success or failure of floodplain restoration projects.  相似文献   
997.
The microalgae Chlamydomonas reinhardtii was used for the biosorption of Hg(II), Cd(II) and Pb(II) ions. The maximum adsorption of Hg(II) and Cd(II) ions on Chlamydomonas reinhardtii biomass was observed at pH 6.0 and the corresponding value for Pb(II) ions was 5.0. The biosorption of Hg(II), Cd(II) and Pb(II) ions by microalgae biomass increased as the initial concentration of Hg(II), Cd(II) and Pb(II) ions increased in the biosorption medium. The maximum biosorption capacities of microalgae for Hg(II), Cd(II) and Pb(II) ions were 72.2+/-0.67, 42.6+/-0.54 and 96.3+/-0.86 mg/g dry biomass, respectively. The affinity order for algal biomass was Pb(II)>Hg(II)>Cd(II). FT-IR analysis of algal biomass revealed the presence of amino, carboxyl, hydroxyl and carbonyl groups, which were responsible for biosorption of metal ions. Biosorption equilibrium was established in about 60 min and the equilibrium was well described by the Freundlich biosorption isotherms. Temperature change in the range of 5-35 degrees C did not affect the biosorption capacity. The microalgae could be regenerated using 0.1 M HCl, with up to 98% recovery, which allowed the reuse of the biomass in six biosorption-desorption cycles without any considerable loss of biosorption capacity.  相似文献   
998.
Recycling operations have become one of the primary strategies for waste management, worldwide. Especially, recycling operations are viewed as among the most effective techniques for reducing the amount of municipal solid waste disposed at landfill sites. Botswana's environmental policy on recycling stipulates, among others, that all waste management authorities should provide information on the classification and quantities of controlled waste targeted for recycling. This paper, therefore, examines the extent to which recycling operations in Botswana have either been conducted in compliance with or in violation of some major environmental requirements as enunciated on statutory guidelines. Compatibility between environmental policies on recycling and actual practice is evaluated focusing on two companies (Dumatau trading and Botswana Tissue) involved in recycling operation. Data from the two companies is complemented by one collected from the Gaborone landfill site. Finally, this study discusses on the role played by various stakeholders in policy formulation and implementation with particular emphasis being placed on a select number of non-governmental organisations (NGO).  相似文献   
999.
A measure of soil P status in agricultural soils is generally required for assisting with prediction of potential P loss from agricultural catchments and assessing risk for water quality. The objectives of this paper are twofold: (i) investigating the soil P status, distribution, and variability, both spatially and with soil depth, of two different first-order catchments; and (ii) determining variation in soil P concentration in relation to catchment topography (quantified as the "topographic index") and critical source areas (CSAs). The soil P measurements showed large spatial variability, not only between fields and land uses, but also within individual fields and in part was thought to be strongly influenced by areas where cattle tended to congregate and areas where manure was most commonly spread. Topographic index alone was not related to the distribution of soil P, and does not seem to provide an adequate indicator for CSAs in the study catchments. However, CSAs may be used in conjunction with soil P data for help in determining a more "effective" catchment soil P status. The difficulties in defining CSAs a priori, particularly for modeling and prediction purposes, however, suggest that other more "integrated" measures of catchment soil P status, such as baseflow P concentrations or streambed sediment P concentrations, might be more useful. Since observed soil P distribution is variable and is also difficult to relate to nationally available soil P data, any assessment of soil P status for determining risk of P loss is uncertain and problematic, given other catchment physicochemical characteristics and the sampling strategy employed.  相似文献   
1000.
DIMBOA (3,4-dihydro-2,4-dihydroxy-7-methoxy-2H-1,4-benzoxazin-3-one), a major benzoxazinone of Poaceae plants, was isolated and purified from corn seedlings. The effect of isolated and purified DIMBOA on the degradation of atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], and its toxic breakdown products, desethylatrazine [2-chloro-4-amino-6-(isopropylamino)-s-triazine; DEA] and desisopropylatrazine [2-chloro-4-(ethylamino)-6-amino-s-triazine; DIA], was studied in the absence of plants using batch experiments, while the effect of corn root exudates on these compounds was determined in hydroponic experiments. Degradation experiments were performed in the presence and absence of 50 microM, 1 mM, or 5 mM DIMBOA resulting in ratios of DIMBOA to pesticide of 1:1, 20:1, and 100:1. We observed a 100% degradation of atrazine to hydroxyatrazine within 48 h at a ratio of DIMBOA to atrazine of 100:1. DIMBOA had the largest effect on atrazine, while it was about three times less effective on DEA and DIA. Corn (Zea mays L. cv. LG 2185) was exposed to 10 mg L(-1) of either atrazine, DEA, or DIA for 11 d in a growth chamber experiment. Up to 4.3 micromol L(-1) d(-1) of hydroxyatrazine were formed in the nutrient solutions by plants exposed to atrazine, while the formation of hydroxylated metabolites from plants exposed to DEA and DIA was smaller and also delayed. The formation of hydroxylated metabolites increased in the solution with plant age in all atrazine, DEA, and DIA treatments. HMBOA (3,4-dihydro-2-hydroxy-7-methoxy-2H-1,4-benzoxazin-3-one), the lactam precursor of DIMBOA, and a tentatively identified derivative of MBOA (2,3-dihydro-6-methoxy-benzoxazol-2-one) were detected in the corn root exudates. Mass balance calculations revealed that up to 30% of the disappearance of atrazine and DEA, and up to 10% of DIA removal from the solution medium in our study could be explained by the formation of hydroxylated metabolites in the solution itself. Our results show that higher plants such as corn have the potential to promote the hydrolysis of triazine residues in soils by exudation of benzoxazinones.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号