首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28943篇
  免费   168篇
  国内免费   230篇
安全科学   598篇
废物处理   1263篇
环保管理   3533篇
综合类   5712篇
基础理论   7345篇
环境理论   10篇
污染及防治   6710篇
评价与监测   2024篇
社会与环境   2021篇
灾害及防治   125篇
  2022年   203篇
  2021年   192篇
  2019年   163篇
  2018年   798篇
  2017年   762篇
  2016年   874篇
  2015年   424篇
  2014年   618篇
  2013年   1769篇
  2012年   904篇
  2011年   1606篇
  2010年   1137篇
  2009年   1278篇
  2008年   1486篇
  2007年   1752篇
  2006年   916篇
  2005年   885篇
  2004年   810篇
  2003年   868篇
  2002年   843篇
  2001年   984篇
  2000年   667篇
  1999年   446篇
  1998年   267篇
  1997年   280篇
  1996年   271篇
  1995年   330篇
  1994年   310篇
  1993年   247篇
  1992年   276篇
  1991年   307篇
  1990年   275篇
  1989年   256篇
  1988年   274篇
  1987年   201篇
  1986年   199篇
  1985年   218篇
  1984年   246篇
  1983年   232篇
  1982年   233篇
  1981年   205篇
  1980年   170篇
  1979年   192篇
  1978年   179篇
  1977年   159篇
  1976年   161篇
  1975年   156篇
  1974年   188篇
  1972年   147篇
  1967年   154篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
111.
A 4-year field trial was established in eastern Sweden to evaluate the effects of organic waste on soil chemical and microbiological variables. A simple crop rotation with barley and oats was treated with either compost from household waste, biogas residue from household waste, anaerobically treated sewage sludge, pig manure, cow manure or mineral fertilizer. All fertilizers were amended in rates corresponding to 100kgNha(-1)year(-1). The effects of the different types of organic waste were evaluated by subjecting soil samples, taken each autumn 4 weeks after harvest, to an extensive set of soil chemical (pH, Org-C, Tot-N, Tot-P, Tot-S, P-AL, P-Olsen, K-AL, and some metals) and microbiological (B-resp, SIR, microSIR active and dormant microorganisms, PDA, microPDA, PAO, Alk-P and N-min) analyses. Results show that compost increased pH, and that compost as well as sewage sludge increased plant available phosphorus; however, the chemical analysis showed few clear trends over the 4 years and few clear relations to plant yield or soil quality. Biogas residues increased substrate induced respiration (SIR) and, compared to the untreated control amendment of biogas residues as well as compost, led to a higher proportion of active microorganisms. In addition, biogas residues increased potential ammonia oxidation rate (PAO), nitrogen mineralization capacity (N-min) as well as the specific growth rate constant of denitrifiers (microPDA). Despite rather large concentrations of heavy metals in some of the waste products, no negative effects could be seen on either chemical or microbiological soil properties. Changes in soil microbial properties appeared to occur more rapidly than most chemical properties. This suggests that soil microbial processes can function as more sensitive indicators of short-term changes in soil properties due to amendment of organic wastes.  相似文献   
112.
A kinetic model for a cycling adsorbent/photocatalyst combination for formaldehyde removal in indoor air (Chin et al. J. Catalysis 2006, 237, 29-37) was previously developed in our lab, demonstrating agreement with lab-scale batch operation data of other researchers (Shiraishi et al. Chem. Engineer. Sci. 2003, 58, 929-934). Model parameters evaluated included adsorption equilibrium and rate constants for the adsorbent (activated carbon) honeycomb rotor, and catalytic rate constant for pseudo-first-order formaldehyde destruction in the titanium dioxide photoreactor. This paper explores design consequences for this novel system. In particular, the batch parameter values are used to model both adsorbent and photocatalyst behavior for continuous operation in typical residential home challenges. Design variables, including realistic make-up air fraction, adsorbent honeycomb rotation speed, and formaldehyde source emission rate, are considered to evaluate the ability of the system to achieve World Health Organization pollutant guidelines. In all circumstances, the size of the required rotating adsorbent bed and photoreactor for single-stage operation and the resultant formaldehyde concentration in the home are calculated. The ability of how well such a system might be accommodated within the typical dimensions of commercial ventilation ducts is also considered.  相似文献   
113.
This study aims in linking the biophysical and socioeconomic data base layers with the technical coefficients or simulation models for agri-production estimates and land use planning under normal and extreme climatic events, and exploring the resource and inputs management options in village Shikohpur, Gurgaon district located in the northwest part of India. The socioeconomic profile of Shikohpur is highly skewed with mostly small and marginal farmers. Though the areas under wheat in Shikohpur are increasing, the productivity is declining or remaining stagnant over the years. Most of the area during kharif season (June-September) remains fallow. Pearl millet based cropping systems (pearl millet-mustard and pearl millet-wheat) are predominant. Soils are mostly loamy sand to sandy loam with average of 70-80% sand content. Organic C content in soil is less than 0.3%, due to high prevailing temperature with little rainfall and also intensive agriculture followed in this region. Though the annual average seasonal rainfall in Gurgaon did not have much variation over the years, occurrence of extreme climate events has increased in the last two decades. The crop intensity is low and the water table is declining. Water and nitrogen production functions were developed for the important crops of the region, for their subsequent use in scheduling of the inputs. InfoCrop, WTGROWS and technical coefficients were used for crop planning and resource management under climate change and its variability, extreme events, limited resource availability and crop intensification. These will help in disseminating necessary agro-advisories to the farmers so that they will be able to manipulate the inputs and agronomic management practices for sustained agricultural production under normal as well as extreme climatic conditions.  相似文献   
114.
Environmental security is one of the fundamental requirements of our well being. However, it still remains a major global challenge. Therefore, in addition to reducing and/or eliminating the amounts of toxic discharges into the environment, there is need to develop techniques that can detect and monitor these environmental pollutants in a sensitive and selective manner to enable effective remediation. Because of their integrated nature, biosensors are ideal for environmental monitoring and detection as they can be portable and provide selective and sensitive rapid responses in real time. In this review we discuss the main concepts behind the development of biosensors that have most relevant applications in the field of environmental monitoring and detection. We also review and document recent trends and challenges in biosensor research and development particularly in the detection of species of environmental significance such as organophosphate nerve agents, heavy metals, organic contaminants, pathogenic microorganisms and their toxins. Special focus will be given to the trends that have the most promising applications in environmental security. We conclude by highlighting the directions towards which future biosensors research in environmental security sector might proceed.  相似文献   
115.
Contamination of groundwater by agrochemicals is now widely recognized as an extremely important environmental problem. Modern agricultural practices involve the combined use of irrigation with the application of large amounts of agrochemicals to maximize crop yield. Due to flood irrigation and natural runoff, agricultural activities might generate soil, surface water and groundwater contamination problems and leaching of pesticides. Modeling of the transport and fate of pesticides, such as simazine, may help understand the long-term potential risk to the subsurface environment. This paper illustrates a comparative study via the use of three different pesticide transport simulation models and the applicability of those models in determining the groundwater vulnerability to pesticides contamination in a citrus orchard located at the Lower Rio Grande Valley (LRGV). The three models used in the study are the pesticide root zone model-3 (PRZM-3), the pesticide analytical model (PESTAN) and integrated pesticide transport modeling (IPTM). The concentration values obtained from all three models are in agreement, and they show a decreasing trend from the surface through the vadose zone. The problem is how to use this information and, specifically, how to combine the testimony of a number of experts into a single useful judgment. With the aid of the fuzzy multiattribute decision making method, PRZM-3 is deemed as the most promising one for such precision farming applications.  相似文献   
116.
Environmental factors have long been shown to influence species distributions, with range limits often resulting from environmental stressors exceeding organism tolerances. However, these abiotic factors may differentially affect species with multiple life-history stages. Between September 2004 and January 2006, the roles of temperature and nutrient availability in explaining the southern distributions of two understory kelps, Pterygophora californica and Eisenia arborea (Phaeophyceae, Laminariales), were investigated along the coast of California, USA and the Baja California Peninsula, Mexico, by limiting either: (a) tissue nitrogen uptake and storage by adult sporophytes during periods of elevated temperature, and/or (b) production of embryonic sporophytes by microscopic gametophytes. Results suggest that while adult sporophytes of both species are tolerant of high temperatures and low nutrients, reproduction by their microscopic stages is not. Specifically, while E. arborea produced embryonic sporophytes at both 12 and 18°C, temperatures commonly observed throughout the southern portion of its range, P. californica produced sporophytes at 12 but not at 18°C. As a result, it appears that the southern distribution of P. californica, which ends in northern Baja California, Mexico, may be limited by temperature acting on its microscopic stages. In contrast, the ability of E. arborea’s microscopic and adult stages to tolerate elevated temperatures allows it to persist in the warmer southern waters of Baja California, as well as to the north along the California coast where both species co-occur.  相似文献   
117.
In this study, the heterogeneous photocatalytic degradation of prometryn using TiO(2) as photocatalyst was investigated. The main objectives of the study were: (I) to evaluate the kinetics of the pesticide disappearance, (II) to compare the photocatalytic efficiency of two different types of TiO(2), (III) to examine the influence of various parameters such as initial concentration of pesticide or catalyst and presence of oxidants (H(2)O(2) and K(2)S(2)O(8)), (IV) to evaluate the degree of mineralization and (V) to assess the detoxification efficiency of the studied processes. The experiments were carried out in a 500 ml pyrex UV reactor equipped with a 125 W high-pressure mercury lamp surrounded by a pyrex filter blocking wavelengths below 290 nm. Prometryn concentration was determined using HPLC. It was found that the degradation of the pesticide follows the first order kinetics according to the Langmuir-Hinshelwood model. Parameters like the type and concentration of the catalyst affect the degradation rate. A synergistic effect was observed when an oxidant was added in the TiO(2) suspensions increasing the reaction rate of photodegradation. In order to examine the extent of pesticide mineralization, DOC measurements were carried out. After 6h of illumination, mineralization was achieved up to almost 70%. The toxicity of the treated solution was evaluated using the Microtox test based on the luminescent bacteria Vibrio fisheri, in order to compare the acute toxicity of prometryn and its photoproducts. The detoxification efficiency was found to be dependent on the studied system and it did not follow the rate of pesticide disappearance.  相似文献   
118.
Hung CL  Lau RK  Lam JC  Jefferson TA  Hung SK  Lam MH  Lam PK 《Chemosphere》2007,66(7):1175-1182
The potential health risks due to inorganic substances, mainly metals, was evaluated for the two resident marine mammals in Hong Kong, the Indo-Pacific Humpback Dolphin (Sousa chinensis) and the Finless Porpoise (Neophocaena phocaenoides). The stomachs from the carcasses of twelve stranded dolphins and fifteen stranded porpoises were collected and the contents examined. Concentrations of thirteen trace elements (Ag, As, Cd, Co, Cr, Cs, Cu, Hg, Mn, Ni, Se, V and Zn) were determined by inductively coupled plasma mass spectrometer (ICP-MS). An assessment of risks of adverse effects was undertaken using two toxicity guideline values, namely the Reference Dose (RfD), commonly used in human health risk assessment, and the Toxicity Reference Value (TRV), based on terrestrial mammal data. The levels of trace metals in stomach contents of dolphins and porpoises were found to be similar. Risk quotients (RQ) calculated for the trace elements showed that risks to the dolphins and porpoises were generally low and within safe limits using the values based on the TRV, which are less conservative than those based on the RfD values. Using the RfD-based values the risks associated with arsenic, cadmium, chromium, copper, nickel and mercury were comparatively higher. The highest RQ was associated with arsenic, however, most of the arsenic in marine organisms should be in the non-toxic organic form, and thus the calculated risk is likely to be overestimated.  相似文献   
119.
The acid volatile sulphide (AVS) and simultaneously extracted metals (SigmaSEM) method is increasingly used for risk assessment of toxic metals. In this study, we assessed spatial and temporal variations of AVS and SigmaSEM in river sediments and floodplain soils, addressing influence of flow regime and flooding. Slow-flowing sites contained high organic matter and clay content, leading to anoxic conditions, and subsequent AVS formation and binding of metals. Seasonality affected these processes through temperature and oxygen concentration, leading to increased levels of AVS in summer at slow-flowing sites (max. 37micromolg(-1)). In contrast, fast-flowing sites hardly contained AVS, so that seasonality had no influence on these sites. Floodplain soils showed an opposite AVS seasonality because of preferential inundation and concomitant AVS formation in winter (max. 3-30micromolg(-1)). We conclude that in dynamic river systems, flow velocity is the key to understanding variability of AVS and SigmaSEM.  相似文献   
120.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号