首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1540篇
  免费   58篇
  国内免费   618篇
安全科学   116篇
废物处理   87篇
环保管理   124篇
综合类   881篇
基础理论   273篇
污染及防治   578篇
评价与监测   46篇
社会与环境   43篇
灾害及防治   68篇
  2024年   4篇
  2023年   25篇
  2022年   71篇
  2021年   61篇
  2020年   43篇
  2019年   32篇
  2018年   50篇
  2017年   73篇
  2016年   72篇
  2015年   63篇
  2014年   123篇
  2013年   150篇
  2012年   149篇
  2011年   119篇
  2010年   113篇
  2009年   110篇
  2008年   117篇
  2007年   104篇
  2006年   89篇
  2005年   74篇
  2004年   32篇
  2003年   61篇
  2002年   56篇
  2001年   46篇
  2000年   45篇
  1999年   58篇
  1998年   50篇
  1997年   41篇
  1996年   39篇
  1995年   37篇
  1994年   22篇
  1993年   25篇
  1992年   20篇
  1991年   13篇
  1990年   5篇
  1989年   7篇
  1988年   8篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
排序方式: 共有2216条查询结果,搜索用时 15 毫秒
61.
关于沥青烟尘治理的工业安全与卫生评价   总被引:1,自引:0,他引:1  
炭阳极生产过程存在着严重的环境污染问题 ,在诸多污染物中沥青烟尘对人类生存的危害最大 ,是企业和政府强化治理的重点。笔者结合某铝厂的技术改造工程 ,对沥青烟尘的治理加以讨论 ,将先进的生产工艺和成熟可靠的净化技术作为治理污染源的有效措施 ,以保证污染物的排放量达到国家标准要求。在技改过程中 ,严格按照所涉及的安全生产规程和标准 ,把它们作为技术改造设计原则、安全防范措施、工业卫生评价的依据。  相似文献   
62.
石油天然气钻探过程中硫化氢的监测   总被引:9,自引:0,他引:9  
石油天然气钻探过程中硫化氢的准确监测是确保钻井安全的条件。在介绍硫化氢气体的性质、危害的基础上具体阐述了现场常用硫化氢监测方法。对现行井场硫化氢监测问题进行了探讨,提出了硫化氢监测应从监测地面气体向监测地层流延伸,硫化氢报警内容应多样化的建议。  相似文献   
63.
阐述了利用焦炉、窑炉、电厂等高温废气处理焦化污水的理论及工业实践,该工艺具有投资省、运行费用低的突出优点.  相似文献   
64.
苏州市第三中学地震监测站始建于1976年唐山大地震后,至今29年如一日,监测设备从土变洋,房屋面积从小变大,工作人员从业余到专职,功能从单一的监测发展到多内容结合的防震减灾知识普及教育,三代老师一棒接一棒,使地震监测和防灾减灾宣传工作不断与时俱进。目前,学校的防震减灾科普教育基地已成为全国中学系统唯一规模较大、设备先进、成绩突出的,集地震监测、学生科技活动和面向社会宣传防震减灾知识三大功能于一体的科普教育基地。  相似文献   
65.
树脂相分光光度法测定水中痕量苦味酸   总被引:2,自引:0,他引:2  
谢祖芳  陈渊  晏全  罗欢  韦家才 《化工环保》2005,25(2):140-142
建立了树脂相分光光度法测定水中痕量苦味酸的新方法。该法灵敏度高,表观摩尔吸光系数为1.08×105L/(mol·cm);精密度理想(测定苦味酸质量浓度为5μg/mL的实验5次,相对标准偏差为1.0%);线性范围为0~7.0μg/mL;以3σ衡量,检出限为0.14μg/mL;加标回收率为97%~103%。采用该法直接测定水样中的苦味酸、间接测定烟草中的烟碱,结果令人满意。  相似文献   
66.
Water use efficiency (WUE) is an important ecophysiological characteristic of plants, especially in semiarid and arid regions. At the scale of community or ecosystem, WUE is difficult to quantify because the amount of water used per unit dry mass production is a function of microclimatic variables and species composition. In this study, we analyzed corrected intrinsic water use efficiency (IWUE(s)) of grass and shrub species along the western segment of the Northeast China Transect (NECT) and the relationship between IWUE(s) and mean annual rainfall, habitat degradation status, vegetation type, and plant functional type (C3 versus C4) at 22 survey sites. Site intrinsic water use efficiency (IWUE(v)) and its relationship with the aforementioned site variables were analyzed based on species frequencies at each site. First, it was concluded that photosynthetic pathway played a very important role in determining species IWUE(s). Mean IWUE(s) for C4 species was approximately double that of C3 species. Second, mean annual rainfall, vegetation type, and site degradation status significantly affected IWUE(s) (p < 0.01). Mean IWUE(s) at degraded sites was twice as high as that at nondegraded sites. The mean IWUE(s) for meadows was significantly higher than those for other vegetation types (p < 0.05). Third, the frequency of occurrence of C4 plants explained 36% of the variance in IWUE(v) across the survey sites. The mean frequency of C4 occurrence at degraded sites was more than double that at nondegraded sites. Consequently, mean IWUE(v) at degraded sites was more than double that at nondegraded sites. Dominant C4 species in saline-alkaline areas tended to have higher intrinsic WUE than dominant C4 species in sandy shrub communities.  相似文献   
67.
Fomesafen is a diphenyl ether herbicide that has an important role in the removal of broadleaf weeds in bean and fruit tree fields. However, very little information is known about the effects of this herbicide on soil microbial community structure and activities. In the present study, laboratory experiments were conducted to examine the effects of different concentrations of fomesafen (0, 10, 100, and 500 μg/kg) on microbial community structure and activities during an exposure period of 60 days, using soil enzyme assays, plate counting, and denaturing gradient gel electrophoresis (DGGE). The results of enzymatic activity experiments showed that fomesafen had different stimulating effects on the activities of acid phosphatase, alkaline phosphatase, and dehydrogenase, with dehydrogenase being most sensitive to fomesafen. On the tenth day, urease activity was inhibited significantly after treatment of different concentrations of fomesafen; this inhibiting effect then gradually disappeared and returned to the control level after 30 days. Plate counting experiments indicated that the number of bacteria and actinomycetes increased in fomesafen-spiked soil relative to the control after 30 days of incubation, while fungal number decreased significantly after only 10 days. The DGGE results revealed that the bacterial community varied in response to the addition of fomesafen, and the intensity of these six bands was greater on day 10. Sequencing and phylogenetic analyses indicated that the six excised DGGE bands were closely related to Emticicia, Bacillus, and uncultured bacteria. After 10 days, the bacterial community exhibited no obvious change compared with the control. Throughout the experiment, we concluded that 0–500 μg/kg of fomesafen could not produce significant toxic effects on soil microbial community structure and activities.  相似文献   
68.
Coastal and estuarine areas are often polluted by heavy metals that result from industrial production and agricultural activities. In this study, we investigated the concentration trait and vertical pattern of trace elements, such as As, Cd, Ni, Zn, Pb, Cu, and Cr, and the relationship between those trace elements and the soil properties in coastal wetlands using 28 profiles that were surveyed across the Diaokouhe Nature Reserve (DKHNR). The goal of this study is to investigate profile distribution characteristics of heavy metals in different wetland types and their variations with the soil depth to assess heavy metal pollution using pollution indices and to identify the pollution sources using multivariate analysis and sediment quality guidelines. Principal component analysis, cluster analysis, and pollution level indices were applied to evaluate the contamination conditions due to wetland degradation. The findings indicated that the concentration of trace elements decreased with the soil depth, while Cd increases with soil depth. The As concentrations in reed swamps and Suaeda heteroptera surface layers were slightly higher than those in other land use types. All six heavy metals, i.e., Ni, Cu, As, Zn, Cr, and Pb, were strongly associated with PC1 (positive loading) and could reflect the contribution of natural geological sources of metals into the coastal sediments. PC2 is highly associated with Cd and could represent anthropogenic sources of metal pollution. Most of the heavy metals exhibited significant positive correlations with total concentrations; however, no significant correlations were observed between them and the soil salt and soil organic carbon. Soil organic carbon exhibited a positive linear relationship with Cu, Pb, and Zn in the first soil layer (0–20 cm); As, Cr, Cu, Ni, Pb, and Zn in the second layer (20–40 cm); and As, Cr, Cu, Ni, Pb, and Zn in the third layer (40–60 cm). Soil organic carbon exhibited only a negative correlation with Cd (P?I geo values), which averaged less than 0 in the three soil layers, this finding indicates that the soils have remained unpolluted by these heavy metals. The mean concentrations of these trace elements were lower than Class I criteria. The degradation wetland restoration suggestions have also been provided in such a way as to restore the reserved flow path of the Yellow River. The results that are associated with trace element contamination would be helpful in providing scientific directions to restore wetlands across the world.  相似文献   
69.
Pig manure (PM) is widely used as an organic fertilizer to increase yields of crops. Excessive application of compost containing relatively great concentrations of copper (Cu) and zinc (Zn) can change soil quality. To clarify the effects of different rates of application and to determine the optimal rate of fertilization, PM containing 1,115 mg Cu kg?1, dry mass (dm) and 1,497 mg Zn kg?1, dm was applied to alkaline soil at rates of 0, 11, 22, 44, 88, and 222 g PM kg?1, dm. Phospholipid fatty acids (PLFAs) were used to assess soil microbial community composition. Application of PM resulted in greater concentrations of total nitrogen (TN), NH4 +-N, NO3 ?-N, total carbon (TC), soil organic matter (SOM) but lesser pH values. Soils with application rates of 88–222 g PM kg?1, dm had concentrations of total and EDTA-extractable Cu and Zn significantly greater than those in soil without PM, and concentrations of T-Cu and T-Zn in these amended soils exceeded maximum limits set by standards in china. Except in the soil with a rate of 11 g PM kg?1, dm, total bacterial and fungal PLFAs were directly proportional to rate of application of PM. Biomasses of bacteria and fungi were significantly greater in soils with application rates of 44–222 g PM kg?1, dm than in the soil without PM. SOM, TC and EDTA-Zn had the most direct influence on soil microbial communities. To improve fertility of soils and maintain quality of soil, rate of application should be 22–44 g PM kg?1 dm, soil containing Cu and Zn.  相似文献   
70.
Fresh leachate, generated in municipal solid waste incineration (MSWI) plants, contains various pollutants with extremely high strength organics, which usually requires expensive and complex treatment processes. This study investigated the feasibility of blending treatment of MSWI leachate with municipal wastewater. Fresh MSWI leachate was pretreated by coagulation–flocculation with FeCl3 2 g/L and CaO 25 g/L, plate-and-frame filter press, followed by ammonia stripping at pH above 12. After that, blending treatment was carried out in a full-scale municipal wastewater treatment plant (WWTP) for approximately 3 months. Different operational modes consisting of different pretreated leachate and methanol addition levels were tested, and their performances were evaluated. Results showed that throughout the experimental period, monitored parameters in the WWTP effluent, including COD (<60 mg/L), BOD5 (<20 mg/L), ammonium (<8 mg/L), phosphorus (<1.5 mg/L) and heavy metals, generally complied with the Chinese sewage discharged standard. Under the experimental conditions, a certain amount of methanol was needed to fulfill TN removal. An estimation of the operation cost revealed that the expenditure of blending treatment was much lower than the total costs of respective treatment of MSWI leachate and municipal wastewater. The outcomes indicated that blending treatment could not only improve the treatability of the MSWI leachate, but also reduce the treatment cost of the two different wastewaters.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号